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Topological data analysis
expands the genotype to
phenotype map for 3D maize
root system architecture
Mao Li1*†, Zhengbin Liu1†, Ni Jiang1, Benjamin Laws1,
Christine Tiskevich2, Stephen P. Moose2

and Christopher N. Topp1*

1Donald Danforth Plant Science Center, St. Louis, MO, United States, 2Department of Crop Sciences,
University of Illinois at Urbana-Champaign, Urbana, IL, United States
A central goal of biology is to understand how genetic variation produces

phenotypic variation, which has been described as a genotype to phenotype

(G to P) map. The plant form is continuously shaped by intrinsic developmental

and extrinsic environmental inputs, and therefore plant phenomes are highly

multivariate and require comprehensive approaches to fully quantify. Yet a

common assumption in plant phenotyping efforts is that a few pre-selected

measurements can adequately describe the relevant phenome space. Our poor

understanding of the genetic basis of root system architecture is at least partially

a result of this incongruence. Root systems are complex 3D structures that are

most often studied as 2D representations measured with relatively simple

univariate traits. In prior work, we showed that persistent homology, a

topological data analysis method that does not pre-suppose the salient

features of the data, could expand the phenotypic trait space and identify new

G to P relations from a commonly used 2D root phenotyping platform. Here we

extend the work to entire 3D root system architectures of maize seedlings from a

mapping population that was designed to understand the genetic basis of maize-

nitrogen relations. Using a panel of 84 univariate traits, persistent homology

methods developed for 3D branching, and multivariate vectors of the collective

trait space, we found that each method captures distinct information about root

system variation as evidenced by the majority of non-overlapping QTL, and

hence that root phenotypic trait space is not easily exhausted. The work offers a

data-driven method for assessing 3D root structure and highlights the

importance of non-canonical phenotypes for more accurate representations

of the G to P map.
KEYWORDS

topological data analysis, persistent homology, multivariate analysis, 3D root system
architecture, GWAS, genotype to phenotype, phenome
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Introduction

The importance of root system architecture (RSA) to plant

health and productivity has been well established. Rational design of

root traits that are tailored to the environment is an appealing

approach to generating more efficient, productive plants with less

negative environmental impact (White et al., 2013). Yet little is

known about the quantitative genetic control of root system

architecture, particularly outside of model systems and laboratory

environments. The most advanced work is from rice, where two

seminal genes were identified from field studies: Deeper rooting 1

(Dro1) conferring drought avoidance (Uga et al., 2013), and

Phosphorus-starvation tolerance 1 (Pstol1) controlling a low

phosphorus tolerance QTL (Gamuyao et al., 2012). In maize, a

major target is to increase the efficiency of applied nitrogen fertilizer

capture, but despite strong associations with root system

architecture QTL (Li et al., 2015), only recently have underlying

genes been identified that may provide durable nitrogen uptake

benefits in agricultural systems (Schneider et al., 2021).

The Illinois Long Term Selection Experiment for Protein began

in 1896 as a recurrent selection scheme for increased or decreased

maize grain protein concentration (Moose et al., 2004). As grain

protein derives from plant accumulated nitrogen, selection for grain

protein concentration has also impacted other phenotypes

associated with nitrogen uptake and partitioning (Uribelarrea

et al., 2007; Uribelarrea et al., 2009). A population of recombinant

inbred lines (the IPSRIs) derived from the divergently selected

Illinois High Protein (IHP) and Illinois Low Protein (ILP) strains

has previously been described that varies significantly for grain

protein concentration (Lucas et al., 2013). We hypothesized that if

root system architecture is important for nitrogen uptake in the

field, root traits would have been indirectly selected on, and

mapping the genes involved could lead to a better understanding

of efficient maize N-uptake.

The central goal of phenomics is to explain more of the

observed phenotypic variance by genetic factors and thereby

expand the genotype-to-phenotype map (Houle et al., 2010). A

primary limitation to this work is the low information content of

many phenotyping approaches, including the use of serial

predefined univariate traits to describe complex phenotypes

(Pitchers et al., 2019). We previously conducted a quantitative

genetic mapping analysis of 3D root system architecture using a

similar optical gel-based growth and imaging system as was used in

this study (Topp et al., 2013). A key finding was that using

multivariate composite traits derived from constituent univariate

traits could identify regions of the rice genome with large effects on

RSA that were not identified by the univariate traits alone. Yet this

study still relied on predefined traits to measure a complex

phenotype (RSA) that we have little scientific understanding of.

Subsequently, we showed how data-driven traits could enhance

traditional univariate features in measuring leaf and 2D root traits

for enhanced G to P mapping (Li et al., 2018a).

Persistent homology (PH) is a topological data analysis (TDA)

method to infer complex data structure. Its mathematical theory

can be traced back to the 1940s or even further (Morse, 1940). Since

the early 2000s, PH has been efficiently computed to quantify
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topological features (Edelsbrunner et al., 2002), then TDA started

to be broadly applied to many fields such as atomic structures,

material science, cancers, sensors networks, among others (De Silva

and Ghrist, 2007; Edelsbrunner and Morozov, 2013; Kramar et al.,

2013; Chazal and Michel, 2021). But at that time, it had not been

widely introduced in the analysis of plant phenotyping. In the works

(Li et al., 2017; Li et al., 2018a; Li et al., 2019), we developed PH-

based methods tailored to quantify complex 2D shapes and 3D

branching architectures and applied them in plant phenotyping.

