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Mate-allocation strategies in breeding programs can improve progeny performance

by harnessing non-additive genetic effects. These approaches prioritise predicted

progeny merit over parental breeding value, making them particularly appealing for

clonally propagated crops such as sugarcane. We conducted a comparative analysis

of mate-allocation strategies, exploring utilising non-additive and heterozygosity

effects to maximise clonal performance with schemes that solely consider additive

effects to optimise breeding value. Using phenotypic and genotypic data from a

population of 2,909 clones evaluated in final assessment trials of Australian

sugarcane breeding programs, we focused on three important traits: tonnes of

cane per hectare (TCH), commercial cane sugar (CCS), and Fibre. By simulating

families from all possible crosses (1,225) with 50 progenies each, we predicted the

breeding and clonal values of progeny using two models: GBLUP (considering

additive effects only) and extended-GBLUP (incorporating additive, non-additive,

and heterozygosity effects). Integer linear programming was used to identify the

optimal mate-allocation among selected parents. Compared to breeding value-

based approaches, mate-allocation strategies based on clonal performance yielded

substantial improvements, with predicted progeny values increasing by 57% for TCH,

12% for CCS, and 16% for fibre. Our simulation study highlights the effectiveness of

mate-allocation approaches that exploit non-additive and heterozygosity effects,

resulting in superior clonal performance. However, there was a notable decline in

additive gain, particularly for TCH, likely due to significant epistatic effects. When

selecting crosses based on clonal performance for TCH, the inbreeding coefficient

of progeny was significantly lower compared to random mating, underscoring the

advantages of leveraging non-additive and heterozygosity effects in mitigating

inbreeding depression. Thus, mate-allocation strategies are recommended in

clonally propagated crops to enhance clonal performance and reduce the

negative impacts of inbreeding.

KEYWORDS

additive, breeding value, clonal performance, dominance, heterozygosity, non-additive
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1 Introduction

Crop breeding strategies have evolved over the past two decades

to meet the growing demand for food production. In particular,

sugarcane breeding programs have witnessed notable advancements.

These programs involve crossing between sugar-rich cultivated

species, primarily Saccharum officinarum (2n = 8x = 80; x=10), and

a wild relative, Saccharum spontaneum (2n = 5x-16x =40-128, x=8),

which provided disease/pest resistance and abiotic tolerance in a

range of varieties (Wei and Jackson, 2016; Yadav et al., 2020).

Approximately 70-80% of the sugarcane genome is inherited from

S. officinarum, while S.spontaneum contributes to 10-20% of the

genetic makeup and the remaining 10% of the genome results from

interspecific recombination (Garsmeur et al., 2018; Piperidis and

D’Hont, 2020). This unique genetic configuration presents both

challenges and opportunities in sugarcane breeding programs.

Cultivated sugarcane varieties have a highly complex polyploid

genome, exhibit a high level of heterozygosity, and can have

between 100 to 130 chromosomes. A notable advantage of

sugarcane lies in its ability for vegetative propagation, which

facilitates fixation of traits across successive clonal generations.

More recently, the emphasis on sugarcane breeding has shifted

towards crossing highly heterozygous inter-specific hybrids, aiming

to generate genetic variation that can be exploited through selection

in subsequent breeding cycles (Wei et al., 2021). However, the first

and most challenging breeding decision is to select the appropriate

genotypes as parents for crosses to maximise the performance of

progeny for variety development while maintaining genetic

diversity in the breeding program (Comstock et al., 1949; Boeven

et al., 2020; Technow et al., 2021). The development of sugarcane

cultivars typically involves extensive field testing, which takes 10 to

12 years (Park et al., 2007). In Australian breeding programs, the

parental clones are primarily selected from advanced-stage trials

and commercially grown cultivars, including those obtained

through variety-exchange programs from overseas. The selection

of parental clones is based on their additive genetic merit,

considering traits such as yield, sugar and fibre content, which are

predicted using best linear unbiased prediction (BLUP) approaches

incorporating pedigree information (Atkin et al., 2009). Disease

resistance is also a crucial factor in the evaluation process (Park

et al., 2007).

Advancements in high-throughput marker technologies have

facilitated the investigation of genomic prediction in sugarcane,

enabling early selection for complex quantitative traits such as cane

yield (Gouy et al., 2013; Deomano et al., 2020; Hayes et al., 2021;

Yadav et al., 2021b). Genomic selection (GS) has the potential to

expedite the breeding cycle by allowing the quick selection of

superior genotypes at any stage of the sugarcane breeding

program (Voss-Fels et al., 2021). In GS-assisted breeding

programs, truncation selection is typically employed as the first

step, where high-performing parental lines/clones are selected based

on their genomic estimated breeding values (GEBVs). These
Abbreviations: TCH, tonnes of cane per hectare; CCS, commercial cane sugar;

Fibre, fibre content; GBLUP, genomic best linear unbiased prediction; e-GBLUP,

extended-genomic best linear unbiased prediction.
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selected lines/clones are then crossed randomly to produce the

next generation, ensuring a high mean performance among the

progeny (Wei et al., 2021). However, the mean performance of

progeny can deviate from the mean breeding value of the parents

due to the presence of non-additive effects.

In sugarcane breeding programs, the selection of parental clones

based on GEBVs (heritable effects) should be complemented by

planned mating to maximise the total clonal performance of the

commercial clones. Since sugarcane is clonally propagated and

highly heterozygous, both additive and non-additive genetic

effects can be exploited for variety development. Mate-allocation

strategies have been successfully used in animal breeding programs

to manage inbreeding, preserve genetic diversity, and leverage non-

additive genetic effects (Toro and Varona, 2010; Pryce et al., 2012;

Aliloo et al., 2017; Gonzalez-Dieguez et al., 2019). Notably, non-

additive genetic effects are substantial for a complex trait such as

tonnes of cane per hectare (TCH) in sugarcane and can be captured

using extended GS models (Yadav et al., 2021b). Furthermore, the

presence of these non-additive effects suggests the potential for

overall genetic improvement through mate-allocation strategies that

specifically target dominance (for heterosis) and epistatic effects. In

addition, by incorporating models that account for non-additive

effects and heterozygosity, we can effectively reduce the risk of

inbreeding depression in the commercial population, a concern that

holds significant weight for TCH (de Azeredo et al., 2016; Silva,

Gonçalves PdS, 2011). Recent studies have highlighted the

importance of considering dominance effects when choosing

parents based on the genomic prediction of cross-performance in

clonal breeding programs utilising GS (Werner et al., 2023).

