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The typical occlusion of cherry tomatoes in the natural environment is one of

the most critical factors affecting the accurate picking of cherry tomato

picking robots. To recognize occluded cherry tomatoes accurately and

efficiently using deep convolutional neural networks, a new occluded

cherry tomato recognition model DSP-YOLOv7-CA is proposed. Firstly,

images of cherry tomatoes with different degrees of occlusion are acquired,

four occlusion areas and four occlusion methods are defined, and a cherry

tomato dataset (TOSL) is constructed. Then, based on YOLOv7, the

convolution module of the original residual edges was replaced with null

residual edges, depth-separable convolutional layers were added, and jump

connections were added to reuse feature information. Then, a depth-

separable convolutional layer is added to the SPPF module with fewer

parameters to replace the original SPPCSPC module to solve the problem

of loss of small target information by different pooled residual layers. Finally, a

coordinate attention mechanism (CA) layer is introduced at the critical

position of the enhanced feature extraction network to strengthen the

attention to the occluded cherry tomato. The experimental results show

that the DSP-YOLOv7-CA model outperforms other target detection models,

with an average detection accuracy (mAP) of 98.86%, and the number of

model parameters is reduced from 37.62MB to 33.71MB, which is better on

the actual detection of cherry tomatoes with less than 95% occlusion.

Relatively average results were obtained on detecting cherry tomatoes with

a shade level higher than 95%, but such cherry tomatoes were not targeted for

picking. The DSP-YOLOv7-CA model can accurately recognize the occluded

cherry tomatoes in the natural environment, providing an effective solution

for accurately picking cherry tomato picking robots.

KEYWORDS

cherry tomato picking robot, object detection, depth separable convolution, residual
module, coordinate attention mechanism, DSP-YOLOv7-CA
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1 Introduction

Cherry tomatoes, also known as small tomatoes, have high

nutritional value. The national cultivation area is approximately 1

million hectares, with an annual production of about 61 million tons,

accounting for 35% of the global tomato production. The total output

value of cherry tomatoes has reached 10 billion yuan, accounting for

12% of China’s total vegetable output. The average per capita

consumption is 21 kilograms per year FAO (2018); Zhang (2014);

Feng et al. (2022). However, the manual harvesting cost of cherry

tomatoes is about 10,500 yuan per hectare, accounting for over 30%

of the total production cost. Timely harvesting of cherry tomatoes is

necessary to ensure food quality Zheng et al. (2021). Agricultural

harvesting robots provide a new approach to the mechanized

harvesting of cherry tomatoes. Unlike other fruits, ripe cherry

tomatoes have light red and smooth skin. They grow in complex

natural environments, mainly in clusters with many overlapping

fruits and obstructions from leaves and branches. The obstruction of

cherry tomatoes is one of the most significant factors affecting

accurate harvesting by harvesting robots.

More and more studies have utilized deep learning methods to

solve the cherry tomato detection problem. Yan et al. (2021) and Feng

et al. (2022); Feng et al. (2021) segmented tomatoes for detection based

on MsakR-CNN model. Yuan et al. (2020) proposed a robust SSD-

based cherry tomato detection algorithm for greenhouse scenarios

with an average accuracy of 98.85% but with average detection speed.

Wang et al. (2022) proposed an algorithm for tomato ripening

detection in complex scenarios based on Faster R-CNN, with an

average accuracy of 96.14%. Lv et al. (2023) proposed a cascade deep

learning-based tomato flower and fruit detection method with an

average recognition rate of 92.30%.The YOLO model has become a

research hotspot due to its advantages of fast detection speed. Zhang

et al. (2021) based on the YOLOv4 model, the connectivity

relationship between the tomato bunches and the corresponding

fruit stems to achieve the fast recognition of tomato fruit stems.