Meanwhile, many other TDA methods have also been employed to

this field such as Persistence Intensity Array (Medina and Doerge,

2016), Euler Characteristic Transform (Amezquita et al, 2021),

mapper (Amézquita et al., 2020) and many others. Our previous

study showed that PH can be used to capture comprehensive and

complementary morphological features in 2D such as leaf shape

and 2D root projections in tomato as evidenced by detecting more

and unique QTL that provided a more complete understanding of

genetic architecture (Li et al., 2018a). PH has also been applied to

quantify 3D branched systems in an integrated manner that adds to

the description and statistical discrimination of complex

architectures (Li et al., 2017; Delory et al., 2018; Li et al., 2019).

In this study, we built and expanded upon these methods for

quantifying 3D root architecture. These works support a theory

that expanding the phenotypic space can result in a fuller

description of the actual plant phenome, which enhances our

ability to map relationships to the underlying genotypic diversity.

Here we apply the methods to a quantitative genetic analysis of

maize 3D RSA in the IPSRI mapping population using, initially, 84

univariate traits, PH methods developed for 3D branching, and

multivariate vectors of those traits. We used a variance inflation

factor (VIF) to reduce the collinearity of traits, and multivariate

models to concentrate the variation along fewer dimensions. We

expanded our previous PH methods with two mathematical

functions to capture comprehensive summaries of complex root

systems. The genetic architectures of these 3D root traits were

queried using Genome Wide Association (GWA) mapping, and we

found that PH traits identified loci that were otherwise undetected

by the univariate and multivariate trait. Loci were analyzed to

understand genetic variation for root system architecture that

occurred indirectly as the result of selection for increased seed

protein content.
Result

Workflow

A non-destructive gel-based optical tomography imaging

platform captured 3D RSA at day 9 after germination

(Figure 1A). We used the RSA-GiA3D software to measure

univariate root traits such as surface area, total root length and

solidity (Galkovskyi et al., 2012; Topp et al., 2013), Dynamic Roots

to measure local individual traits such as first order lateral root

number and lateral root soil angle (Symonova et al., 2015; Jiang

et al., 2019), and a TDA approach with PH to quantify the topology

of the root structure (Li et al., 2017; Li et al., 2019; Figure 1B).
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Because some traits are mathematically and/or phenotypically

correlated, we employed the statistical approach variance inflation

factor (VIF, Stine, 1995) to remove the redundant traits. We chose

VIF because it has been effectively used in high-throughput plant

phenotyping studies for this purpose for at least a decade (Chen

et al., 2014; Falk et al., 2020), although advances in the statistics of

high-dimensional data analysis have since proposed more

sophisticated methods that can increase understanding of the

most important response variables (Cheng et al., 2022) (see

Conclusion). The remaining traits after VIF are highlighted in

Supplementary Table 1 from the full list of all phenotypic traits.

Then we performed principal component analysis (PCA) on the

remaining univariate traits and PH traits and treated PCs as the

multivariate traits (Figure 1C). Like our rationale for using VIF, we

chose to use PCA because of its common use in plant phenotyping

studies (Duc et al., 2023), but subsequent variations such as sparse

PCA may increase interpretability of the multivariate traits (Zou

et al., 2006, see Conclusion). We made GWA using univariate traits,

PH traits, and multivariate traits by a Multi-Locus Mixed Model

(MLMM), evaluating both the optimal and maximum models

(Figure 1D; Ziegler et al., 2018). We then compared the results by

co-al igning across the maize genome and evaluating

correspondences in different window sizes.
A topological data analysis method:
persistent homology

Root systems are commonly measured by some intuitive

topological descriptors such as number of tips and geometric

descriptors such as root lengths and root-soil angles, which are

useful but do not capture the entirety of 3D topological structure.
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Recently, TDA has demonstrated its wide application and success to

extract complementary and comprehensive plant phenotypic traits

such as 2D leaf shape, 2D root architecture and 3D inflorescence

architecture (Li et al., 2017; Li et al., 2018a; Li et al., 2019). We used

the TDA method PH to quanti fy the 3D RSA more

comprehensively. We first extracted the surface voxels from the

3D model and manually cleaned the topological noise (e.g.

branching touches) as much as we could. Then we assigned each

surface voxel a value showing the curved distance from the voxel

along the root to its top at the surface of the gel, which is called

geodesic distance. Geodesic distance provides us the near true

length of each root which is biologically important and known to

be useful to distinguish different root architectures. The root

examples in the Figures 2A, C, E show the colormap of the

geodesic distance where red indicates high value, blue means low

value. Starting from the voxel with the largest geodesic distance

value, we plotted a bar to record the connected component

information. Every isolated piece/blob is treated as one connected

component. Then we kept adding new voxels as we continuously

decrease the geodesic distance level. If the added voxels are

connected to one of the components, the bar corresponding to

that component will elongate; if the added voxels are the beginning

of a new component (tip of a root), we start to plot to a new bar with

the birth at the corresponding geodesic distance level; and if the

added voxels merge two components, the shorter bar will die and

the longer bar will elongate. At the end, the distance level is

decreased to 0 and all the bars die except one since the root

system is a single connected component. The bar graph forms a

persistence barcode to record the topological information of the

root structure (Figures 2A, C, E).