In this study, we hypothesise that mate-allocation strategies that

consider non-additive effects will improve the expected

performance of the clones in a sugarcane breeding program when

compared to relying solely on additive genetic effects. The aim of

this study is to investigate how mate-allocation strategies can

enhance the prediction of clonal performance in an elite

sugarcane population. First, we establish a pool of parental clones

based on their GEBVs, which provide insights into the genetic

potential of each parent. Subsequently, we explore two mate-

allocation strategies for comparison:
i. The first strategy involves exploiting only additive effects,

following a traditional GBLUP model, to maximise the

average breeding (additive, GEBV) value of progeny,

resembling conventional mating practices.

ii. The second strategy leverages non-additive genetic effects

and heterozygosity, in addition to the additive genetic

component, through an extended-GBLUP model designed

for predicting clonal performance (GPCP) to maximise

clonal performance of progeny.
This study presents the results of stochastic simulations

assessing the expected clonal performance and inbreeding in the

next generation under these mate-allocation strategies. To

determine the best mating set that optimises expected progeny

merit, we utilise integer linear programming (ILP). Our analysis

focuses on three commercially important traits: tonnes of cane per
frontiersin.org
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hectare (TCH), commercial cane sugar (CCS) for sugar content, and

fibre content (Fibre).

This study’s findings hold significant implications for sugarcane

breeding programs, highlighting the potential advantages of mate-

allocation strategies that capitalise on both additive and non-

additive genetic effects. By leveraging genomic predictions for

parental selection, breeders can enhance the overall performance

of sugarcane cultivars and streamline variety development

processes. Moreover, incorporating non-additive effects and

heterozygosity into mate-allocation decisions helps to mitigate the

potential risks associated with inbreeding depression while

preserving genetic diversity. These insights offer valuable guidance

for future breeding strategies, fostering sustainable advancements in

sugarcane productivity.
2 Materials and methods

2.1 Phenotypes and genotypes

This study used a 58K SC Affymetrix Axiom SNP array to

genotype 3,006 elite sugarcane clones from Sugar Research

Australia’s (SRA) breeding program (Aitken et al., 2017). The

population used in this study comprised clones that were

evaluated in final assessment trials (FATs) with large plots. From

2013 to 2017, the FAT series was established annually, and each

series was harvested over three years (referred to as crops including

the plant crop, the first ratoon, and the second ratoon crop) in

Queensland’s four sugarcane growing areas: Northern (N),

Burdekin (A), Central (C), and Southern (S). Within each region,

there were four trials conducted each year. The clones in each FAT

series were mostly repeated across at least three trials within a

region, but many were unique to a specific region. In each trial, 150

to 300 clones were planted in four-row by 10-meter plots using a

partially replicated design, with an average replication rate of 22%.

At each harvest, three main agronomical traits, TCH, CCS, and

Fibre, were measured. Data collection was focused on the middle

two rows, while the outer two rows served as a buffer against

competitive effects.

Before testing the genomic model, the phenotypes were adjusted

for experimental and environmental effects across the series, crop,

trial, and region to produce the BLUPs. It’s important to note that

the BLUPs used in this study were provided by our commercial

partner, SRA. SRA employed a robust general linear mixed model to

address spatial variations within each trial, treating rows and

columns as fixed effects within trials within regions and

interaction between trials and crops with spatial variation effects,

applying ASREML-R v3 (Butler. et al., 2009).

Y = X   b + Zɡuɡ + Zpup + e

Where X is the design matrix, b is the vector offixed effects with

the associated design matrix, uɡ is the vector of random genotype

(clone) effects for individual trials and harvests (ordered as

genotypes within trials within harvests) with the associated design

matrix Zɡ , up represents random peripheral effects associated with

its respective designed matrix Zp , and the e denotes the residual.
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Spatial effects were accounted for by determining an optimal

model within each selection trial, following the methodology

outlined by Smith et al. (2007). Subsequently, based on the

outcomes of this initial step, a comprehensive combined analysis

over all sites was conducted. The BLUPs for the clones, based on the

combined analyses, were centred for each site and then averaged

over all trials and regions, which were subsequently used for

genomic prediction analysis. Additional information can be

obtained from the study by Wei et al. (2021) for further details

on the first stage of data analysis.

A potential concern is that using BLUPs as a response variable

may lead to a double penalty for the estimated genetic effects.

However, in the first stage of the study, pedigree information was

not incorporated, indicating that the phenotypes were not adjusted

towards the pedigree before fitting the genomic prediction models.

Additionally, the error variances in the FAT trials (the final step

of the breeding program) were reported to be low due to the high

number of replications and large plot size within the region. The

degree of shrinkage in the BLUPs was rather small and consistent,

given high estimates of broad-sense heritability; H2 = s2
ɡ

s 2
ɡ+

s2e  

r

, recorded

as 0.72, 0.79, and 0.89 for TCH, CCS and Fibre, respectively, across

the trials. Here s 2
ɡ ,s 2

e and r are the genetic variance, error variance

and number of replicates per clone within each trial. Furthermore,

BLUPs were able to handle small amounts of missing data.

