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Forest aboveground biomass (AGB) and its biomass components are key

indicators for assessing forest ecosystem health, productivity, and carbon

stocks. Light Detection and Ranging (LiDAR) technology has great advantages

in acquiring the vertical structure of forests and the spatial distribution

characteristics of vegetation. In this study, the 56 features extracted from

airborne LiDAR point cloud data were used to estimate forest total and

component AGB. Variable importance–in–projection values calculated

through a partial least squares regression algorithm were utilized for LiDAR-

derived feature ranking and optimization. Both leave-one-out cross-validation

(LOOCV) and cross-validation methods were applied for validation of the

estimated results. The results showed that four cumulative height percentiles

(AIH30, AIH40, AIH20, and AIH25), two height percentiles (H8 and H6), and four

height-related variables (Hmean,Hsqrt,Hmad, andHcurt) are rankedmore frequently

in the top 10 sensitive features for total and component forest AGB retrievals.

Best performance was acquired by random forest (RF) algorithm, with R2 = 0.75,

root mean square error (RMSE) = 22.93 Mg/ha, relative RMSE (rRMSE) = 25.30%,

and mean absolute error (MAE) = 19.26 Mg/ha validated by the LOOCV method.

For cross-validation results, R2 is 0.67, RMSE is 24.56 Mg/ha, and rRMSE is

25.67%. The performance of support vector regression (SVR) for total AGB

estimation is R2 = 0.66, RMSE = 26.75 Mg/ha, rRMSE = 28.62%, and MAE =

22.00 Mg/ha using LOOCV validation and R2 = 0.56, RMSE = 30.88 Mg/ha, and

rRMSE = 31.41% by cross-validation. For the component AGB estimation, the

accuracy from both RF and SVR algorithms was arranged as stem > bark > branch

> leaf. The results confirmed the sensitivity of LiDAR-derived features to forest

total and component AGBs. They also demonstrated the worse performance of

these features for retrieval of leaf component AGB. RF outperformed SVR for

both total and component AGB estimation, the validation difference from

LOOCV and cross-validation is less than 5% for both total and component

AGB estimated results.
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forest total and component AGB, machine learning, LiDAR, validation methods,
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1 Introduction

The forest is the most important terrestrial ecosystem on Earth,

playing a critical role in the global carbon cycle and terrestrial

biosphere (He et al., 2007). The aboveground biomass (AGB) of

forest is an important parameter that characterizes their carbon

sequestration capacity. Because forest biomass affects a range of

ecosystem processes, such as carbon and water cycles, energy fluxes,

and thus local and regional climate, the development of sustainable

forest management strategies requires accurate information on

forest AGB (Urbazaev et al., 2018). Quantitative estimates of

aboveground forest biomass provide basic data to support the

carbon cycle of the global forest biomass system, thus

contributing to the development of global carbon reduction

policies and climate change mitigation and providing the

necessary information for the development of sustainable forest

management (Dixon et al., 1994; Cao et al., 2014). Forest AGB is all

aboveground living material, and it includes partitioned biomass

components like stem, bark, leaves, and branches (Zhang et al.,

2011). Biomass components provide important information for

forest management decisions. For example, knowledge of crown

biomass aids fuel load assessment and strategies of fire

management. Although knowledge of the contribution of each

component to AGB is crucial for studying forest growth, it is

essential to understand how these components interact with each

other (Lambert et al., 2005; Saatchi et al., 2007; He et al., 2013).

Meanwhile, the saturation problems resulted from the low

penetration of short electromagnetic wave in the forest with high

AGB level are the bottleneck problems in forest AGB inversion

using remote sensing technology, and accurate estimation of

biomass components can improve the estimation saturation

points in AGB estimation and reduce the uncertainty of carbon

sink estimation, which is the key to quantify carbon stock and plays

an important role in modern forest and ecosystem management (Jia

et al., 2015; Nie et al., 2017). Therefore, accurate forest total AGB

and forest AGB components are crucial. However, accurate

estimation of forest total AGB and biomass components is still a

challenging task in forestry research at present.

Light Detection and Ranging (LiDAR) is a powerful tool for

estimating AGB in forests with fine resolution, which provides

detailed three-dimensional information about the forest structure

by emitting LiDAR pulses that penetrate the canopy. This is closely

related to the spatial heterogeneity of forest carbon content and

habitat (Asner et al., 2012; Vaglio Laurin et al., 2016). Total and

component AGB were investigated and estimated using LiDAR-

derived features in previous research (Næsset and Gobakken, 2008;

Tsui et al., 2012; He et al., 2013; Cao et al., 2014). A large number of

LiDAR-derived features were demonstrated to be useful of

predicting biomass; however, they also revealed that the results

were site or species dependent (Zhao et al., 2009; Salas et al., 2010).

In parametric regression algorithms, the population assumptions of

regression models are usually based on linear relationships.