The persistence barcode associated with geodesic distance can

record the topological structure and also some geometric

information. For example, the number of bars is equal to the
FIGURE 1

Workflow. (A) 3D imaging, optical imaging platform is used to get 3D root system grown in the gel; (B) trait extraction, global root traits are
extracted by GiA Roots, local roots traits are measured by Dynamic Roots, and topological structure is quantified by a topological data analysis
approach persistent homology implemented in MATLAB (R2017a); (C) trait processing, variance inflation factor (VIF, vif() in R) is used to remove the
redundant traits. Then we perform principal component analysis (PCA, prcomp() in R) on the remaining traits to get PCs as multivariate traits;
(D) genome-wide association study (GWAS), both optimal model and maximum model (MLMM in R, Segura et al., 2012) to detect the traits
associated quantitative traits loci (QTL).
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number of roots. The birth and death of each bar shows the depth of

the root tip and emergence. The length of each bar indicates the

length of the branch. However, it does not measure the angle. Thus,

we combined it with a second persistence barcode that included a

depth function to capture some of the angle information

(Figures 2B, D, F). Because the depth of the root tip is highly

related to the angle of the root relative to the soil surface, horizontal

roots will have much shorter bars in the depth barcode (Figure 2F).

For convenience, we simply name the two different persistence

barcodes as geo-barcode and depth-barcode.

Barcodes need to be quantitatively compared to measure the

similarity, quantify the variation and other statistics. Bottleneck
Frontiers in Plant Science 04
distance is a robust metric to measure the distance between any two

persistence barcodes (Cohen-Steiner et al., 2007). Intuitively, it

measures how much minimum energy that it needs to take for

reassembling a barcode to be the same as the other barcode. For

each root, we computed the geo-barcode and depth-barcode. We

measured the similarity between two roots by the square root of

summation of bottleneck distance squared between two geo-

barcodes and bottleneck distance squared between two depth-

barcodes:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2(geobarcode1, geobarcode2) + d2(depthbarcode1, depthbarcode2

q
)

B

C D

E F

A

FIGURE 2

A topological data analysis method persistent homology to comprehensively quantify branching structure. (A) Heatmap of the geodesic distance
function to the top assigned on each pixel of a simple root example. The greatest distance to the smallest distance are colored from red to blue (left
panel). H0 persistent barcode records the “birth” and “death” of each connected component as the level set (the pixels that have greater distance
than given a geodesic distance level at x axis) expanded from maximum distance to the minimum distance (right panel). (B) is similar with (A) but
with depth function (straight distance from each pixel to the top) as the function. (C, E) are similar with (A) but with two root examples from this
data showing different structures. (D, F) are similar with (B) but with two root examples from this data showing different structures.
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This measurement itself is a distance due to Cauchy-Schwarz

inequality. Then we calculated the similarity matrix for the entire

population and performed a multidimensional scaling method to

get MDS scores using MATLAB function cmdscale(). For a non-

Euclidean distance matrix, MDS will map the data into Euclidean

space, while preserving the pairwise distance as well as possible.

Then we performed PCA on the MDS scores which returned the

same scores, but also provided some additional information such as

the percentage variance per PCs. Thus we named it as

PHGeodesicDepth_MDSPCs (GH_PCs). These GH_PCs are

treated as PH traits. Similarly, G_PCs are the PH traits when only

using geo-barcode to compute the similarity matrix. Please see step

5 of persistent homology in the Method section.

We introduced persistence barcode because it is more intuitive

for biologists to understand. But the following feature is more

straightforward to be calculated from another descriptor,

persistence diagram. Persistence diagram is an equivalent

descriptor to the persistence barcode (Supplementary Figure 1A,

B). It is a 2D scatter plot: along the x-axis is the birth value for each

bar and along the y-axis is the death value, unioning with the

diagonal line. We turned this scatter plot into a Gaussian density

estimator (Supplementary Figure 1C, Adams et al., 2017) and

performed PCA on the vectorized Gaussian density estimator.

The PC scores are treated as another set of PH traits, named as

PHDiagramKDE_PCs (PDD_PCs). Table 1 lists all the PH traits

and their descriptions. In total, we have three groups of PH traits:

G_PCs, GH_PCs, and PDD_PCs. G_PCs are the MDS-PC scores

derived from the bottleneck distance of geo-barcode, GH_PCs are

the MDS-PC scores derived from the combined distance of both

geo-barcode and depth-barcode, PDD_PCs are the PC scores of the

vectorized density estimator from geodesic persistence diagram.
Trait processing and visualization

Some traits could be strongly correlated. To reduce collinearity

among explanatory variables (Supplementary Figure 2A), we

applied a VIF. Simply, VIFj = 1/(1-Rj
2) where the VIF for variable

j is the reciprocal of the inverse of R2 from the regression. To pick a

proper threshold (see Materials and Methods), we calculated a

sequence of thresholds and recorded the number of remaining traits

and treated the thresholds as x values and remaining trait numbers
Frontiers in Plant Science 05
as y values. We observed this data can fit well with a logarithm

function (y=a*ln(x-b)+c, where a=15.71, b=0.8853, c=57.88,

Supplementary Figure 1B). We found the threshold at slope = 1

which means the VIF threshold increases at the same rate with the

increasing of the traits number. We treated it as a high threshold.