The sugarcane Axiom array contained 58,364 probe sets

representing 48K single nucleotide polymorphisms (SNPs), which

were highly polymorphic. All clones were screened across this array,

with strict quality control measures applied. Samples that had a dish

quality control (DQC) measure of less than 0.82 or a quality control

(QC) call rate of less than 90% were excluded from the analysis. To

ensure high-quality results, allele calling was performed using the

generated cell intensity files (CEL) with Axiom Analysis Suite’s best

practice workflow. Multiallelic markers were called pseudo-diploid

genotypes from the array data. Aitken et al. (2016) provide detailed

information on the array and genotype calling procedures. Before

conducting downstream analysis, monomorphic SNP markers, as

well as SNPs with a minor allele frequency (MAF) of less than 0.01,

were excluded. Following quality control, the population for

analysis included 2,909 clones with 26,086 highly polymorphic

SNP genotypes. For each polymorphic marker, all clones

(genotypes) were given a marker score of 2 if only the most

frequent allele was present (i.e. homozygous for this allele), 1 if

both alleles were present (i.e. heterozygous), and 0 if only the minor

allele was present. All heterozygous genotypes were measured as

one single-class genotype from a pseudo-diploid model during the

genotype calling process (Aitken et al., 2016).
2.2 Simulation and genomic
prediction framework

The data analysis in this study consists of two main

components: one focusing on simulating the segregation of target

traits in progeny and the other on predicting the breeding and

clonal values of those progeny. To accurately simulate the

recombination process during the formation of gametes passed
frontiersin.org
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from parent to progeny, it is essential to have information about

marker locations on the genetic map, along with parental marker

data. However, there was a challenge. Out of the high-quality 26,086

SNPs, only 4,502 were initially mapped on the available Q208

sugarcane genetic map. This presented a limitation. Despite the

existence of high levels of linkage disequilibrium (LD) in sugarcane,

a more extensive marker set is essential to pinpoint specific genomic

regions linked to these traits (Jannoo et al., 1999; Raboin et al., 2008;

Yadav et al., 2021a). To address this limitation, an LD-based

algorithm was employed. This algorithm had been developed by

Yadav et al. (2021a) in a prior study. Its successful application

enabled us to integrate an additional 5,920 unpositioned markers

onto the existing genetic map. This process resulted in a final set of

10,387 SNPs with an MAF > 0.01 on the extended genetic map

(Yadav et al., 2021a). It’s important to note that these 10,387

markers, now with known positions on the map, would be used

in subsequent simulations.

2.2.1 Simulation of phantom progenies
To predict the performance of parental crosses, the first step

involved simulating the genotypes of phantom progeny. In this

process, 70 parents were selected from the overall population based

on their GEBVs (Figure 1). To account for dioecy (male and female

reproductive separation), 35 clones were randomly assigned as male

parents, while the remaining 35 were designated as female parents

from the pool of 70 parental clones. All possible crosses, totalling

1,225 (35×35) combinations, between the male and female clones

were simulated. Each of these crosses produced 50 progenies. The

simulation process was carried out by randomly sampling parental

gametes with crossovers. This involved using an extended genetic

map, having 10,387 markers with known positions (Yadav

et al., 2021a).

The progenies were simulated using the R package

“SelectionTools,” version 19.3 (http://population-genetics.uni-

giessen.de/~software/), which utilised Plabsoft software to mimic

meiosis using a count-location approach (Maurer et al., 2008). In

the simulation context, the ploidy level of parental clones, which

was assumed to be diploid, served as a reasonable approximation.

This approach assumes that the average number of crossovers

formed on a chromosome is proportional to the chromosome’s

length in Morgan units. Additionally, crossover locations are

distributed independently and uniformly along the chromosome.

These assumptions align with the Haldane mapping function in the

absence of interference (Haldane, 1919). Notably, the same software

had been previously used in a recent sugarcane study to explore

different approaches for implementing GS in a simulated breeding

environment, considering both additive and non-additive effects for

improving complex traits. Ten iterations were conducted to

eliminate sampling bias between male and female parents while

maintaining consistency in the selection of parental clones across

i terat ions , enabl ing a comparison of the two mate-

allocation strategies.

The additive genetic variance of offspring from a cross can be

predicted deterministically using a combination of genome-wide

marker effects, a genetic map, and phased parental haplotypes, as
Frontiers in Plant Science 04
shown by Wolfe et al. (2021). Although we have simulated diploid

inheritance, which is not appropriate for some regions of the

sugarcane genome, the markers (primarily single or low dosages)

in this study were chosen to have diploid-like inheritance (Aitken

et al., 2016). The limitation of this approach is explored in

the discussion.
2.2.2 Prediction of breeding and clonal
value of progeny

Single-trait linear mixed models were fitted to estimate genetic

variance components for TCH, CCS, and Fibre using the residual

maximum likelihood (REML) approach. The variance components

were estimated using initial data, which included the parental clones

selected for crossing. The total population comprised 64,159 clones,

with a training population consisting of 2,909 elite clones possessing

both phenotypic and genotypic data. The remaining 61,250 clones

(out of 64,159 clones) were simulated progenies from 1,225 families

derived from the top 70 parental clones, with 50 progeny per family

(Figure 2). The performance of these progeny in terms of breeding

and clonal value was predicted using a genomic prediction

framework based solely on marker profiles (Figure 2).

In matrix notation, the GBLUP and the extended GBLUP

model can be represented as follows:

Model GBLUP ym�1 = Xb + Zu + e (1)

Model extended–GBLUP ym�1 = Xb + Zu + Zd + Zt + b(Het) + e (2)

y m×1 is a vector of BLUPs for TCH, CCS, or Fibre target traits.

b ,  is a vector of fixed effects, which encompass the overall mean.

The vector e represents the random residual effects, assumed to

follow a normal distribution N (0, I s 2
e ), where s 2

e , denote the

residual variance. Here, I represent an identity matrix. The vector u
corresponds to the additive genetic effects, commonly referred to as

breeding values. These breeding values are assumed to follow a

normal distribution u  ∼  N(0,  GA  s 2
A     ), where GA represents the

additive genomic relationship matrix and  s 2
A  , is the additive

genetic variance captured by SNP markers. The incidences matrix

X and Z relate fixed and random effects, respectively, to

observations in vector y for a specific trait.

The additive genomic relationship matrix, GA, was calculated

according to (Yang et al., 2010) defined as: GA = WW 0
n , where W is

the incidence matrix of additive genetic effects with dimensions of

the number of individuals (m = 64,159) and number of SNPs

(n = 10, 387). The elements of W are represented by

wijk   =

(xAij−2pi)(xAik−2pi)
2pi(1−pi)

,   j ≠ k

1 +
x2Aij−(1+2pi)xAij+2p

2
i

2pi(1−pi)
,   j = k

8><>:
with pibeing the allele frequency at SNP i (where, i =1, 2,…, n),

and xAij is an indicator variable for additive effects that takes a value

of 0, 1, and 2 if the genotype of the jth individual at SNP i is qq, Qq,
or QQ (alleles are arbitrarily called Q or q), respectively.