However, it is difficult to fully describe the complex non-linear

relationship between forest AGB and LiDAR data using traditional
Frontiers in Plant Science 02
statistical regression methods (Zhao et al., 2019; Torre-Tojal et al.,

2022). Several studies found that machine learning algorithms, such

as random forest (RF) and support vector regression (SVR) that

abandoned the population assumptions that did not represent the

heterogeneity of forest stands in parametric regression algorithms,

performed better than parametric algorithms in forest AGB

estimation (Breidenbach et al., 2010; Vauhkonen et al., 2010;

Gleason and Im, 2012; Görgens et al., 2015). Therefore, many

studies have applied machine learning algorithms for forest AGB

estimation. The performance of machine learning algorithms

applied in forest AGB estimation using LiDAR-derived features

was not fully explored by far, and their capability for accurate AGB

estimation has no agreement (Gleason and Im, 2012). Although the

machine learning algorithms show a good performance, the large

amount of data constrains the direct use features extracted from

LiDAR data as input to the inversion models. For forest AGB

estimation using remote sensing observations, a key step is to

optimize the optimal features from abundant remote sensing

observation (Yang et al., 2017). The importance of each extracted

feature was interpreted and ranked by Görgens et al. (Görgens et al.,

2015); however, the optimization of feature was not fully explored

yet; especially, little was known about component AGB estimation.

For machine learning models to estimate forest AGB, the

method of testing model performance is important and involves

appropriate validation methods to determine the best predictive

model. Leave-one-out cross-validation (LOOCV) and cross-

validation are popular for validating the results of forest

biophysical parameter estimation. However, how effectively can

these two validation methods be used and how different are they

and what impact do they have on the estimation results? In our

knowledge, it is not addressed yet. According to abovementioned

research gap, this study focuses on forest total and component AGB

retrieval using height-related features extracted from LiDAR by RF

and SVR algorithms. Partial least squares regression (PLSR)

algorithm combining the advantages of both principal component

analysis (PCA) and multiple linear regression (MLR) was used for

ranking and selecting the optimal LiDAR features. LOOCV and

cross-validation methods were utilized and compared for results

validation. By comparing the two validation methods, we aim to

improve the reliability of the model assessment, find the most

suitable validation strategy for the inversion model and data in the

study area, and improve the efficiency of the utilization of

computational resources with the expectation that the model

performs well in a variety of data scenarios. The objective is to

address the effects of the validation methods and also explore the

potential of RF and SVR for forest AGB and component biomass

inversion and the potential of PLSR algorithm for selecting the

optimal LiDAR-extracted features. To be more concise, we use

forest total biomass to describe the forest AGB; biomass

components to describe the stem, bark, leave, and branch

component biomass; and forest AGBs to describe both total and

component biomass. It is expected to provide a valuable reference

for the selection of the validation methods in machine learning

inverse forest biomass and component biomass studies.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1258521
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2023.1258521
2 Materials and methods

2.1 Study area

The Daxinganling National Forest Ecosystem Locating Station

is the study area, and it is located in Genhe City, Hulunbuir, Inner

Mongolia (50°20′N–52°30′N; 120°12′E–122°55′E; Figure 1), which
is the highest latitude forest ecosystem field scientific observation

station in China. Genhe is one of the cities with the highest latitude

in China and the lowest average temperature in Inner Mongolia

Autonomous Region, with an annual average temperature of

−11°C~5°C. The terrain in the study area is comparatively flat,

over 80% of the study area with slopes less than 15°. The average

elevation is 1,000 m, and the elevation ranges from 700 m to

1300 m. The climate here is a cold-temperate humid forest climate

and has some characteristics of continental monsoon climate, a

typical area of high latitude permafrost and cold-temperate forest

ecosystems. It is cold and wet, with long winters and short summers.

The forest cover of the study area is more than 75%, and the main

forest type is cold-temperate coniferous forest with complex forest

vertical structure. The dominant tree species included in the field-

sampled plots are Larix gmelinii and Betula platyphylla. These tree

species covered around 95% of the forest type in the study area. The

detailed information regarding tree species coverage is shown in

Supplementary Figure 1.
2.2 Remote sensing data collection and
pre-processing

2.2.1 Collection of LiDAR data
In this study, aerial LiDAR data were acquired and utilized to

extract features for forest AGB inversion. The LiDAR data were
Frontiers in Plant Science 03
collected during August to September 2012, using the “Yun-5”

manned aircraft equipped with a RIEGL LMS-Q680i laser sensor.

During this campaign, the average flying altitude of the airborne

platform was 2,700 m, with an average flying speed of 220 km/h,

and 32 parallel flight tracks were acquired. The laser pulse

frequency was 100–200 kHz with a scan angle of ±35°

perpendicular to the flight direction. The average point cloud

density was 5.6 points/m², and the scan overlap rate was about

80%. The acquired area in this campaign were 213 km². The data

format was LAS1.4, and the sensor recorded the three-dimensional

coordinate information (x, y, z) of each laser return point, as well as

information such as the number of point clouds, intensity, and

return type. The detail information of performance of RIEGL LMS-

Q680i laser sensor are shown in Table 1. The maximum pulse

repetition rate was 200 kHz, the maximum scanning frequency was

100 Hz, the wavelength of the pulsed laser was 1,064 nm, and the

relative flying height ranged from 200 to 5,000 m. The maximum

scanning angle was 75° (Table 1).