We picked a median threshold which is half of this threshold

(value = 8; Supplementary Figures 2B, C). Note that the first 29

G_PCs were removed because they are highly correlated to

GH_PCs. The VIF chose to keep GH_PCs rather than G_PCs

which may imply the depth function contributed to capture features

(e.g. angle difference) that makes GH_PCs to be less correlated to

other features. G_PC30 to G_PC36 were kept which may imply the

depth function and geodesic distance captured some detailed

differences which have much smaller variance compared to major

topological differences. Then we performed PCA on the remaining

traits including commonly used geometric univariate traits and PH

traits. The output PC scores are recorded as mPCs, multivariate

traits. The PH traits as well as multivariate traits are comprehensive

but less intuitive compared to commonly used univariate traits. One

way to interpret what a trait measures is to look at the genotypes

with extreme values for that trait, but where other traits that are

close to their mean values (Figure 3). We also plotted out the

distribution for each of the VIF remaining traits and first five mPCs

to show the normed spread of the data (Supplementary Figure 3).
Expanding the genotype to phenotype map
for maize root system architecture

Previous studies reported that the Illinois High Protein inbred

(IHP1; derived from the IHP cycle 90 population) exhibits elevated N

uptake and assimilation relative to the Illinois Low Protein inbred

(ILP1; derived from the ILP cycle 90 population) (Moose et al., 2004;

Lucas, 2013). By observing the RSA of both lines in gel, we found that

IHP1 seedlings have nearly twice as many lateral roots than ILP1 with

a high statistical significance (p=0.0002; Supplementary Figure 4).

This finding is congruent with root adaptive responses to nitrogen

availability (Drew et al., 1973; Robinson et al., 1999) and suggests that

RSA may indeed have been inadvertently changed during recurrent

selection for seed protein.

To further explore this possibility and map the genetic basis of

root phenotypes using our expanded phenome, we performed a

Genome Wide Association Study (GWAS). GBS (genotyping by

sequencing; Elshire et al., 2011) was used to generate, 60,418 SNPs

(single nucleotide polymorphisms). Using MLMM (Multi-Locus

Mixed Model; Segura et al., 2012), one stringent model was chosen

as the final/optimal with two different ways for multiple

comparison, Bonferroni correction and E-BIC (Segura et al.,

2012). The optimal model was picked after evaluating a few

models with both forward and backward stepwise regressions.

However, a few studies have shown that the Bonferroni

correction increases the probability of producing false negatives

(Segura et al., 2012; Ziegler et al., 2018). Therefore, we also

employed a modified maximum model with only the forward

stepwise regression and present both results (Figures 4, 5;

Supplementary Figure 5, Supplementary Tables 2, 3).
TABLE 1 Persistent homology traits.

PH traits Abb. Description

PHGeodesicDepth_MDSPCs GH_PCs MDS-PCA for persistent
homology with the combined
geodesic distance function and
depth function

PHGeodesic_MDSPCs G_PCs MDS-PCA for persistent
homology with geodesic
distance function

PHDiagramKDE_PCs PDD_PCs PCA for Gaussian density
estimator of persistence diagram
with geodesic distance function
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For the optimal model, using a 1Mb window size (Yang et al.,

2015b; Hu et al., 2017) as the QTL co-localization boundary, 102

total loci were detected for PH and all univariate traits in this study.

Among them, only one 1Mb chromosome region is shared by both,

representing <1% of QTL (Figure 4A). This locus (SNP29940) is

located at ~170Mb on maize chromosome 4 (B73_Ref_v2)

corresponding to PH traits, GH_PC5 and WidthDepthRatio3D
Frontiers in Plant Science 06
(Figure 5). The SNP hits the second exon of the ethylene receptor

ETR2-like gene (GRMZM2G075368), also known as the ZmETR3,

which was previously shown to be involved in root growth by

regulation of ABA and/or auxin accumulation in root tips (Yang

et al., 2015a; Li et al., 2018b). In addition, the same region was also

found involved in regulation of another univariate median lateral

root soil angle and the multivariate mPC3. although not the same
BA

FIGURE 4

Venn diagram of profile of trait-associated SNPs (TAS) with 1 Mb window size across all traits in both Multi-Locus Mixed Model (MLMM). (A) TASs
were identified with optimal model among all different traits. (B) More TASs were identified with maximum model among all different traits. Groups
of traits were color coded in the figure. .
B

C

A

FIGURE 3

Examples of roots for high and low values for traits. (A) Examples for three of the univariate traits, number of root tips, median angle between the
lateral root and soil, specific root length; (B) examples three of the persistent homology traits, first three principal components (PCs) for persistent
homology with geodesic distance and depth functions; The percentage is the variance explained from that PC in persistent homology traits.
(C) Examples for three of the multivariate traits, first three PCs for the traits after variance inflation factor (VIF). The percentage is the variance
explained from that PC in all measured features.
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SNP (Figure 5, SN29980, SNP29987). As described above, PCA was

performed to generate multivariate traits (Supplementary Figure 2).