For the GBLUP model (Equation. 1), the mixed model

equations (MME) are:
frontiersin.org
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X0X X0Z

Z0X Z0Z + G   −1
A

s 2
e

s 2
u

 ! bbbu
 !

=
X0y

Z0y

 !
(3)

(Henderson, 1984)

The solution of MME (Equation. 3) would be breeding values of

clones, GEBVs. For each specific cross, a total of 50 progenies were

generated. The average of the top 10% performing progenies was

calculated to determine the expected breeding value associated with

that cross.

In the extended-GBLUP model (Equation. 2), d and t are the

random vectors of dominance deviation and additive-additive

interaction deviation effects. Dominance deviation effects d were

distributed as d  ∼  N(0,  GD  s 2
D   ), where the genomic relationship

matrix for dominance effects was built on genome-wide markers

defined by Zhu et al. (2015) as: GD =   H  H 0
n , where H is the

incidence matrix of dominance marker covariate matrix with

dimensions of the number of individuals (m) and number of SNPs

(n). The elements ofH are represented by hij   =
(xDij−2p

2
i )

2pi(1−pi)
, with pi being

the allele frequency at SNP i (i =1, 2,…, n), and xDij is an indicator

variable for dominance effects that takes a value of 0, 2pi and (4pi − 2)

if the jth individual's genotype at SNP i is qq, Qq, or QQ, respectively.
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This parameterisation of dominance effects ensures orthogonality with

additive effects. The additive-additive epistatic deviation effects were

assumed to be normally distributed ast  ∼  N(0,  GAA  s 2
AA). The

additive-additive epistatic relationship matrix was represented by

GAA, calculated using the methodology by Vitezica et al. (2017). As a

result, the additive-additive genomic relatedness matrix is defined

as: GA⊙GA
tr(GA⊙GA)=m

with GA⊙GA the Hadamard product (i.e., coefficient-

wise matrix product) of the additive GRM with itself, m being the

number of individuals, and tr denotes the trace of the matrix (in this

case, the trace of the GA⊙GA matrix). The corresponding additive-

additive interaction variance was represented by s 2
AA, captured using

the genome-wide SNP markers. The standardisation by the average of

the diagonal elements guarantees that the mean of the diagonal

elements ofGAAis nearly one as it is for GA and GD resulting in

genetic variances estimates on the same scale as the residual variance

(Vitezica et al., 2017). For each clone, the genome-wide heterozygosity

was incorporated in the extended-GBLUP model as a covariate. To

compute individual regression coefficients on average heterozygosity

(represented by b in Equation. 2), we used an approach detailed in

(Yadav et al., 2021b). We calculated the average genome-wide

heterozygosity (Hetk) for each individual clone. This value was
frontiersin.o
FIGURE 1

Progeny genotypes: Simulation approach illustrating the method for projecting target trait segregation patterns in phantom progenies derived from
1,225 families chosen from a pool of 2909 elite clones. The simulation process involves utilising genome-wide markers of parental clones and their
corresponding positions on the linkage map. Markers with known positions, a total of 10,387, were used in the simulation.
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obtained by summing up the contributions of the heterozygosity at

each SNP marker, and then dividing it by the sum of twice the product

of the reference allele and the alternate allele frequency at each locus.

Hetk =
on

i=1hki

on
i=12piqi

Where Hetk is the average genome-wide heterozygosity for an

individual clone k averaged across all SNP markers and hki refers to

the corresponding element of dominance incidence matrix H for

clone k at the ith SNP, while pi and qi represents the frequencies of
the reference and the alternate allele at the ith SNP. The extended-

GBLUP model represented by Equation. 2 is theoretically

orthogonal to the additive and dominant genetic components. By

orthogonality, we imply that there is no covariance between the

genetic components; for example, estimates of additive genetic

effects remain unbiased even when other genetic components’

effects are present in the model. The additive and dominance

GRMs were computed using the GCTA software v.1.93.0b

standard algorithm (Yang et al., 2011). The additive-additive

GRM was computed from the additive GRM using R v.3.6.2, R-

script adopted by Hivert et al. (2021). GRM computation on

reasonably large data sets necessitates a substantial amount of

memory. GCTA software accelerates the process by building the

GRM by block, and each block is allocated to a separate thread to

reduce the computational load. The GRM was constructed as a
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series of 8 blocks in our implementation. The different variance

components of the multiple-GRM models were estimated using

Linux-based software MTG2_v2.17 (Lee and Van Der Werf 2016).

MTG2 fitted models with the “direct average information”

algorithm using REML for variance component estimates.

The extended-GBLUP model (Equation. 2) using Equation 4 to

calculate BLUP solutions within a mixed model framework,

considering three random effects.

X 0 X X 0 Z X 0 Z X 0 Z

Z 0 X Z0Z + G  −1
A

s2
e

s2
u

Z 0 Z Z 0 Z

Z 0 X Z 0 Z Z0Z + G   −1
D

s 2
e

s 2
d

Z 0 Z

Z 0 X Z 0 Z Z 0 Z Z0Z + G     −1
AA

s2
e

s2
t

0BBBBBBB@

1CCCCCCCA 

b̂

û

d̂

t̂

0BBBBB@

1CCCCCA =

X 0 y

Z 0 y

Z 0 y

Z 0 y

0BBBBB@

1CCCCCA (4)

The solution obtained from Equation 4 encompasses breeding

values, dominance deviations, and additive-additive interaction

deviation effects. To determine the clonal value (ɡ), the predicted

random (breeding value, dominance deviations, additive-additive

interaction deviation) effects, and the genome-wide heterozygosity

effects are summed together. In the context of a specific cross, the

expected clonal value is derived by averaging the top 10%

performing progenies out of the total of 50 progenies generated.

This approach was adopted based on the understanding that only a

small percentage of the generated clones would be selected and

further advanced for variety development. Breeders can identify and

prioritise the most promising candidates for further evaluation and
FIGURE 2

Genomic prediction framework to calculate genomic estimate breeding value (GEBV) and genomic prediction of clonal performance (GPCP) using
standard GBLUP and e-GBLUP models, respectively. The models were trained using a breeding population consisting of 2,909 elite sugarcane
clones with recorded phenotypes for desired traits and genome-wide marker data. The trained models were utilised to predict the performance of
61,250 simulated progenies solely based on their marker profiles.
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selection by focusing on the top-performing individuals within the

progeny set.