2.2.2 Preprocessing of LiDAR data
The raw LiDAR data were processed by the research group of

Chinese Academy of Forestry (CAF) through three main steps,

namely, full waveform decomposition, geocoding, and boresight

calibration (Pang et al., 2016). The preprocessing steps for the

LiDAR data in this research include point cloud denoising, point

cloud filtering, point cloud classification, and normalization of

LiDAR point cloud data. Here, the normalization removes the

influence of terrain undulations on the elevation values of the

point cloud data, requiring that the range of the DEM has an

intersection area with the range of the point cloud data, and the

process is to subtract the corresponding DEM elevation value found

from the elevation value Z for each point. LiDAR360 software was

used for the left preprocessing of LiDAR data, and, then, the
FIGURE 1

Location and sample plot distribution of study area.
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preprocessed LiDAR data were used to extract features for forest

AGB estimation (Figure 2). The results of the pre-processed LiDAR

point cloud data were shown as Figure 2.

2.2.3 LiDAR feature extraction
After data preprocessing, a total of 56 LiDAR feature

parameters were extracted (Supplementary Table 1). The

extraction of these parameters was based on previous research

findings (Liu et al., 2018; Michałowska and Rapiń, 2021; Zhou et

al., 2022). To determine the density of point cloud data based on

height, the data were split into 10 equally sized height layers for

points above 2 m. Within each layer, the ratio of the number of

points to the total number of points was calculated, resulting in a

density feature parameter. This method offers a way to analyze

point density at different heights, which can help reveal patterns and

features of the object being scanned.
2.3 Field campaign and processing of the
collected plot measurements

2.3.1 Collection of plot data
The ground plot data used in this study were collected through

field surveys conducted in the Genhe during August in 2012 and

2013 and used for training and validation of the forest AGB

inversion models. The collected plots included 25 fixed plots of

40 m × 40 m surveyed in 2012 and 18 plots of 45 m × 45 m

investigated in 2013. Differential Global Positioning System (GPS)

was used to locate the four corner coordinates of each plot, and the

errors of plot boundary and position were controlled within 1 m. In
Frontiers in Plant Science 04
each sample plot, diameter at breast height (DBH), tree height (H),

and tree species were recorded for trees with DBH ≥ 5 cm.

2.3.2 Aboveground biomass calculation
Forest total biomass and component biomass of each tree were

calculated by allometric equations and component equations

published by the State Forestry Administration of China (State

Forestry Administration of China, 2016a; State Forestry

Administration of China, 2016b). Then, the total AGB and

component AGBs of each plot were calculated by the sum of each

tree in the plot with normalization by area of each sample plot (Li

et al., 2015).

In this study, two tree species, namely, Larix gmelinii and Betula

platyphylla, were involved, and the corresponding equations for

AGB calculation are shown in Table 2. Figure 3 and Table 3 show

the statistics of calculated forest total and component AGBs.
2.4 Methodology

Figure 4 illustrates the framework of this study; first, LiDAR-

derived features were extracted as independent variables, and the

total and component AGB of each plot were calculated worked as

dependent variables; second, PLSR algorithm was used for optimal

independent variables selection; third, SVR and RF algorithms were

trained for estimating forest total and component AGB; finally,

validation and comparative analysis were performed (Figure 4).

2.4.1 LiDAR-derived feature selection using
partial least squares regression

PLSR was a multivariate statistical analysis algorithm. It could

achieve quantitative analysis in the case of multiple correlation of

independent variables and could easily exclude the noise in the

independent variables. It combined the advantages of PCA and

MLR and had outstanding advantages in solving the problems that

were difficult to analyze in MLR and in dealing with the problem of

multiple cointegration among independent variables. PLSR

algorithm optimizes linear regression models to project the input

LiDAR-derived features and output AGB into new orthogonal

spaces with better predictive capabilities, and it was effective for

large number of explanatory LiDAR-derived features that were

often not independent of each other. For the procedure of

selecting the variables, in this study, by maximizing the
A B

C

FIGURE 2

Point cloud data preprocessed results. (A) Raw point cloud data of the study area. (B) Point cloud data before normalization. (C) Point cloud data
after normalization.
TABLE 1 The performance of the RIEGL LMS-Q680i laser sensor for
LiDAR data collection.

Index Value

Maximum pulse repetition rate/kHZ 200

Maximum scanning frequency/Hz 100

pulse laser wavelength/nm 1,064

Relative flight height/m 200–5,000

Maximum scanning angle/(°) 75

Point density/(number m−2) >4
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covariance between projected LiDAR-derived features and the total

forest biomass or component biomass, the orthogonal loading

matrix could be solved, and, then, the number of explanatory

features for AGB or component biomass was significantly

reduced. During the procedure, VIP [variable importance in

projection; Equation (1)] values were calculated to optimize the

LiDAR-derived measurements. The higher the VIP value, the more

significant the independent variable was to the dependent variable;

if all independent factors had identical explanatory power over

dependent variable, then all VIP values were 1.