62 QTL were identified for those multivariate traits with optimal

model in MLMM (Figure 4A). 10 of these co-localized with the 102

loci identified in with the PH and univariate traits in the 1Mb

window, representing 6.5% of total QTL. The maximum model

identified more than twice as many QTL as did the optimal model,

but only slightly increased the percentage of QTL shared by

univariate and PH (0.98% to 3.3%) or multivariate and univariate

+ PH (6.5% to 7.3%; Figure 4B). The list of trait-associated SNPs

(TAS) for each phenotype class, model, and 1Mb overlaps thereof

are provided in Supplementary Tables 2–4. We also performed a

similar analysis with no window size and got the majority of non-

overlapped QTL (Supplementary Figure 5). These results provide

evidence of an expanded G to P map using both a TDA and a

multivariate statistical approach, which are complementary and

not exclusive.

An allelic effect size is how much of the total variation for a

given phenotype the allele explains in the statistical model, and its

direction (positive is larger and negative is smaller numerical value).

Prior work showed that including multivariate and TDA of

phenotypes could not only identify new loci (Figure 4), but also

loci of large effect size (Topp et al., 2013; Li et al., 2018a). To

compute the effect size and direction in for each trait, we averaged

the major allele trait values first, then we divided the estimate values

of each QTL by the average values [effect size =estimate/mean

(major allele)]. In this way, the positive value indicates increases on

the major allele while negative values indicate increases on the
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minor allele phenotype. We found that most univariate traits have a

narrow range of allele effect size (-0.25 to +0.25) while the effect size

of both PH and multivariate traits ranged widely (-0.91 to +0.90)

(Figure 6; Supplementary Figure 6). These results reinforce the

enhanced ability of data-driven phenotypes to identify large-

effect QTL.
Conclusion

Root systems are the primary interface of plants with the soil

and are foundational for the basic physiology of water and nutrient

capture as well as for shaping the rhizosphere and biogeochemical

processes therein. Most modern crop varieties have been

domesticated and bred without root system function or efficiency

in mind, including with what can now be viewed as unsustainable

water and fertilizer inputs. Yet, with a few notable exceptions

(Gamuyao et al., 2012; Uga et al., 2013; Schneider et al., 2021;

Ren et al., 2022) root biologists and plant breeders have a poor

understanding of genes that control quantitative root system

architecture traits, and therefore lack means to rationally design

and test proposed root system ideotypes (Lynch, 2013).

The field of phenomics is tasked with building the genotype to

phenotype map, and a wide array of root phenotyping technologies

have been reported recently, most using various forms of imaging

(Atkinson et al., 2019). But while our abilities to capture relevant

root phenotype information at scale have increased, the analytical

approaches have not grown to a similar extent, with most of the
FIGURE 5

The genetic architecture of all the measurements in the study. TASs were identified from MLMM optimal model with 1.0 x e-5 as the threshold. Table
in the bottom right highlighted the two clusters of co-localized TASs (!) on maize chromosome 4. SNP names, their physical positions on maize
genome, their p-values and corresponding traits were illustrated in the table. All the TASs are color coded based on its corresponding trait groups.
Unlike others, biomass TAS is also represented with a different symbol (▵). Centromeres on each chromosome are labeled (·) and their positions
referred to the publication (Schneider et al., 2016).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1260005
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1260005
phenotypic space explored by a set of human-intuited reductionist

metrics that may miss emergent properties (Li et al., 2018a) and

other cryptic features (Chitwood and Topp, 2015) of the data. In

this work we revealed that a genetic architecture of 3D maize root

structure can be enhanced by a more data-driven approach. We

conducted GWA comparing the SNPs identified from a

comprehensive suite of univariate computer vision traits, a new

mathematical method, persistent homology (PH) – a topological

data analysis method that does not pre-suppose specific important

features, as well as multivariate vectors of those traits. We show

largely separate genetic architectures using these methods,

suggesting that the complexity of maize 3D root system

architecture phenotypes is not adequately captured by current

commonly used metrics. Furthermore, PH features can have

much larger effect sizes than univariate and derived multivariate

metrics, suggesting the specific underlying genetic variation could

be more easily identified and tested for function toward ideotype

development. Thus, topological data analysis expands the genotype

to phenotype map in the 3D maize root system.

The functions (geodesic and depth functions) used for persistent

homology are length based.We used the same unit for all our samples

which means the persistence diagrams are comparable. Persistence

diagrams are not robust to scaling or metrics, if other research groups

have the data with the same scale and metrics of their samples, our

methods and results can be used to compare with their findings. On

the other hand, the results of dimension reduction methods such as

VIF and PCA that are commonly used in plant phenotyping research

can be less explicitly comparable across studies. For VIF, the selected

response variable can be somewhat labile for highly colinear traits

such that different analyses produce similar but not identical results

(for example, selecting surface area versus volume, or vice-versa). The
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Mutual Information-Variance Inflation Factor (MI-VIF) has been

proposed to improve variable selection, by additionally maximizing

the correlation between the independent and response variables using

MI theory when testing for multicollinearity using VIF (Cheng et al.,

2022). The results appear promising for spectral data, but to what

extent MI-VIF may provide more robust selection of shape variables

in plant phenotyping research is an interesting future research

question. Likewise, the loadings of standard principal components

derived from high-dimensional and partially multicollinear datasets

can also be labile and dense (many features contribute small amounts

to many PCs), making interpretability of the underlying variation a

challenge. Sparse Principal Component Analysis (SPCA) is a family

of methods that seek to sparsify the number of features in each PC

through penalizations or constraints, for example lasso penalized

least-squares (Zou et al., 2006; Guerra-Urzola et al., 2021). Given the

number of possible approaches to sparsifying PCA and the fact that

they can lead to non-equivalent solutions, widespread application of

SPCA to high-throughput plant phenotyping will likely require

substantial development. These considerations, along with the

results presented here, suggest the field of plant phenomics has

much additional work to do both empirically and theoretically to

fully realize the genotype to phenotype map.
Materials and methods

Plant material

The maize IPSRI (Illinois Protein Strain Recombinant Inbreds)

mapping population was initially described in Lucas et al. (2013).