Zheng et al. (2022) based on the YOLOv4 model using a depth

separable convolutional module to improve the backbone network

and SPP module, the detection accuracy is 94.44%, but the number of

parameters is large. Mbouembe et al. (2023) based on the YOLOv4-

tiny model, it utilizes a smaller SPP module to increase the sensory

field with an accuracy of 96.35%. He et al. (2022) proposed a tomato

detection method based on improved YOLOv5 with an average

accuracy of 96.87%. Yang et al. (2022); Zhang et al. (2023b) realized

tomato detection by integrating the CBAM attention module into the

backbone network part of the YOLO model, which gives more

attention to tomato features, but the detection effect is average. Liu

et al. (2023) proposed a tomato detection model with a deep

convolutional structure to improve the target recognition accuracy

while achieving sparsity of model parameters.

In occluded fruit detection, the optimized model can improve

the detection accuracy due to the lack of feature information Saedi

and Khosravi (2020). Sa et al. (2016) utilized an improved Faster R-

CNN model to recognize occluded fruits and obtained a high F1

score; however, the model structure was too complex, and the
Frontiers in Plant Science 02
detection time was long. Yu et al. (2019) successfully detected

occluded strawberries with a detection accuracy of 89.5% by

migrating the Mask R-CNN model for training. Xu (2013)

utilized a Support Vector Machine (SVM) to detect strawberries

with 87% accuracy. However, this method can only recognize

slightly occluded strawberries. Wang and Long (2023)

implemented the detection of occluded citrus using the improved

YOLOv3, which could not accurately recognize citrus with a large

occluded area. Gai et al. (2023) achieved target detection of

occluded cherries based on the YOLOv5s model by adding an

RFB module to enhance the shallow feature information. Zhang

et al. (2022) effectively improved the detection of occluded small

targets by introducing a decoupled head structure on YOLOX. The

feature extraction ability of occluded targets can be enhanced by

integrating the attention mechanism module in the model Chen

et al. (2023). Su et al. (2022) established a tomato ripeness

recognition model combining depth-separable convolution and

squeeze-excitation attention mechanism module, with a detection

accuracy of 97.5%. Khan et al. (2023) designed a convolutional

converter-based method for occluded tomato image detection,

which performs well in terms of µIoU, µDC, mAP and AUC.

Khan et al. (2023) designed a CSPNet structure with hybrid

attention based on the YOLOv4-Tiny model fusing CBAM

branches in the large residuals of CSPDarknet, which is effective

for occluded tomato detection.

Although some studies have been conducted on occluded

cherry tomato detection, the current model detection accuracy

and efficiency still need to be improved to meet the requirements

of cherry tomato detection under picking conditions. It is found

that enhancing the SPP network and backbone network to detect

occluded small targets based on the YOLO detection model is an

effective means, and the use of the attention mechanism module

and lightweight convolutional kernel can focus on the critical

information, obtaining a better characterization ability and model

lightweight. Therefore, this study takes cherry tomato picking robot

detection in the natural environment as the theme and occluded

cherry tomatoes as the primary research object to improve the

detection accuracy of occluded cherry tomatoes in the natural

environment. An efficient and stable DSP-YOLOv7-CA detection

model is constructed through multi-group controlled experiments,

and the DSP-YOLOv7-CA model proposed in this study makes the

following five main contributions to existing models:
1. Cherry tomatoes in a natural environment were collected

and screened, and various occlusion situations of cherry

tomatoes were defined in detail. A new cherry tomato

dataset (TOSL) was constructed by offl ine data

augmentation and image labelling operations, and online

data augmentation methods further enhanced the diversity

of the data.

2. A new cherry tomato recognition model, DSP-YOLOv7-CA,

is proposed. The performance of the DSP-YOLOv7-CA

model is examined in cherry tomatoes with different

occlusion levels.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1260808
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hou et al. 10.3389/fpls.2023.1260808

Fron
3. A deep residual DSP-Backbon network with multi-scale

detection is designed in the backbone network. The feature

information of the original residual layer and the deep

separable convolutional layer is utilized for fusion, and the

feature information is reused through the DSP-Multiblock

module to accelerate the convergence speed of the model.

4. In the spatial pyramid network, the DSP-SPPF module with

fewer parameters and better performance is designed, and

the DSP-SPPF module solves the problem of the loss of

small target information in different pooled residual layers,

improves the generalization ability of the model and

reduces the number of parameters of the network.