VIP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

on
h=1r

2(y, ch)
o
n

h=1

r2(y, ch)whj
2

s
(1)

where k is the number of independent variables, ch   is the

principal component extracted from the independent variable of

interest, r(y, ch) is the correlation coefficient between the dependent

variable and the principal component, denoting the explanatory

power of the principal component for y, and whj is the weight of the

independent variable on the principal component.
2.4.2 Machine learning approaches for forest
AGB inversion

RF and SVR were selected and employed to predict forest total

AGB and component AGB in this study. RF was based on decision

trees, and the original training samples were randomly sampled

with put-back by bootstrap algorithm, and the samples that are not

included in the decision trees were used as test samples. For the

regression problem, the predicted values of each decision tree in the

RF were used to average the final predicted values (Breiman, 2001).

In this study, we used the sklearn package of Python software to

train and validate RF model for predicting forest total biomass and

biomass components. The maximum feature variable (mtry) and

the number of decision trees (ntree) were set as 100 and 15 during

the model training procedure.
TABLE 2 Equations for calculating total and component AGBs.

AGB Equations R2

Total AGB
(MA)

MLarch = 060848D2:01549H0:59146(DBH ≥ 5:0cm)

MBirch = 0:06807D0:10850H0:52019(DBH ≥ 5:0cm)

Larix
gmelinii:
0.9690
Betula

platyphylla:
0.9550

Stem
biomass
(MStem)

MStem =
1

ɡ1 + ɡ2 + ɡ3
�MA

Larix
gmelinii:
0.9701
Betula

platyphylla:
0.9545

Bark
biomass
(MBark)

MBark =
ɡ1

ɡ1 + ɡ2 + ɡ3
�MA

Larix
gmelinii:
0.8817
Betula

platyphylla:
0.8678

Branch
biomass
(MBranch)

MBranch =
ɡ2

ɡ1 + ɡ2 + ɡ3
�MA

Larix
gmelinii:
0.8513
Betula

platyphylla:
0.9545

Leaf biomass
(MLeaf )

MLeaf =
ɡ3

ɡ1 + ɡ2 + ɡ3
�MA

Larix
gmelinii:
0.7439
Betula

platyphylla:
0.6311
MLarch is the AGB of a Larch (kg);MBirch is the AGB of a Birch (kg);MA is the estimated AGB
of tree species (kg); H is the height of the tree (m); D is the diameter of a tree measured at
breast height (cm);MStem ,MBark ,MBranch , andMLeaf are the AGB of stem, bark, branches, and

leaves of each tree, respectively; g1, g2, and g3 are the proportional functions of bark, branches,
and leaves, respectively, relative to stem biomass of 1.

Larix gmelinii: ɡ1 = 0:36742DBH−0:16892H−0:17313, ɡ2 = 2:30634DBH0:72188H−1:45081, and ɡ3 =

1:57804DBH0:19527H−1:36274 .

Betula platyphylla: ɡ1 = 0:53498DBH0:09004H−0:46520, ɡ2 = 1:05167DBH0:66925H−1:04662, and

ɡ3 = 0:61793DBH0:17097H−0:88182
FIGURE 3

The distribution of total and component AGB for each plot.
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SVR seeks to obtain the best promotion ability based on a small

number of samples by finding the optimal balance between the

model’s complexity and learning capacity (Drucker et al., 1997);

SVR includes non-linear regression and linear regression

algorithms; the basic idea of non-linear regression algorithm is to

introduce a suitable kernel function in the sample dataset to map

the data from low-dimensional space to high-dimensional space;

then, the non-linear problem in low-dimensional space is converted

into a linear problem in high-dimensional space. The linear

regression is performed in this high-dimensional space, aiming to

find the best fit line of the data, i.e., the hyperplane with the highest

number of points that can accurately predict the data (Chen et al.,

2010; Xue et al., 2010; Xiong and Li, 2019). In this study, the radial

basis function was used as the kernel function, and the constant of

the regularization term in the Lagrangian formula was equal to 1.
TABLE 3 Statistics of calculated total and component AGBs.

Type
Mean/

(t
ha−1)

Maximum/
(t ha−1)

Minimum/
(t ha−1)

Standard
deviation/
(t ha−1)

Standard
error/(t
ha−1)

Total
AGB

92.80 203.53 20.40 46.32 7.06

Stem
biomass

61.14 142.80 10.41 32.66 4.98

Branch
biomass

18.12 35.72 5.77 8.51 1.30

Bark
biomass

9.15 17.77 2.37 4.27 0.65

Leaf
biomass

4.39 8.30 1.26 1.63 0.25
FIGURE 4

Strategy of identifying suitable LiDAR-derived features (PLSR) and suitable forest total and component AGBs modeling approach (RF and SVR).
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SVR algorithms were implemented by sklearn package of

Python software.

2.4.3 Validation algorithms
To validate the accuracy of inversion results, a LOOCV method

and a cross-validation method were used. The basic idea of the

LOOCV is to assume that there are N samples, from which N−1

samples are selected for training, and the remaining samples are

used for validation, and so on, until all samples are traversed, and

the final result is the mean value of N validation errors. It is able to

exclude the influence of random factors and ensures that the

validation process is repeatable and has the advantage of almost

unbiased generalization error estimates (Liu et al., 2011). When

using the cross-validation method, RF and SVR build the model by

randomly selecting 70% of the samples for model training and the

remaining 30% for validation, and the procedure was performed 10

times and the average values were presented here.