Likelihood ratio tests (LRT) were employed to assess the

goodness of fit for the nested GBLUP models. The LRT involved

comparing the test statistic, which was calculated as two times the

difference between the maximum log-likelihood of the extended

GBLUP model and the maximum log-likelihood of the standard

GBLUP model. In this comparison, the extended GBLUP model

was considered the complete model.

Test statistic = 2 max logL extended GBLUPð Þð Þ −max logL standard GBLUPð Þð �½

A significance threshold of p< 0.05 was used to assess whether

introducing the heterozygosity as a covariate resulted in a

significant improvement of the model’s fit. If the Test statistic >

X2
(1) at p< 0.05, the model was considered statistically significant.

This approach allowed for evaluating model fit and determining the

most appropriate model based on statistical significance.

2.2.3 Inbreeding coefficients
The inbreeding coefficients of the progenies (Equation 5) were

estimated by the diagonal element of the additive relationship

matrix, GA, which represents the genomic relationship of an

individual with itself relative to an arbitrary base population

(Yang et al., 2010):

F =  
1
n
 on

i=1
x2i − (1 + 2pi)xi + 2p2i

2pi(1 − pi)
(5)

where n is the total number of SNPs, pi, denote the allele

frequency at SNP i and xi, is an indicator variable for additive

genetic effects. The variable xi, is coded as 0, 1, and 2, corresponding
to the qq, Qq, and QQ genotypes. The coefficient F provides an

unbiased estimate of the inbreeding coefficient.

The mean inbreeding of the progenies resulting from the

selected sets of mating pairs was calculated to assess the influence

of mate-allocation strategies on inbreeding. This mean inbreeding

value was computed and averaged over all repetitions, allowing for

an evaluation of the impact of mate-allocation strategies on

inbreeding levels.
2.3 Mate-allocation

This study compared two mate-allocation strategies for

selecting crossing pairs. In the first strategy, the 50 best crosses

were chosen from all possible mating pairs (1,225) based on their

additive value (u)̂. The goal was to optimise the additive genetic gain

in the next generation. In the second strategy, the best 50 crossing

pairs were selected based on the predicted clonal performance (ɡ̂ )
to maximise the total genetic values of resulting clones.

To determine the optimal set of crosses, an integer linear

programming (ILP) approach was employed using the R-lpSolve

package (http://lpsolve.sourceforge.net/5.5/) (Berkelaar et al., 2015).

ILP is a mathematical optimisation technique that solves static

optimisation problems subject to linear equality and inequality

constraints. In our case, the assumption was made that one

crossing is independent of the value of the other crossing (Jansen
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and Wilton, 1985). Practical limitations were considered in the ILP

formulation, such as the maximum number of crosses for each male

and female parent. Specifically, each male parent could cross with a

maximum of four female parents and vice versa. The ILP solved for

binary variables (xij), where a value of 0 indicated that a particular

cross between ith male and jth female was not chosen, while a value

of 1 represeneted a selected crossing pair.

A total of 50 crosses were ultimately selected based on the ILP

optimisation process. The expected additive gain Du(=mean(u5̂0)-

mean(u1̂225)) was calculated as the difference between the mean

breeding value of the selected 50 mating pairs and the mean

breeding value of all possible crossing pairs (1,225). Similarly, the

expected total genetic superiority D g ( = mean(ɡ̂ 50) −mean(ɡ̂ 1225

))was determined as the difference between the mean clonal value of

the selected 50 crosses and the mean clonal value of all possible

crossing pairs. The results presented in this study are based on the

average of ten repetitions of each simulation, providing reliable

insights into the performance of the mate-allocation strategies.
3 Results

3.1 Variance components and heritabilities

The estimates of variance components, heritabilities, and the

maximum log-likelihood ratio values obtained from the two

described models (Equations 1 and 2) are shown in Table 1 for

the three traits examined. TCH exhibited the lowest narrow-sense

(h2 = 0.18) heritability estimates using the extended-GBLUP model,

while CCS and Fibre had relatively high heritability estimates (CCS:

h2 = 0.4, Fibre: h2 = 0.5). Notably, estimates of additive genetic

variance differed significantly between the GBLUP and the

extended-GBLUP models, particularly for TCH. For additive

variance, the standard errors for TCH using the GBLUP model

were higher compared to the extended model, whereas the standard

errors for the other two traits remained the same regardless of

the model.

The narrow-sense heritability (h2) estimates for CCS and Fibre

were comparable in both GBLUP and extended-GBLUP models.

When additive, dominance, epistatic genetic effects, and

heterozygosity effects were simultaneously included in the model,

the estimates of dominance variance for CCS and Fibre were close

to zero. In contrast, the dominance effects explained nearly 4% of

the phenotypic variance for TCH (Table 1). Additionally, TCH

exhibited the highest ratio of dominance genetic variation to

additive variation (0.19), with additive-additive interaction

contributing to around 55% of overall genetic variation. In

contrast, additive variance explained about 38% of genetic variance.

Incorporating non-additive (dominance and additive-additive

interaction) genetic effects and heterozygosity effects resulted in a

significant reduction in residual variance for all traits compared to

the additive model (Table 1, Figure 3). This indicates that a portion

of the non-additive genetic variation was captured within the

residual variance in the GBLUP model. The additive-additive

interaction variation accounted for about 27% of the total genetic

variance in CCS, while for Fibre, the epistatic variance was the
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lowest, contributing to only 17% of the overall genetic variance.