5. A coordinate attention mechanism (CA) layer is introduced

at critical positions in the enhanced feature extraction

network to better extract features of complex small targets

and improve the detection accuracy and speed of the

network.
2 Materials and methods

2.1 Image collection

2.1.1 Image acquisition methods
In this study, the variety of cherry tomatoes from Shandong

Province was selected as the research object, and the variety of

cherry tomatoes was selected as Pink Pei Pei. During January and

March 2023, several cherry tomatoes with good growth, ripe and

intact fruits were selected for photographing according to the field-

of-view angle of the camera during the working process of the

cherry tomato picking robot at the National Saline and Alkaline

Land Facility Agricultural Testing Experimental Base, as shown in

Figures 1. The shooting was done with an ultra-wide-angle lens

equipped by a 54 MP matrix camera of Honor 70. The data in the

figure contains images of cherry tomatoes with different fruit
tiers in Plant Science 03
densities and at different periods. We finally captured 1293 high-

resolution images of ripe cherry tomatoes in JPG format with a

resolution of 3072 pixels × 4096 pixels.

The main objective of this study is to improve the recognition

accuracy of occluded cherry tomatoes in natural environments. This

paper pays special attention to the branch-obscured ripe cherry

tomato images when selecting cherry tomato images. For the

positional relationship between fruits and obstacles in cherry

tomato picking robots, this paper defines four types of occlusion

areas and four types of occlusion modes, which are: 0-30%, 30-70%,

70-95%, 95-100%, branch-obscured, leaf-obscured, fruit

overlapped, and mixed-obscured Yang et al. (2019). As shown in

Figure 2, cherry tomato branches will pass through the middle or

edge of the fruit, fruit overlap will overlap a portion of the tomato

features, and be shaded by foliage irregularly and, more commonly,

with varying sizes of shaded areas. The yellow circle markers are the

size of the complete cherry tomato silhouette, and the occlusion

area was determined based on the ratio of the size of the surface

features that the camera could not detect to the size of the complete

silhouette. In the end, this paper retains 581 clear images of

occluded cherry tomatoes, which enables the YOLO target

detection algorithm to comprehensively learn the surface features

of cherry tomatoes under various occlusion methods.

2.1.2 Data augmentation
Model training requires a large amount of data, and various

offline data augmentation methods are commonly used to expand

the dataset Zhang et al. (2023a). However, the data diversity of these

conventional methods is generally insufficient. Therefore, in this

paper, we use offline and online augmentation to augment data

from shaded cherry tomatoes in natural environments, fusing

multi-scale features to increase data diversity.

Offline augmentation is a data enhancement method performed

before model training, which includes the following two methods: (1)

Light change: change the saturation and brightness of the image to

simulate the brightness difference between different weather in the
FIGURE 1

Camera field of view of a cherry tomato robot at work.
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daytime environment. (2) Adding noise: adding Gaussian noise to the

image data to simulate the noise during the shooting process and

reduce the high-frequency features to prevent the overfitting

phenomenon. Through the above two methods, the offline data

were expanded to 2334 images, and the expanded images are

shown in Figures 3A–D. LabelImg software labelled the ripe cherry

tomatoes with less than 95% of the occluded area in these images and

obtained 14623 labelled instances. Since it is alsomore difficult for the

human eye to discriminate cherry tomatoes with 95 100% of the

occluded area, they are not used as the detection target of this model.

The labelled areas are the smallest rectangles around the cherry

tomatoes. The labelled images are shown in Figure 4. The dataset of
Frontiers in Plant Science 04
occluded cherry tomatoes in the natural environment (TOSL) was

constructed by offline amplification and image labelling work.

A combination of Mosaic and Mixup image augmentation

methods was used in online augmentation Zhang et al. (2023a).