Pearson’s coefficient [R²; Equation (2)] of determination, root

mean square error [RMSE; Equation (3)], relative RMSE [rRMSE;

Equation (4)], and mean absolute error [MAE; Equation (5)] were

selected as indicators to predict the accuracy of the model.

R2 =
1 −o(yi − byi)
o(yi − �y)2

(2)

RMSE =

ffiffiffiffiffi
1
m

r
o
m

i=1
(yi − byi)2 (3)

rRMSE =
RMSE

�y
� 100% (4)

MAE =
1
mo

m

i=1
(yi − byi)j j (5)

where ŷ is the predicted value of the model, yi is the sample plot

measurement, �y is the mean value of the sample plot measurement,

and m is the number of training and validation sample plots.
3 Results

3.1 Optimized LiDAR-derived features

To find the best variables to predict the total and component AGB

of the forest, observations with VIP value greater than 1.0 were

selected for further AGB inversion (Ju et al., 2022). Since PLSR

combines the advantages of PCA and MLR, it is effective to extract

the reduced by more useful LiDAR-derived features for forest AGBs

estimation, especially since input features were not independent of

each other. Like the characteristic of PCA, 56 observations and output

forest total or each AGB component were projected into new

orthogonal spaces, which have better predictive capabilities, and,

then, VIP values are calculated and sorted according to the

interpreted variance (Figure 5). As shown in Figure 5, the blue ones

are selected features with VIP values greater than 1, and the gray ones

are abandoned features. The 37 LiDAR-derived features were selected
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as features for leaf AGB estimation, and 32 features were selected for

total AGB and biomass of other component estimation. Four

cumulative height percentiles (AIH30, AIH40, AIH20, and AIH25)

were selected as the top 10 variables for total AGB estimation, and

two height percentiles (H8 and H6) and four height-related variables

(Hmean, Hsqrt, Hmad, and Hcurt) were height-related variables.
3.2 Forest AGB inversion using RF and SVR

3.2.1 Forest AGB estimation results using RF
The LiDAR features selected by PLSR were input in the RF

regression model for forest total biomass and biomass component

inversion, and the inversion accuracy of the models was tested using

LOOCV and cross-validation. Figure 6 graphs the estimation results

validated using LOOCV, and Table 4 summarizes the statistical

information of the results from Figure 6, which are the scatter

points for the built models and validations of the models.

As shown in Table 4, when using the LOOCV validation

method to estimated accuracy of the models, the RF model

performed best for total AGB estimation (R2 = 0.75, RMSE =

22.93 Mg/ha, rRMSE = 25.30%, and MAE = 19.26 Mg/ha). From

the scatter plot of the model fit in Figure 6, the prediction results

were positively and linearly correlated around the 1:1 line, and it

shows some overestimation phenomena for low AGB values, but,

with the increase of AGB values, the prediction trend become better

with no saturation phenomenon for high AGB values. The accuracy

for the stem biomass model (R2 = 0.69, RMSE = 18.14 Mg/ha,

rRMSE = 30.26%, and MAE = 14.49 Mg/ha) was slightly lower than

that of the total AGB. The prediction trend in Figure 6B is similar to

that in Figure 6A but with a slightly lower R2. On the basis of the

RMSE and MAE values, the error of the estimated component AGB

is lower than the error of the total AGB. Figures 6C–E, respectively

represent the estimation results of forest biomass for stems,

branches, and leaves using LOOCV validation.

Table 5 and Figure 7 show the performance of the RF models

with training and validation datasets. Table 5 summarizes the

information with model accuracies and validation accuracies. For

model training, the constructed RF models showed good estimation

results with all R2 greater than 0.80 and rRMSEs ranging from

12.66% to 16.21%, whereas the accuracies decreased when the

constructed models were validated using the left out 30% samples.

R2 ranges from 0.49 to 0.65, and rRMSE ranges from 26.37% to

31.89%. According to Table 5 and Figure 7, the RF model for leaf

component AGB estimation performed with the lowest R2 value

during its training procedure does not show the highest rRMSE

value although it has the lowest R2 value of 0.86. The scatter plots of

both the individual components and the total biomass exhibit

overestimation and underestimation phenomena. The results may

result from the narrow dynamic range of leaf biomass. Meanwhile,

the RF model for stem AGB estimation showed better performance

even if its highest rRMSE of 16.21% during the model training

procedure. However, the model constructed for total AGB

estimations acquired highest R2 of 0.93 and lowest rRMSE of

12.66% during model training also performed best for validation

procedure with highest R2 of 0.67 and lowest rRMSE of 25.67%.
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The results of both validation methods indicated that the

LiDAR characteristic variables were strongly correlated with the

total and component AGBs and that the RF model performed good

for forest AGBs estimation.

Figure 8 shows the comparison between the total and biomass

components of the sample plots calculated by the stumpage biomass

model and the model predictions. The ratios of stem, branch, bark,

and leaf in the total biomass from the field collected datasets were

65.98%, 19.35%, 9.92%, and 4.75%, respectively. For the estimated

total and component AGBs in the test site, leaf AGB accounts for

the lowest ratio with 4.81% and branch and stem accounts for

85.24% of the total AGB. The distribution of each component to the
Frontiers in Plant Science 08
total AGB from the predicted results have similar distribution

pattern with the true values.