Based on the log-likelihood, the extended-GBLUP provided a better

fit to the data than the regular GBLUP model, regardless of the traits

under consideration.
3.2 Effect of heterozygosity

The average heterozygosity per clone was calculated based on

the heterozygosity across markers. The regression coefficient for

heterozygosity in relation to TCH (92.84 ± 11.08) was found to be

significant, suggesting that an increase in genome-wide

heterozygosity is associated with an increase in average cane

yield. However, for CCS and Fibre, the standard error of the

regression coefficient was considerably larger compared to the

heterozygosity estimates, and the difference was not statistically

significant (Table 1).
3.3 Mate-allocation strategies

The total variation in predicted breeding û (and clonal ɡ̂ ) value for
all potential crossing pairs (n=1,225), the 50 best crosses selected

through ILP, and the top decile of best crosses are depicted in

Supplementary Figure S1 for TCH, CCS and Fibre in one simulation

iteration. The mean û (or ɡ̂ ) for all potential crossing pairs (the

baseline for our comparisons, n=1,225) was 2.02 ± 0.006 (4.80 ± 0.02)

tonnes/ha for TCH, 0.24 ± 0.0008 (0.31 ± 0.0009) measured in % for

CCS, and 0.46 ± 0.002 (0.61 ± 0.002) in% for Fibre across ten iterations

(Table 2). Compared to the additive model (GBLUP), the average

expected progeny value of selected matings based on the model that

incorporated non-additive genetic effects (e-GBLUP) showed

improvements of 57%, 12%, and 16% for TCH, CCS, and fibre,

respectively, compared to an additive model (GBLUP) (Table 2).
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The average genomic inbreeding coefficient of progenies for

TCH indicated that the selected progenies based on the extended-

GBLUP model with mate allocation had lower estimates of

inbreeding than the additive model (Table 2). The negative

genomic inbreeding estimates reflect that the selected clones in

crosses were more heterozygous (less inbred) than the average. The

difference between the mean û   (or   ɡ̂ ) of the selected crosses, and

the mean of all potential matings was referred to as the expected

additive genetic gain (Du) and expected total genetic superiority

(Dg), respectively. Figure 4 illustrates the additive genetic gain (Du)
and total clonal superiority (Dg) obtained with the selected matings

for each mating strategy.

The expected total genetic superiority of the progeny was higher

for all traits when matings were chosen based on clonal

performance (GPCP) rather than breeding value (GEBV),

providing the offspring with an advantage for TCH, CCS, and

Fibre. However, a significant decrease in additive genetic gain was

found using the same selection strategy, notably for TCH. There

were no major differences in the additive (Du) and expected genetic

(Dg) gain for CCS and Fibre in a specific mate-allocation strategy.

The rankings of crossing pairs varied significantly depending on

whether the selection was based on GEBVs or GPCPs. For example,

we observed that out of the selected 50 crossing pairs, there was an

overlap of only approximately six pairs between the mate-allocation

strategies for TCH. This limited overlap can be attributed to the

higher epistatic effects associated with this trait. This indicates that

different parents were selected to optimise the total additive (or

clonal) value.
4 Discussion

Our simulation study demonstrates that mate-allocation

strategies that account for non-additive genetic effects can
TABLE 1 Estimates of additive and non-additive (dominance and epistatic) variance components, narrow-sense heritability, dominance, additive-
additive interaction ratio, log-likelihood ratio (LKH), and heterozygosity effects (b) for TCH, CCS and Fibre for 2,909 clones.

Trait Model s 2
e s 2

A s 2
D s 2

E
h2 d2 E2 LKH Heterozygosity effects (b)

TCH GBLUP 68.51
(2.26)

24.91
(3.33)

0.27
(0.03)

7874.67a

e-
GBLUP

46.10
(3.94)

15.82 (2.9) 3.08
(2.05)

22.94
(4.74)

0.18
(0.03)

0.04
(0.02)

0.26
(0.05)

7809.28b 92.84*
(11.08)

CCS GBLUP 0.25
(0.009)

0.24 (0.02) 0.49
(0.03)

15.05a

e-
GBLUP

0.21 (0.02) 0.19 (0.02) ~ 0 (NA) 0.07 (0.02) 0.40
(0.03)

~ 0 (NA) 0.15
(0.04)

25.83b 0.29ns

(0.19)

Fibre GBLUP 0.81 (0.03) 0.90 (0.08) 0.53
(0.03)

1729.24a

e-
GBLUP

0.68 (0.06) 0.85 (0.08) ~ 0 (NA) 0.17 (0.07) 0.5 (0.03) ~ 0 (NA) 0.1 (0.04) 1725.26b -0.05ns

(1.22)
s 2
A= additive genetic variance;= dominance genetic variance; s 2

E= epistatic (additive-additive) genetic variance; s 2
e = residual variance; standard error (SE) in parentheses. LKH, Log Likelihood

Ratio. (a-b) models without a common superscript are significantly different at p< 0.05.
Model GBLUP, classical additive model; Model e-GBLUP, extended-GBLUP includes non-additive effects with average heterozygosity of clones with additive effects. TCH, Tonnes of cane per
hectare; CCS (%), Commercial cane sugar; Fibre (%), Fibre content. (b), a change in phenotypic mean per 1% increase in heterozygosity for a particular trait. *,means significant effects; ns reflect
non-significant effects.
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improve progeny performance in the next generation. Considering

non-additive genetic effects in mating decisions would likely lead to

breeding higher-performing varieties. We observed a substantial

improvement in the average expected progeny value of selected

crossing pairs, with increases of 57%, 12%, and 16% for TCH, CCS,

and Fibre, respectively, when non-additive and heterozygosity

effects were exploited. These results aligned with other clonal

crops and outbred species (Aliloo et al., 2017; Gonzalez-Dieguez

et al., 2019; Werner et al., 2023; Wolfe et al., 2021). For instance,

Toro and Varona (2010) reported a 6% to 22% improvement in

offspring performance through mate-allocation considering

dominance genetic effects in a simulation study. In contrast, Ertl

et al. (2014) demonstrated an estimated average genetic superiority

increase of a 14.8% increase in milk yield and a 27.8% increase in

protein yield using mate-allocation techniques in cattle breeding
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using empirical data. Furthermore, Resende (2014) achieved up to a

113% improvement in phenotypic benchmarks by exploiting

dominance effects in loblolly pine (Pinus taeda L.) tree breeding.

As sugarcane breeding programs progress, inbreeding and a

reduction in genetic diversity pose risks of inbreeding depression. It

is crucial to carefully select and allocate mates to strike a balance

between genetic gain and the negative consequences of increased

inbreeding. Lin et al. (2017) also suggested implementing

inbreeding controls during mate-allocation when employing GS

in outbred plants. In this study, selecting crossing pairs while

accounting for genome-wide heterozygosity and non-additive

effects considerably reduced progeny inbreeding, especially for

TCH, which aligns with previous research (Aliloo et al., 2017;

Gonzalez-Dieguez et al., 2019).