Initially, five plants from cycle 70 of Illinois Low Protein were
FIGURE 6

Distribution of allele effect size of all the TASs identified in MLMM optimal model. Traits are labeled as y-axis and x-axis indicates their corresponding
allele effect size (eSize). Different color codes represent different groups of traits in the study.
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crossed to five plants from cycle 70 of Illinois High Protein. After

seven generations of random mating 200 individuals to reduce

linkage disequilibrium (Dudley et al., 2007), 500 randomly selected

individuals were self-pollinated for six generations. The 500

resulting recombinant inbred lines were genotyped with a set of

500 SNPs as described in Dudley et al. (2007). Clustering analysis

using Euclidean distance of variation in marker genotypes produced

138 distinct groups where one IPSRI line was selected from each

group to form a representative core set for phenotyping. These 138

core IPSRI inbreds were used in the root phenotyping analysis

presented here. On average each genotype was replicated 3 times

(Supplementary Figure 7).

Seed preparation and growth conditions followed Jiang et al.,

(2019): “the growth medium was made with a modified 1/2x

Hoagland solution pH 6.0 and solidified with gellan gum. The

seeds were sterilized with 35% hydrogen peroxide for 20 minutes

and rinsed four times with RO (reverse osmosis) water. After

imbibing in RO water for 8 hours at 29°C in the dark, the seeds

were sterilized again with 35% hydrogen peroxide for 10 minutes

and rinsed four times with sterile water. The seeds were germinated

at 29°C in the dark until the radicle reached 1-2 cm in length,

approximately 48 hours. One seedling was planted into a glass

growth cylinder sealed with Saran wrap - this constitutes a

biological replicate. The cylinders were placed on a dark shelf at

ambient conditions overnight for acclimation before moving them

into a growth chamber starting at 4 DAG. The plants were lit with

315W Philips Ceramic Metal Halide bulbs, with a light intensity at

the top of each jar of 700 μmol/m²/s. Humidity in the chamber was

maintained at 50%, although the jars were sealed with Saran wrap.

Temperatures were set to 28°C during the day and 24°C at night,

with a 16/8h day/night cycle”.
Imaging platform and software

As described in Griffiths et al. (2023), but with a different lens:

the imaging setup consisted of an Allied Vision Manta G-609

machine vision camera (Allied Vision Technologies GmbH,

Stadtroda, Germany) with a Kowa LM50SC 50mm 1” f/2.0 lens

(Kowa, Japan) and an electronic turntable. The turntable operated

in a water-filled tank to correct for light diffraction when imaging

the glass cylinders. The glass cylinders were partly submerged to

when placed in the center of the turntable. An LED flat panel light

was used as a backlight to produce near binary images of the roots

with a black silhouette of roots in the foreground against a white

background. Root imaging took approximately 2 min per plant with

72 images collected over a 360-degree rotation. We studied 520 3D

models and used the RSA-GiA3D software to measure global root

traits (Galkovskyi et al., 2012; Topp et al., 2013) and the Dynamic

Roots software to measure local individual traits (Symonova et al.,

2015; Jiang et al., 2019). For the TDA analysis, we first extracted the

surface voxel from the 3D model and saved them as.ply files. Then

we manually cleaned some of the topological noises such as

branching touches and loops as much as possible in Meshlab

(Cignoni et al., 2008).
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Persistent homology

The pipeline for converting 3D root imaging data into persistent

homology traits could involve five main steps: Extracting network

(e.g. vertices and edges connecting vertices) from images, Assigning

function values onto the network, Computing persistent barcodes

with a filtration, Computing pairwise bottleneck distance for entire

populat ion, Performing stat is t ica l approach such as

multidimensional scaling. The pipeline was conducted in

MATLAB R2017a (The MathWorks Inc, 2017). A similar

approach and code can also be found in Li et al. (2019).
1. Extracting network from images. More strictly speaking, we

need to form a simplicial complex (a mathematical term

which consists of vertices, edges, triangle faces, tetrahedron

and even higher dimensional “triangle” under some glue

criterion). As the root should never have the loops, we only

need to calculate H0-persistence barcode (i.e. connected

component). We can just extract a network which only has

vertices and edges connecting those vertices. Our 3D

images are binary and we treat each root pixel as a vertex

connecting it to its neighbor (if a pixel falls within its 3x3x3

cubes) by an edge.