3.2.2 Forest AGB estimation results using SVR
The LOOCV and cross-validation methods were also applied

for the validation of estimated AGBs by SVR (Table 6, Figure 9).

Compared with the performance of RF, the overall prediction

accuracies of SVR were lower. As shown in Table 6, the SVR

model performed best for total AGB estimation (R2 = 0.66, RMSE =

26.75 Mg/ha, rRMSE = 28.62%, and MAE = 22.00 Mg/ha). From the

scatter plot of the model fit in Figure 9, the prediction results were

positively and linearly correlated around the 1:1 line.
A

B

D

E

C

FIGURE 5

The VIP values of each LiDAR-derived feature graph (the blue ones are selected features with VIP values greater than 1, and the gray ones are
abandoned features). From (A–E), the LiDAR characteristics of total biomass, stem, bark, branch and leaf were selected.
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Underestimation occurs when AGB values are greater than 150 Mg/

ha. Similar as the performance of RF, the R2 value for the stem

biomass model was slightly lower than that of the total AGB. The

scatter plot for stem shows similar trend with total AGB. The lowest

R2 value was acquired for leaf AGB estimation. The rRMSE values

for component AGB estimation range from 27.36% to 32.48%. For

total and component forest total biomass estimation, the rRMSE

values acquired by SAR were higher than that for the RF algorithms.

For the experiments of cross-validation, 70% of the samples are

randomly selected for model training and left 30% are used for

validation; the procedures were performed 10 times, and the

averaged values were calculated and summarized in Table 7. The

best performance with the highest R2 value was selected among

these ten instances and graphed in Figure 10. According to the

results from cross-validation, the performance of SVR algorithms

shows worse performance than RF algorithms. For the model

training, R2 values range from 0.70 to 0.74, and rRMSE values

range from 20.82% to 27.29%. The R2 value decreased, whereas the
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RMSE and rRMSE values increased during testing, with R2 ranging

from 0.50 to 0.65 and rRMSE ranging from 22.29% to 33.08%.

When predicting biomass with the SVR model, the accuracy of

validation with LOOCV was 0%–5% higher than that of validation

with the cross-validation method. The scatter plots of total and

component AGB estimations show no obvious saturation

phenomena. The results in Table 7 revealed that the lower

rRMSE values in the model training procedure, the lower rRMSE

values in the test procedure.

Figure 11 compares the RMSE and rRMSE values between RF and

SVR algorithms using validation of LOOCV and cross-validation. For

both RF and SVR, the RMSE values of the model training are lower

than that of LOOCV and model testing in total and component AGB

estimations. The RMSE values acquired by the LOOCV method for

bark and leaf, which has lower AGB levels, showed a bit higher than

that acquired at testing procedures of the cross-validation methods.

For stem AGB estimation, RMSE values are almost same for LOOCV

and cross-validation test procedure using both RF and SVR
A B

D E

C

FIGURE 6

Forest total and component AGB estimation results using LOOCV validation. The solid lines in the scatter plots are 1:1 verification lines: (A) for total
AGB, (B) for stem; (C) for bark, (D) for branch, and (E) for leaf.
TABLE 4 The LOOCV was used to check the accuracy results of the model (RF).

Components R2 RMSE/(t•ha−1) rRMSE/(%) MAE/(t•ha−1)

Stem biomass 0.69 18.14 30.26 14.49

Bark biomass 0.63 2.58 28.34 2.21

Branch biomass 0.65 4.99 27.33 0.65

Leaf biomass 0.54 1.10 25.01 0.87

Total AGB 0.75 22.93 25.30 19.26
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algorithms. The RMSE values acquired by LOOCV were lower than

that acquired at testing procedure. It seemed that the rRMSE values

acquired using the LOOCV method for both RF and SVR algorithms

were lower or almost same as that acquired during testing procedures

but greater than that acquired at model training procedures.

Meanwhile, the rRMSE values for forest total biomass and biomass

component estimation ranged from 25% to 32.5%. The acquired

values using RF were lower than that using SVR algorithms.
3.3 Forest AGB mapping

By comparing the accuracy of the two machine learning models

using two validation methods, the RF model was chosen to perform

forest total and component AGB inversion for the LiDAR data

covering the study area. The spatial distribution maps of

component AGBs are shown in Figure 12. The stem AGB

(Figure 12A) ranged from 18.23 Mg/ha to 123.56 Mg/ha, bark

AGB (Figure 12B) ranged from 2.96 Mg/ha to 16.04 Mg/ha, branch

AGB (Figure 12C) ranged from 7.37 Mg/ha to 33.77 Mg/ha, and leaf

biomass (Figure 12D) ranged from 1.92 Mg/ha to 6.66 Mg/ha.

Figure 13 displayed the spatial distribution map of estimated

total AGB, which ranged from 35.02 Mg/ha to 180.11 Mg/ha. From
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Figures 9 and 10, the retrieved AGBs seemed consistent with

distribution trend of the LiDAR-derived AGB map.
4 Discussion

The feature parameters of machine learning models are not

limited by dimensionality, and the inversion of forest total biomass

using machine learning models has good robustness when there is

multicollinearity between feature variables, effectively avoiding the

loss of important parameters while maintaining excellent

estimation performance (Kotsiantis et al., 2006; Görgens et al.,

2015). Therefore, machine learning has been widely used for forest

AGB estimation with good accuracy (Cao et al., 2018; Jiang et al.,

2022; Li et al., 2022; Torre-Tojal et al., 2022). In the study by Ji et al.