Mosaic image augmentation enriches the background of the

detected object by stitching four images together, including colour

gamut changes, rotations, adding noise, and killing features. Mixup

image augmentation creates new training samples by mixing

different images to improve the model’s generalization. Too large

an amplification probability can over-process the image data,

resulting in the loss of feature information for cherry tomatoes

with large occluded areas. Too small amplification probabilities
A B D

E F G

C

H

FIGURE 3

Cherry tomato images. (A–D) Offline augmentation images with changes in lighting and added noise. (E, F) Online mosaic augmentation images. (G, H)
Online mixup augmentation images.
A B

FIGURE 2

The way cherry tomatoes are shaded. (A): Analogue masking method. (B): Actual masking method.
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reduce the number of amplifications and do not fully utilize the

enhancement they provide. Therefore, a 50% probability was set for

Mosaic and Mixup data amplification during each iteration, as

shown in Figures 3E–H.
2.2 Model building

2.2.1 YOLOv7 model
The YOLOv7 model has higher detection accuracy and detection

speed Wang et al. (2023). In Figure 5, the YOLOv7 model is

demonstrated with a multi-branch stacking structure for feature

extraction in the backbone network and the enhanced feature

network, and the model has a denser jump connection structure.

The backbone consists of several Conv2D modules, TransitionBlock

modules and MultiBlock modules, where the Conv2D module

consists of Conv+BN+SiLU. The innovative downsampling

structure TransitionBlock module (composed of Maxpool and

Conv2D) is used to extract and compress feature maps

simultaneously. MultiBlock module employs a residue-like stacking

structure composed of multiple Conv2Ds, capable of extracting

features at different scales. The enhanced feature extraction

network uses a PAFPN structure, similar to YOLOv5, except that

the CSP module replaces the MultiBlock-D module. Both

MultiBlock-D and the MultiBlock in the backbone have similar

structural composition, with only a difference in the number of

Concatenations. The model outputs three different sizes of

prediction results to realize multi-scale prediction formultiple targets.
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2.2.2 Depthwise separable convolution
In 2018, Sandler et al. (2018) proposed depthwise separable

convolution. As shown in Figure 6, depthwise separable

convolution consists of depthwise and pointwise convolution. In

the depthwise convolution layer, assuming the input feature has

dimensions of a × a × c1, where c1 is the number of channels, the

convolutional kernel in this paper has parameters of 3 * 3 * 1 * c1.

The output feature after depthwise convolution has dimensions of a

× a × c1. During the convolution, each channel corresponds to only

one convolutional kernel, so:

FLOPs1 = c1� a� a� 3� 3 (1)

In the pointwise convolution, the input is the feature after

depthwise convolution, with dimensions of c1 × a × a. The

convolutional kernel parameters are c2 × 1 × 1 × c1. The output

dimensions are c1 × a × a. During the convolution process, a

standard 1 × 1 convolution is applied to each feature, so:

FLOPs2 = c− � a� a� c1 (2)

Therefore, the ratio of the parameter quantity of depthwise

separable convolution to the parameter quantity of standard

convolution is shown in Formula 3.

c1� a� a� 3� 3 + c− � a� a� c1
a� a� 3� 3� c� c1

=
1
c−

+
1
9

(3)

Compared to standard convolution, depthwise separable

convolution has the characteristics of parameter sharing and
FIGURE 4

Labeled images.
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sparse interactions. It can share the trained convolutional kernel

weights, reducing the number of parameters. At the same time, it

connects partial inputs to better capture local features of the input,

enabling the learning of spatial and channel features, and providing

better representational power.

2.2.3 Residual neural network
In 2016, He et al. (2016) proposed residual networks that can

improve the model’s accuracy by increasing the network’s depth.
Frontiers in Plant Science 06
The basic principle of residual networks is to construct an identity

mapping using residual units, i.e., y = F(x) + x, where F(x)

represents the nonlinear transformation part of the network,

which adds the input signals to the output through direct

connections across the layers, and x is the original transmission

part, which retains the original feature information and achieves a

better feature fusion. This structure ensures that parameter updates

do not suffer from the problem of disappearing gradients or

gradient explosions.
FIGURE 6

Depthwise separable convolution.
FIGURE 5

YOLOv7 structure diagram.
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2.2.4 CANet
When performing feature map fusion, obtaining high-level

semantic features and low-level contour features is beneficial. For

the detection of occluded cherry tomatoes, it becomes difficult to

enhance the feature extraction network to obtain features from the

global features, which reduces the detection accuracy of the model.