A range of mate-selection indices, such as the optimal

contribution (Wray and Goddard, 1994; Meuwissen, 1997),

superior progeny value (Zhong and Jannink, 2007), and its

extensions, such as optimal population value (Goiffon et al., 2017)

and usefulness criterion (Lehermeier et al., 2017; Wolfe et al., 2021),

have been developed to balance gains from selection with average

inbreeding and co-ancestry. In addition, genetic distance has also

been used to evaluate parental genetic differences and, as a result, to

predict heterosis and select parents for a cross. However, the

relationship between heterosis and genetic distance remains

unclear due to inconsistent findings from various studies (Cheres

et al., 2000; Yingbin et al., 2019; Liu et al., 2022). However, clonally

propagated crops, including sugarcane, are highly heterozygous

polyploids, where virtually all gametes produced by any parental

genotype are distinct, and all F1 descendants are unique (Wei et al.,

2021). Leveraging the overall genetic effects, both additive and non-

additive can be employed to develop new varieties. Cross-prediction

within a population is critical for population improvement in

clonally propagated crops. Some recent crop studies also

advocated strategies for selecting parents in artificial crosses based

on the genomic prediction of cross performance by leveraging the

non-additive effects in cereal, e.g. wheat (Lado et al., 2017) and

clonal crops, e.g. strawberry and cassava (Werner et al., 2023; Wolfe

et al., 2021). Thus, mate-allocation is the most straightforward

approach to harness the benefits of non-additive effects among all

the strategies.

Our simulation results revealed a clear relationship between

improved progeny performance in the next generation and
TABLE 2 Average expected progeny value (EPVavg) and genomic measures of average inbreeding of progenies (PIBavg) of selected crosses (50) across
ten iterations of simulation for TCH, CCS, and fibre with standard deviations in parentheses.

Mate-allo-
cation

TCH (tonnes/ha) CCS (%) Fibre (%)

Selection of
crossing pairs

EPVavg PIBavg EPVavg PIBavg EPVavg PIBavg

GEBV1 5.29
(0.06)

0.04
(0.01)

0.50
(0.003)

0.02
(0.01)

1.16
(0.01)

0.02
(0.009)

GPCP2 8.28
(0.07)

-0.046 (0.007) 0.56 (0.005)
0.03
(0.01)

1.34
(0.02)

0.05
(0.007)
1Mate-allocation strategy, where crossing pairs would be selected based on GEBVs; 2Mate-allocation strategy, where crossing pairs would be selected based on GPCPs; GEBV, genomic estimated
breeding value; GPCP, genomic prediction of clonal performance exploiting non-additive effects; TCH, tonnes cane per hectare; CCS, commercial cane sugar; Fibre, Fibre content. The standard
deviation in parentheses reflects the variation across ten simulation repetitions.
FIGURE 3

Decomposition of genetic variance into additive and non-additive
and residual variance; Va, additive genetic variance; Vna, non-additive
genetic variance (including dominance and additive-additive
interaction variance components); Ve, error variance; Model GBLUP,
traditional additive model; E-GBLUP, extended-GBLUP model by
integrating additive, dominance, epistatic and heterozygosity effects.
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genome-wide heterozygosity, particularly for TCH, where

significant heterozygosity effects were observed. The extend-

GBLUP model, when heterozygosity is not explicitly accounted

for, may lead to an overestimation of dominance variance (Iversen

et al., 2019). The same observation has been made in our previous

study (Yadav et al., 2021b), which used the same dataset as this

study; we observed a considerable reduction in dominance variance

for TCH after including genome-wide heterozygosity per clone in

addition to a random dominance term.

Our results demonstrate that selecting crossing pairs based on

cross-performance exploiting non-additive effects and heterozygosity

effects yields higher genetic gain (clone performance) than selection

based solely on breeding value, which is consistent with previous

studies (Ertl et al., 2014; Resende, 2014; Toro and Varona, 2010;

Aliloo et al., 2017; Fernandez et al., 2021). Among the traits studied,

TCH exhibited the greatest increase in overall genetic gain, as non-

additive genetic effects accounted for nearly two-thirds of the genetic

variation. However, our results contrast sharply with mate-allocation

techniques used in cattle and pig breeding schemes, where the

inclusion of non-additive genetic effects to exploit heterosis resulted

in a higher predicted total genetic superiority while only minimally

reducing expected additive gain (Ertl et al., 2014; Gonzalez-Dieguez

et al., 2019). One of the key explanations could be the substantial

magnitude of dominance and epistatic effects in sugarcane compared

to these studies, resulting in the selection of different sets of parents to

optimise clonal and additive values in the crossing pairs. ILP was

utilised in this study to facilitate the decision-making process in

determining the optimal combination of these crossing pairs, taking

into account the practical limitations of breeding programs, such as

restricting the number of parents that a parent may cross with. This

optimisation technique is widely applied in mate allocation research

to improve decision-making (Resende, 2014; Aliloo et al., 2017;

Gonzalez-Dieguez et al., 2019).
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Under the assumption of Hardy-Weinberg equilibrium, the

total genetic variance was partitioned into additive, dominance,

and epistatic variance. Although the model is theoretically

orthogonal, our results demonstrate a reduction in additive

variance for all traits when non-additive genetic effects are

included in the model. These results are consistent with those

obtained when applying the natural and orthogonal interaction

(NOIA) model to the same population of clones where the Hardy-

Weinberg equilibrium condition was relaxed (Yadav et al., 2021b).

High linkage disequilibrium in modern elite sugarcane clones might

explain some confounding effects of additive and non-additive

genetic effects (Jannoo et al., 1999; Raboin et al., 2008). Most

significantly, a simple diploid model is unlikely to reflect all of the

sugarcane’s genomic and genetic complexity. These confounding

effects pose challenges in pinpointing the specific genetic

contributions to observed phenotypic variation, thus hindering

the interpretation of the relative importance of additive and non-

additive effects on the expression of sugarcane traits. Moreover, the

reduction in residual variance observed in the extended-GBLUP

model indicates that residual variation contains a significant

portion of the non-additive variation not captured by the

traditional GBLUP model, which does not account for non-

additive effects. Other studies have come up with similar findings

(Aliloo et al., 2017; Gonzalez-Dieguez et al., 2019). As a result, the

residual genetic variance may include high-order non-additive

genetic variation that is not captured by markers and error variance.