(Ji et al., 2022), the accuracy of parametric and non-parametric

models for estimating the total forest AGB was compared using

SAR data, and the results showed that the non-parametric model

gave better estimates than the parametric model, and the non-

parametric model was more advantageous than the parametric

model in the estimation of the total forest AGB. In our study, two

non-parametric models, namely, RF and SVR, were constructed

using sample AGB and associated LiDAR remote sensing features
TABLE 5 The cross-validation method was used to check the accuracy results of the model (RF).

Components
Training set Test set

R2 RMSE/(t•ha−1) rRMSE/(%) R2 RMSE/(t•ha 1) rRMSE/(%)

Stem biomass 0.91 9.92 16.21 0.60 19.15 31.89

Bark biomass 0.90 1.37 14.97 0.57 2.51 29.34

Branch biomass 0.89 2.70 14.84 0.65 4.89 28.32

Leaf biomass 0.86 0.58 13.09 0.49 0.99 26.37

Forest total biomass 0.93 11.89 12.66 0.67 24.56 25.67
FIGURE 7

Cross-validation method to test the accuracy of RF models. The solid line is 1:1 verification line. In the figure, the first row shows the performance of
the model on the training set. The second row shows the performance of the model on the test set.
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for forest total AGB and component AGB inversion. The estimation

accuracy of the inverse model was tested by the LOOCV and cross-

validation methods.

The results of the comparison between the two machine

learning models showed that the R2 value (0.75) of the total

biomass estimated by RF was higher than that of SVR when using

the LOOCV. This result is consistent with the findings of several

studies. For example, the RF and SVR models were compared by

Görgens et al. and Kumari and Kumar (Görgens et al., 2015; Kumari

and Kumar, 2023), and the result was that the RF model

outperformed the SVR model in terms of prediction performance.

In the work of Görgens et al. (Görgens et al., 2015), neural network,
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RF, and SVR models were used to predict stand volume in fast-

growing plantation forests, and the RF model produced the best

prediction results. The study conducted by Kumari and Kumar

(Kumari and Kumar, 2023) compared the predictive potential of

SVR and RF algorithms in predicting forest AGB. The result was

that the predictive performance of RF is better than that of SVR in

this study. In these studies above, the RF algorithm achieved better

prediction results compared with the SVR. This may be due to the

fact that RF is better at handling non-linear relationships and that

the model requires fewer hyperparameters to be adjusted compared

with SVR. On the other hand, SVR requires selecting appropriate

kernel functions and tuning hyperparameters based on the
FIGURE 8

Comparison of total and biomass components of sample plots calculated by the standing wood biomass model with the predicted values from the
RF model.
TABLE 6 The leave-one-out verification statistics for the support vector regression model.

Components R2 RMSE/(t•ha−1) rRMSE/(%) MAE/(Mg/ha)

Stem biomass 0.64 19.52 32.48 16.02

Bark biomass 0.62 2.61 28.73 2.07

Branch biomass 0.61 5.30 28.99 4.34

Leaf biomass 0.45 1.20 27.36 0.94

Forest total biomass 0.66 26.75 28.62 22.00
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characteristics of the dataset. However, this does not imply that RF

outperforms SVR in all scenarios. Therefore, the selection of

machine learning methods for inversion of forest AGB needs to

be evaluated and compared on the basis of a combination of various

factors. In addition, the results of our study using RF to estimate

component biomass showed that leaf biomass was the least

correlated with LiDAR data, with an R2 value of 0.54. This result

is in agreement with He et al. (He et al., 2013) who used LiDAR data

to estimate the summed component AGB of coniferous forests. In

their study, a linear regression model was used, and the results also

showed weaker performance for leaf AGB estimation but better

performance for stem, branch, and total forest biomass estimation.

The range of biomass values of leaves is too low, which may be a

reason for the weaker relationship.

Height variables extracted from LiDAR data were strongly

correlated with the total and component forest AGBs. In this

study, height variables change according to the different
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component of forest AGBs. H30, H40, and Hsqt are the optimized

height variables for total AGB estimation, and the same variables

are selected as optimal features for stem estimation as well. H30,

Hmean, and H8 are the selected optimal height variables for bark

AGB estimation, whereas, for branches and leaves, they are Hsqt,

Hmean, and H20 and H10, H20, and H9, respectively. The differences

in height variables used for biomass estimation of different

components indicate that LiDAR-derived height features have

varying explanatory capabilities for biomass composition. It may

be related to the extracted height characteristics of LiDAR data to

the vertical structure of the forest. In addition, multiple correlations

among LiDAR characteristic variables and some overlap among

cumulative height percentile variables may also be responsible for

the large differences in the relative importance ranking of variables

in the component biomass models (Hong et al., 2019). Cao et al.