Therefore, the spatial attention mechanism (CBAM) significantly

improves the model performance Li et al. (2020). However, using

CBAM instead of the fully connected layer for feature map

encoding usually ignores the location information, essential for

generating spatially selective attention maps. The Coordinate

Attention Mechanism (CA) Hou et al. (2021) decomposes

channel attention into two one-dimensional feature encoding

processes that aggregate features in two spatial directions,

respectively. Then, it encodes the generated feature maps into a

pair of direction-aware and location-sensitive attention maps that

can be applied complementarily to each other.
2.3 Model improvement

YOLOv7 can solve the problem of uneven volume size of cherry

tomato images collected by picking robots. The backbone network

adopts a more extensive network structure, which may lead to

problems such as missed detection and false detection due to the

complex occlusion relationship between cherry tomatoes and

branch foliage; the spatial pyramid network uses maximum

pooling layers parallel to each other, which pays more attention

to detecting large targets and is not sensitive enough to detect small

targets. The enhancement of the feature extraction network is too

deep, and it can not gather small target features in the processing of

extracting small features and carrying out zoom-in and zoom-out,

resulting in a decrease in detection accuracy and speed. Since this

study aims to solve the problem of occluded cherry tomato

detection, specific occluded small targets must be considered, and

optimizing the original network structure is more important. The

optimization method based on the YOLOv7 model in this study

includes the following points:
Fron
1) In the backbone network, a deep residual DSP-Multiblock

module with multiscale detection replaces the MCBmodule

in the last two layers of the backbone network. In the DSP-

Multiblock module design, the null residual edge replaces

the convolution module on the Multiblock module, and a

new depth-separable convolution module is added to

realize the fusion of the feature information of the

original residual layer and the depth-separable

convolution layer further to improve the representation

capability of the occluded cherry tomato and to accelerate

the convergence speed of the model.

2) The DSP-SPPF module with fewer parameters but superior

performance is used in the spatial pyramid network. After

comparing the two latest SPP modules, a new depth

separable convolution module is added to the better-
tiers in Plant Science 07
performing SPPF module and replaces the SPPCSPC

module of the original model, which solves the problem

of the loss of small target information by different pooled

residual layers, improves the generalization ability of the

model, realizes the reuse of feature information, and

reduces the number of parameters of the network.

3) A coordinate attention mechanism (CA) layer is introduced

at critical positions in the enhanced feature extraction

network. The coordinate attention mechanism can

improve the attention to overlapping and occluded targets

and better extract the features of complex small targets, thus

improving the detection accuracy and speed of the network.
2.3.1 DSP-backbone network
In the backbone network, the MultiBlock module realizes the

depth increase of the model through the residual-like network,

which consists of multiple Conv2D modules, as shown in Figure 7B,

and the structure of the residual-like network is y = F(x) + C(x),

which is prone to lose the critical feature information compared to

the residual network y = F(x) + x. Therefore, in this paper, we first

utilize the empty residual edges to replace the original residual edges

on the MultiBlock module with the Conv2Dmodule, which uses the

jump connection of the residual network, which can bypass the

occluded region to directly transmit the unoccluded feature

information and retain the original feature information. The

backbone network gradually completes the 32-fold downsampling

operation through four MultiBlock modules. However, if the

network layer is too deep, it reduces the possibility of complete

information retention, thus weakening the feature extraction

capability for small and partially occluded targets. To improve the

feature extraction ability, in this paper, we add a branch of depth-

separable convolution module to the MultiBlock module with a

depth convolution kernel size of (3,3) and a point-by-point

convolution kernel size of (1,1), which increases the sensory field

of the occluded cherry tomatoes. We name the modified module the

DwConv2D module, which consists of the Conv1 (depth-separable

convolution), the BN (batch normalization) and SiLU. As shown in

Figures 7A, C, the new network structure is y = F(x) + x + C.(x),

which ensures mutual fusion in the same dimension, and in this

paper, we name the modified module DSP-MultiBlock.