It is important to acknowledge that mate-allocation strategies

used in this study consider truncation selection and planned mating

based on additive or total genetic performance. It might result in the

selection of close relatives. This focus on selecting the top-

performing lines offers short-term genetic progress; however, it

poses a risk of limiting long-term genetic gain due to high rates of

population inbreeding. To balance long- and short-term gain, the
FIGURE 4

The x-axis represents the expected gain in terms of total clonal performance (Dg), reflecting variety performance and total additive (Du) gain,
pertaining to parental selection obtained from 50 selected crosses using a linear programming optimisation algorithm. Du = u5̂0 − u1̂225; Dg = g5̂0 −

g1̂225; where u1̂225 (or g1̂225) is the mean breeding (or clonal) value of total potential crossing pairs, and u5̂0 (or g5̂0) is the mean breeding (or clonal)
value of selected crossing pairs using the integer linear programming optimisation technique. The error bar shows the standard error of the mean
for ten repetitions of the simulation.
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sugarcane breeding scheme can be viewed as having two

interconnected goals: recurrent GS for population improvement

and the development of varieties for immediate use. Recurrent GS

focuses on allele substitution effects, which control and increase the

frequency of favourable alleles in the population over time and can

be primarily driven for larger genetic gain in the long term. On the

other hand, the variety development pipeline utilises non-additive

and heterozygosity effects to improve the phenotypic performance

of market-ready clones, prioritising short-term goals. However, it is

important to note that preselecting clones based on GEBVs might

restrict the opportunity to select alternative clones that might

potentially generate offspring with higher overall genetic value in

specific matings. It is crucial to consider that mating, which benefits

from non-additive effects, can only increase progeny performance

during its implementation, and the benefits resulting from specific

combining abilities cannot be accumulated over multiple

generations. Therefore, exploring innovative methods for

optimizing genetic contributions (e.g., optimal contribution

selection) can be advantageous to balance short-term gain and

preservation of long-term genetic diversity.

Our results are limited to a specific population and focus on a

single trait. Consequently, the proposed approach could lead to the

selection of different parental lines when targeting different traits. In

practice, however, expanding the approach to multiple-trait

selection is preferable. A simple extension would be to use a

selection index that includes multiple traits and then consider the

selection index as a new target trait for the existing single-trait

approach. Another possible modification is directly implementing

multi-trait genomic prediction models and evaluating selection

lines using an appropriate selection index.

Furthermore, in order to approximate a high-complexity

genome, we used simplified assumptions in our simulation

schemes. However, genetics in auto-polyploid species is more

complicated than in diploid species since more than two alleles

may occur at the same locus. As a result, there are additional

phases and recombination, and preferential pairing can vary. In

addition, there is limited theoretical and experimental information

on recombination and segregation in high-ploidy species. And

determining which alleles co-occur on each homologous copy gets

increasingly challenging as ploidy increases. Furthermore, a reference

genome is essential for phasing genotypes in heterozygous polyploids

like sugarcane. Unfortunately, the sugarcane community does not

have access to the complete reference sequence, which did not allow

for leverage of genome-wide phased haplotypes. Nevertheless, the

pseudo-diploid markers are a rough approximation of what we used

in our study because the majority of the markers in the SNP array are

single/low-dose markers. Based on genotype allele count (0, 1 and 2),

the software we used to simulate the progenies assumes that the input

(marker) data is in the correct gametic phase.

We acknowledge the limitations of our research, particularly the

simplifications inherent in using a basic diploid parametrisation and

the challenges in representing sugarcane’s complex genomic and

meiotic characteristics. The availability of the Affymetrix SNP array,

with its considerable number of single-dose SNP markers, has
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facilitated our study. Still, it is important to recognise that this

approach may not entirely capture the genetic complexity of

sugarcane. Furthermore, the small size of our training population

and the impact of environmental variations on genotypic values

should be taken into account when selecting cross combinations.

Therefore, conducting field trials to validate our findings would be a

valuable next step. Additionally, further research is required to fully

understand the benefits of mate-allocation methods in a

larger context.
5 Conclusion

In conclusion, our simulation study demonstrates that

implementing genomic mate-allocation strategies that consider

non-additive genetic effects holds promise as a feasible and

effective method for enhancing the performance of clonal

offspring in sugarcane breeding programs. Across all traits

evaluated, the inclusion of non-additive effects in mate-allocation

strategies yielded favourable outcomes, resulting in a substantial

57% improvement in cane yield performance compared to

strategies focused solely on additive effects. Moreover, when

crossing pairs were selected to leverage non-additive and

heterozygosity effects, the average inbreeding coefficient of the

progeny was significantly reduced, particularly in cases where the

target trait was TCH. This reduction in the inbreeding coefficient

helps to preserve long-term genetic gains and maintain the overall

genetic diversity within the population.

One notable advantage of mate-allocation methods that account

for non-additive genetic effects and heterozygosity is their relative

ease of implementation compared to other approaches described in

the literature. By directly estimating the performance of progeny in

the subsequent generation, these methods provide a practical and

efficient means of incorporating non-additive effects into breeding

operations. This becomes especially valuable when breeding

operations involve time-consuming processes such as establishing

segregating populations and conducting field evaluations,

emphasising the importance of systematic planning in cross-

selection. Although genomic mate-allocation contributes to the

overall improvement of offspring performance in our simulation

study, it is crucial to note that it does come at the cost of reduced

expected additive genetic gain, particularly in the case of cane yield.

Therefore, future breeding programs will face the interesting

challenge of balancing long-term gains derived from selection on

additive effects and the short-term development of high-performing

varieties. We emphasize that these findings are derived from

simulation experiment, and their real-world applicability should

be considered in light of the simulation-based nature of this study,
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SUPPLEMENTARY FIGURE 1

(A) Predicted breeding value (left) and clonal value (right) of 1225 crossing
pairs, best 50 crosses and top decile of best 50 crosses in one iteration of

simulation for TCH; (B) Predicted progeny (breeding/clonal) value for CCS;
(C) Predicted progeny value for fibre content. The “+” sign represents the

mean value, and the solid line across the box represents the median.
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