(Cao et al., 2014) estimated total and component biomass in a

subtropical forest using small discrete and full waveform airborne
A B

D E

C

FIGURE 9

Leave-one-out validation method to test the accuracy of the support vector regression model. The solid line is 1:1 verification line: (A) for total AGB,
(B) for stem, (C) for bark, (D) for branch, and (E) for leaf.
TABLE 7 The cross-validation method was used to check the accuracy results of the model.

Components
Training set Test set

R2 RMSE/(t•ha−1) rRMSE/(%) R2 RMSE/(t•ha−1) rRMSE/(%)

Stem biomass 0.74 16.95 27.29 0.54 19.26 33.08

Bark biomass 0.73 1.85 23.40 0.65 2.48 28.38

Branch biomass 0.71 4.37 24.21 0.57 5.87 31.77

Leaf biomass 0.70 0.91 20.82 0.50 0.87 22.29

Forest AGB 0.76 22.06 24.04 0.56 30.88 31.41
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LiDAR data. Although the inversion methods that they used were

MLR models, their results also confirmed that the height variables

extracted from LiDAR data were highly correlated with total forest

biomass and component biomass. Forest height features extracted

from small-footprint data (Popescu, 2007), small-footprint full-

wave form data (Hermosilla et al., 2014a; Hermosilla et al.,
Frontiers in Plant Science 13
2014b), and large-footprint SLICER data (Drake et al., 2002;

Lefsky et al., 2005) also explained most of the variability of them

for forest structure characteristics.

The comparisons of different validation method are not

addressed in other studies, whereas several studies demonstrated

that LOOCV performed better especially the limitations of small
FIGURE 10

Cross-validation method to test the accuracy of support vector regression models. The solid line is 1:1 verification line. In the figure, the first row
shows the performance of the model on the training set. The second row shows the performance of the model on the test set.
A

B

FIGURE 11

Comparison of the RF and SVR estimated results using LOOCV and cross-validation method. (A) The validation method for evaluating two models
with RMSE. (B) The validation method for evaluating two models with rRMSE.
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samples are existent (Zeng et al., 2022; Shi et al., 2023). In this study,

the validation difference between LOOCV and cross-validation was

compared, and the results revealed that LOOCV showed better

accuracy for forest stem, bark, stem, branch, and total AGB

estimation but worse accuracy for forest leaf AGB estimation. The

accuracy here is related to the value of rRMSE.

Compared with the results of studies using different data

sources in the same study area, the height features extracted

from LiDAR data outperformed than other data sources. Li

et al. (Li et al., 2020) extracted remote sensing features from

Landsat8 OLI, Gaofen-1 optical data, and ALOS-1 PALSAR-1SAR

to compute forest total biomass at the same test site. They used a

fast iterative procedure to optimize input remote sensing features

to improve the inversion capability of K-nearest neighbor (KNN)

algorithms; the results were validated by LOOCV method; and R²

= 0.63 and RMSE = 28.84 Mg/ha were weaker than the R2 and

RMSE values for estimated total AGB using RF and SVR and
Frontiers in Plant Science 14
LOOCV validation in this study. Zeng et al. estimated total and

component forest AGBs using features extracted from synthetic

aperture radar and demonstrated that C-band polarimetric

features performed best for forest leaf AGB estimation with

R2 = 0.637 and RMSE = 1.27 Mg/ha (Zeng et al., 2022). The

estimation of forest total and component AGBs using different

data sources revealed the great potential of LiDAR features for

accurate estimation.

Although we explored the forest total biomass and biomass

component inversion based on optimal LiDAR-derived feature

selection with PLSR algorithm and RF and SVR inversion

algorithms, there are other machine learning methods that we do

not explored in this study. Moreover, the component biomass in

this study was calculated by the conversion factors; it may introduce

uncertainties for the inversion results; later, the field collected

component biomass could be applied in similar study to reduce

the uncertainties.
A B

DC

FIGURE 12

Spatial distribution of biomass component. (A) Stem, (B) bark, (C) branch, and (D) leaf.
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5 Conclusions

In this study, 56 height-related features extracted from LiDAR

were used in RF and SVR algorithms for forest total and component

AGB estimation. PLSR algorithm was utilized for ranking and

selecting optimal LiDAR-derived features. LOOCV and cross-

validation methods were performed to validate the inversion

results obtained by RF and SVR. Four cumulative height

percentiles (AIH30, AIH40, AIH20, and AIH25), two height

percentiles (H8 and H6), and four height-related variables (Hmean,

Hsqrt, Hmad, and Hcurt) are more sensitive LiDAR-derived features

for total and component forest height estimation. RF performed

better than SVR for both forest total biomass and biomass

component estimation. LOOCV showed better accuracy for forest

stem, bark, stem, branch, and total AGB estimation but worse

accuracy for forest leaf AGB estimation. Note that the difference

between the validation using LOOCV and cross-validation is no

more than 5%. The features extracted from LiDAR showed a weak

performance for leaf AGB estimation when compared with other

component AGBs and total AGB estimation. Because only 56

height-related features and only two machine learning methods

were applied in this study, future work should focus on exploring

more metrices especially derived from full-waveform LiDAR

data and more machine learning methods like KNN and

Gaussian processes.
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