The DSP-MultiBlock module adopts a deep residual structure.

The feature maps are small in the last two layers of the MultiBlock

module in the backbone network, which leads to a relatively sizeable

sensory field. The recognition effect is better for large targets, but the

recognition effect is average for minor marks. In addition, after

multiple downsampling, the detailed information on the high-level

features is seriously lost. Therefore, replacing the MultiBlock module

of stage 4 and stage 5 in the backbone network with the DSP-

MultiBlock module can aggregate the detail information features and

realize the conversion between detail and semantic information,

avoiding the deeper class residual network, which reduces the detail

feature extraction ability. The improved backbone extraction network

is called DSP-Backbone, as shown in Figure 7D.
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2.3.2 DSP-SPPF spatial pyramid network
As shown in Figure 8A, the SPPCSPC module of the YOLOv7

model acquires feature information through parallel convolution

and maximum pooling kernels parallel to each other. This similar

convolution structure can capture the local network and patterns of

the input data, especially for the strong representation of features

such as edges and textures in the occluded cherry tomato image.

However, such a modular structure is too complex and can easily

lead to the loss of more minor feature information. For example,

since the size of the occluded area of cherry tomatoes varies, the

essential information provided is also different. When the occlusion

area is large, the target feature information is small. After the feature

extraction is completed in the backbone network, some of the

feature information may have been lost. When the maximum

pooling operation is performed in the SPPCSPC module in

parallel with each other, almost all of the feature information is

lost, which increases the probability of partial occlusion targets
Frontiers in Plant Science 08
being missed. Compared with this structure, the SPPF module of

YOLOv8 adopts a top-down maximum pooling kernel stacking

structure, which introduces jump connections and reduces multiple

layers of convolutional modules, significantly reducing the number

of references and improving the detection speed, as shown in

Figure 8B. However, the parallel convolutional structure is

missing, which increases the probability that partially occluded

targets are missed. To compensate for the loss of accuracy due to the

loss of convolutional branches, this paper adds a depth-separable

convolutional module, DwConv2D, as a parallel convolutional

branch on top of the SPPF module. As shown in Figure 8C, by

increasing the sensory field layer by layer, it captures a broader

range of contextual information, which helps to extract more

advanced semantic features, enabling the model to understand

more complex image contents, further improving the detection

accuracy of occluded tomatoes, while reducing the model

parameters. The modified module is named the DSP-SPPF module.
A

B

D

C

FIGURE 7

(A) DSP-MultiBlock Module Convolution Principle. (B) Original MultiBlock Module. (C) DSP-MultiBlock Module. (D) DSP-Backbone Networks.
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2.3.3 Introduction of the enhanced feature
extraction network with CANet

To increase the model’s sensitivity to occluded cherry tomato

features, this paper employs a coordinate attention mechanism that

combines positional information with channel information and is

applied to enhance the critical position of the feature extraction

network. The method increases the attention on overlapping and

occluded targets that are difficult to recognize by assigning higher

weights. As shown in Figure 9A, the coordinate attention

mechanism consists of information embedding and attention

generation. In the information embedding stage, all channels of

the input feature map are average pooled along the horizontal and

vertical coordinate directions, respectively, and feature maps with

dimensions C × H × 1 and C × 1 × W are acquired. In the attention

generation stage, the two developed feature maps are spliced into a

C × 1 × (H + W) feature map. Then, their channel dimensions are

compressed from C to C/r dimensions with shrinkage r using 1 × 1

convolution and nonlinear activation using the ReLU function.

Next, the acquired results were decomposed along the spatial

dimension into a C/r × H × 1 horizontal attention tensor and a

C/r × 1 × W vertical attention tensor. The channel dimension is

then raised from the C/r dimension to the C dimension using two

sets of 1 × 1 convolutions, and the Sigmoid function is used for
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nonlinear activation. Finally, the two acquired attention maps, C ×

H × 1 and C × 1 × W, are multiplied with the input feature maps to

complete the imposition of coordinate attention.