2. Assigning function values onto the network. How to define

a mathematical function is flexible. For the root data, we

assigned each vertex a value showing the shortest distance

in the network from this vertex to the top of the root. This is

the geodesic distance which is the curved distance from that

pixel along the root to the top. In our study, we also use

another mathematical function, depth function, to

incorporate more information such as angle. The depth

function allows to assign each vertex the value showing the

straight height to the top plane. After assigning values on

the vertices, we assigned each edge a value which is the

minimum value between the two vertices that this

edge connects.

3. Computing persistence barcodes with a filtration. A

filtration is a nested sequence of subnetworks which the

later subnetwork always includes the former network. For

example, for geodesic distance function, the start

subnetwork is formed from the vertices and edges which

have the maximum values (see the pink part of the root in

Figure 2A). Then the next subnetworks is formed by

decreasing a little threshold and adding the new vertices

and edges which have equal or larger values than this

threshold. In this analysis, we chose the minimal integer

step size which is 1 voxel size. The H0-persistence barcode

consists of bars showing the persistence of each connected

component. Each bar has its birth value and death value.

The birth value is the threshold where a new connected

component appears in the subnetwork. The death value is

the threshold where this connected component gets merged

into another subnetwork. Each root system has one

persistence barcode with geodesic distance function and

one persistence barcode with depth function.
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4. Computing pairwise bottleneck distance. Given any two

persistence barcodes with geodesic distance function, the

bottleneck distance can robustly measure the similarity

between these two barcodes. It intuitively measures the

minimum cost to move the bars in one barcode to resemble

the other one. The pairwise bottleneck distance matrix for

persistent homology with geodesic distance function

can be computed for the population. Similarly, we also

can compute the pairwise bottleneck distance matrix

for persistent homology with depth function. Note that

bottleneck distance can also be calculated by an equivalent

descriptor, persistence diagram (Supplementary Figure 1).

Persistence diagram is a 2D scatter plot: along the x-axis is

the birth value for each bar and along the y-axis is the death

value, unioning with the diagonal line. In this analysis, we

used bottleneck distance with a geodesic distance function

first. Then we were motivated by its limitation (e.g. miss

angle information) and expanded the method by

combining it with depth function.

5. Performing statistical approaches. PCA cannot be directly

performed on a non-Euclidean distance matrix, therefore

given a Bottleneck distance matrix, we first perform

multidimensional scaling (MDS) and then perform PCA

on MDS scores to have both MDS (PC) scores and

percentage variances. MDS can project the data into a

Euclidean space and preserve the pairwise distance as

well as possible. In other words, we finally can treat each

root system as a point which has coordinates. The first

coordinate is the MDS1. Because the MDS algorithm in

MATLAB, cmdscale(), does not randomly map the data,

like Principal component analysis (PCA), it will make the

MDS1 be the projection which has the most variance. For

simplification, we use PC1 instead of MDS1. G_PCs are the

coordinates for geodesic distance function. GH_PCs are the

coordinates for both geodesic distance and depth functions.

To achieve this, we use the new distance matrix which is the

square root of the sum of distance matrix with geodesic

distance squared and distance matrix with depth squared.

Another trait we used is the density estimator of persistence

diagram. If we treat the birth value as x, death value as y,

then each bar is a 2D point with coordinates (x,y)=(birth,

death). Those points including the diagonal line y=x form a

persistence diagram. We computed the Gaussian density

estimator of those points (not including the line) on the

diagram then discretized it into bins (Supplementary Figure

1C). More specifically, we first used the Matlab function

ksdensity() which is a kernel smoothing function estimate.

Given a diagram, the algorithm calculated a default

bandwidth for the birth axis, and a default bandwidth for

the death axis. The default bandwidth is the optimal for

normal densities. The default bandwidths of all the

diagrams provide us a bandwidth range. Then we picked

an integer (=20) in this range as our fixed bandwidth for the

Gaussian KDE in the analysis. We tested if we altered the

bandwidth to 10, the correlation between the method with

bandwidth=20 and bandwidth=10 for the first 8 PDD_PCs
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are 0.9996, 0.9986, 0.9893, 0.9673, 0.8770, 0.7715, 0.4091,

0.2214. Choosing very different bandwidths may vary the

analysis result. Similarly, we checked the boundary values

of all persistence diagrams and determined the overall 2D

boundary ([-20, 2000]x[-20,2000]). We picked 20 as the

grid resolution which is the same with the bandwidth. We

tested whether altering the resolution to 10 would change

the first 8 PDD_PCs. We discretized and reshaped the bins

into a long vector and performed PCA on these vectors.

PDD_PCs are those PCs. In the analysis, we have 301

G_PCs in total and kept 36 G_PCs which occupied 80.05%

of variance in the projected Euclidean space. We have 307

GH_PCs and kept 40 GH_PCs which occupied 80.16% of

variance. We have 531 PDD_PCs and kept the first 8

PDD_PCs which is 95.45% of the variance. We increased

the percentage for PDD_PCs because if we picked 80% of

the variance too few PCs are left.
Correlation analysis, variance inflation
factor calculation, PCA and
heritability estimation

The R function rcorr() in Hmisc package (Harrell, 2017) was

used to compute the significance levels for Pearson correlations

analysis. Both the correlation coefficients and the p-value of the

correlation for all possible pairs of columns in the data table are

returned. To create a graphical display of a correlation matrix and

to highlight the most correlated variables (p< 0.05), the function

corrplot() in the package of the same name (Wei and Simko, 2017)

has been used in the study. Positive correlations are displayed in

blue and negative correlations in red color. Color intensity and the

size of the circle are proportional to the correlation coefficients

(Supplementary Figure 2A).