Considering the complexity of the natural environment, this

paper introduces the coordinate attention mechanism to strengthen

the feature extraction network to fully acquire feature information

at different scales at the information intersection at position 2. As

shown in Figure 9B, under the imposition of two other directional

attention maps, it can determine whether the target exists in the

corresponding rows and columns, which in turn improves the

network’s recognition effect for dense targets and, at the same

time, mitigates the degradation of the detection accuracy caused by

the occlusion of branches and leaves. Notably, the CA modules at

positions 1 and 3 of the network only apply to the subsequent

illustration of the control experiments and do not serve as part of

the final network structure.
2.4 Model training

2.4.1 Training method and platform
In this experiment, the PyTorch deep learning framework is

built on a hardware platform equipped with Intel 13th Core(TM)
A B

C

FIGURE 8

Several SPP modules. (A) SPPCSPC Module. (B) SPPF Module. (C) DSP-SPPF Module.
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i5-13600KF and NVIDIA GeForce RTX 3090 (with 24GB video

memory) and running on the Windows 10 operating system. The

target detection model for occluded cherry tomatoes was

implemented using related libraries such as CUDA 12.1 and

OpenCV, and the model was trained and tested.

2.4.2 Training strategy
In this study, the dataset is divided into training, validation, and

test set in an 8:1:1 ratio, and then the images are inputted into the

feature space with the size of 640×640. In this study, the pre-

training weights of YOLOv7 are used for training, and the training

data are saved in the model weights file; the first 50 iterations of the

model are frozen for training, the batch size is set to 8 in the freezing

phase, and the model is thawed for training for 250 times, the batch

size is set to 6, and the model is trained for a total of 300 times.

Perform a validation every 10 iterations and record the relevant

information. At the end of training, the weights file of the target

detection training model is saved, and the model’s performance is

evaluated on the test set. The label translation rate is 0.005, the

maximum learning rate of the model is 0.01, the minimum learning

rate is 0.0001, the gradient descent parameter is 0.937 using the

SGD optimizer, the weight decay rate is set to 0.0005, and the type

of learning rate decay is cosine decay. Figure 10A shows the average

accuracy curve during the training process of the primary model;

after 200 iterations, the average accuracy of DSP-YOLOv7-CA is

significantly higher than the other models, and it reaches the

maximum value in the 280th iteration, and Figure 10B shows the
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loss rate curve during the training process of the primary model, in

the first 10 Epochs, the model is converging rapidly, and in the past

210 Epochs, The loss function is stable. The difference between the

two accuracies is close to 0, indicating that the model has reached

the fitting state and achieved good training results.

2.4.3 Experimental evaluation indicators
In testing the effectiveness of the model, Precision, Recall, F1,

mAP, params, FLOPs, and FPS are used in this paper to evaluate the

recognition performance of occluded cherry tomatoes. Precision is

the probability of actual positive samples among the samples

predicted to be positive by all the predictions. Recall is the

probability of being heralded as a positive sample among the

actually positive pieces. Where TP refers to the number of positive

models correctly predicted, FP refers to the number of negative

samples incorrectly expected as positive samples. FN refers to the

number of positive samples that are expected as negative samples.

The formula for its calculation is:

P =
TP

TP + TP
(4)

R =
TP

TP + FN
(5)

The calculation of The F1 score is related to the values of

precision and recall, and the level of The F1 score represents the

stability of the model, which is calculated by the formula:
A

B

FIGURE 9

CANeck. (A) CA Module. (B) Enhanced Feature Fusion Network with Coordinate Attention Mechanism.
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F1 =
2PR
P + R

(6)

The mAP is the average of the mean accuracy and AP of each

category, which is calculated by the formula:

mAP =
1
m

Z 1

0
P(R)dR (7)

FPS refers to the number of frames transmitted per second, and

avg is the total inference time; the number of inferences in this study

is 100 and FPS is obtained by the reciprocal of avg, which is

calculated as follows:

FPS =
1

avɡ
(8)

Parameters are another critical measure of model complexity. A

higher number of parameters in a model means that the model requires

more computational resources and data for training and inference. For

example, more GPU memory is needed to train the model, and each

number corresponding to the weight matrix inside the convolution and

full join used in themodel is a component of the number of parameters.