To identify collinearity among explanatory variables, variance

inflation factor (VIF) was used. Simply, VIFj = 1/(1-Rj
2) where the

VIF for variable j is the reciprocal of the inverse of R2 from the

regression. For each variable, one VIF value is calculated and

variables with high values are removed. Instead of picking an

arbitrary values in the range of 5-10 that are commonly used, we

determined the definition of ‘high’ VIF is the x value at the slope is 1

for fitting a log function (y=a*ln(x-b)+c, where a=15.71, b=0.8853,

c=57.88). Thus, the ‘high’ VIF=16.5953. We picked half of the ‘high’

VIF as the ‘median’ VIF (=8) in our study (Supplementary Figure

2B). After VIF, 33 univariant traits and 54 PH traits were left for

further analysis (Supplementary Figure 2C).

The base R function prcomp() was used to perform the PCA

with ‘scale =TRUE’ in the study. The number of PCs that captured >

90% variances totally and their rotated data (the scaled data

multiplied by the rotation matrix) returned with ‘retx = TRUE’

were retained for subsequent analysis.

Broad sense heritability (Supplementary Figure 8) was

estimated as follows, H2 = Vg/(Vg+Vr/nrep), which is the

proportion of genetic variance out of total phenotypic variance.

Vg indicates genetic variance, Vr represents the residual variance,
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while nrep is the mean number of repetitions for each genotype in

the experiment. To generate the variance components, the R

function lmer() from package lme4 (Bates et al., 2015) was used.
Genome wide association study and effect
size calculation

The multi-locus mixed-model (MLMM) approach was used to

perform the genomewide association study.We choseMLMMbecause

root system architecture traits are highly polygenic and MLMM has

been demonstrated to identify small effect loci in structured

populations that may also have large effect loci, although there is

some risk of false-positives (Segura et al., 2012; Baseggio et al., 2021).

Both forward and backward stepwise linear mixed-model regressions

were used in the model, where the genetic variance and residual

variance are estimated before each step. They then are used as

follows to obtain generalized least-square (GLS) effect size estimates

and F-test P values for each SNP: the SNP with the most significant

association is then added to the model as a cofactor for the next step,

and the P values for all cofactors are re-estimated together with the

variance components. We used both the extended BIC (Bayesian

Information Criterion) and the multiple Bonferroni criterion

(mBonf) (alpha = 1.0 x e-5) for model selection. The mBonf was

used to pick the optimal model. In addition, the maximum model

which only includes the forward stepwise regression was also

performed with 20 steps to ensure all potential trait-associated SNPs

(TAS) were captured. To help determine the colocalization of different

TASs, 1Mb window size has been applied which has been commonly

used in some other previous studies (Yang et al., 2015b; Hu et al., 2017).

Effect estimates of significant TASs from the optimal model in

MLMM were used to calculate the allele effect size. The fractions of

the effect estimates and their corresponding average values of the

major allele trait were used here to calculate the allele effect size. In

this way, the positive value represents the QTL that have increases

on the major allele, while negative values indicate QTL that have

increases on minor allele.
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SUPPLEMENTARY FIGURE 1

Illustrations of persistent homology traits. (A) An example of persistence

barcode. (B) The persistence diagram that is equivalent to the barcode in
(A). One example of corresponding bar-to-point is highlighted in pink color.

(C) Gaussian density estimator of the points on the diagram in (B). Red
indicates high density. Blue means low density.

SUPPLEMENTARY FIGURE 2

Calculations of VIF to remove the redundant traits. (A) Pearson’s correlation

analysis among all the traits in the study was performed to show the existing
redundancies of some measurements. Only significant correlations (p<0.05)

were exhibited here. Positive correlations are displayed in blue and negative
correlations in red color. Color intensity and the size of the circle are

proportional to the correlation coefficients. (B) VIF sensitive analysis by

fitting log function; (C) illustration for VIF with our threshold.
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SUPPLEMENTARY FIGURE 3

Distribution of each VIF remaining trait and first six mPCs.

SUPPLEMENTARY FIGURE 4

Total lateral root number for IHP1 and ILP1. (A) Example images for IHP1 and
ILP1 with lateral root highlighted in red window. (B) Boxplot of total lateral
root number for IHP1 and ILP1. T-test was performed for p value.

SUPPLEMENTARY FIGURE 5

Venn diagram of profile of trait-associated SNPs (TAS) with no window size

across all traits in both MLMM models. (A) TASs were identified with optimal

model among all different traits. (B) More TASs were identified with maximum
model among all different traits. Groups of traits were color coded in the figure.
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SUPPLEMENTARY FIGURE 6

Comparison of allele effect size (A) and absolute effect size (B) among
three different classes of traits in the study, multivariate, univariate and

PH. Kruskal-Wallis analysis was performed to calculate the p values. The

black dot in each violin plot represents the average value of the group
of traits.

SUPPLEMENTARY FIGURE 7

Histogram of number of genotypes for different number of replicates.

SUPPLEMENTARY FIGURE 8

Broad-sense heritability estimates of all the traits in the study. Groups of traits
were color coded.
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