C0 denotes the number of output channels,Ci denotes the number of

input channels, kw denotes the convolution kernel width, and kh denotes

the convolution kernel height, which is computed by the formula:

params = C0 � (kw � kh � Ci + 1) (9)

The number of floating-point operations (FLOPs) is the amount

of model computation, which refers to the number of floating-point

functions required to run a network model once. FLOPs are usually

used to measure a model’s computational efficiency and speed. For

example, when deploying a model on a tomato-picking robot, the

device’s limitations need to be considered. If the model’s computation

is too large, it will lead to a long inference time, which is unsuitable

for practical applications. W and H denote the length and width of

the feature map, respectively. Its calculation formula is:

FLOPs = ½(Ci � kw � kh) + (Ci � kw � kh − 1) + 1� � C0

�W � H (10)
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3 Results

To validate the effectiveness of the method designed in this

paper for the cherry tomato detection task, we compared the effects

on model performance before and after the imposition of different

improvement methods on the cherry tomato dataset (TOSL) in a

multi-group controlled experiment.
3.1 Comparative experiments with different
DSP networks

3.1.1 Comparison of results for different
backbone networks

In this section, comparison experiments of DSP-MultiBlock

modules at each position are conducted, as shown in Figure 7D,

where models with different Backbone and other conditions being

the same are designed, and the MultiBlock modules at two or two of

the two, three, four, and five positions in the original YOLOv7

backbone extraction network are replaced by DSP-MultiBlock

modules, respectively. The post-experiment results are shown in

Table 1 and Figure 11A. The highest mAP value of 95.69% is

obtained by the model when the DSP-MultiBlock module is located

in the four-five position, which improves 0.49 percentage points

compared to the original model, and the FPS improves by 1f/s.

Although the number of parameters has increased by 2.2M

compared to the original model, this substitution allows the

model to better deal with the balance of the detail information

and the semantic information balance, which improves the accuracy

on occluded small targets.
3.1.2 Comparison of results for different SPP
spatial pyramid networks

The previous section determined that the DSP-MultiBlock

module is more effective when it is located at four or five

positions. In this section, the comparison experiments of different

SPP spatial pyramid networks are conducted by designing
A B

FIGURE 10

Training process. (A) Precision curve. (B) Loss curve.
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Backbone and neck different models with the same conditions of

other conditions and replacing the SPPCSPC module of the original

YOLOv7 with the SPPF module and the DSP-SPPF module,

respectively. The post-experimental results are shown in Table 2

and Figure 11B. The SPPF module reduces the number of

parameters by 6M compared to the SPPCSPC and achieves an

FPS of 84.2119f/s, with a reduction of 5s/G for floating-point

computation. The detection speed is lower than that of the SPPF

module when using the DSP-SPPF module, but the mAP value

improves by 1.3 percentage points. The detection speed is lower
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than that of the SPPF module when using the DSP-SPPF module in

both the Backbone and spatial pyramid networks. At the same time,

the DSP structure improves the average accuracy of the model by

nearly one percentage point over the original network, and the FPS

improves by 3.3 f/s. In addition, the amount of parameters is

reduced by 4M, and the amount of floating-point computation is

reduced by 1.8s/G. In summary, the DSP structure formed by

adding a stack of pooling layers of depth-separable convolutions

and residuals can capture a more extensive range of contextual

information; due to the use of residual structure in the SPPF
TABLE 1 Comparison of detection capabilities of different backbone networks.

Backbone mAP_0.5(%) FPS(f/s) Parameter(M) FLOPs/G

Original MultiBlock 95.20 78.9234 37.620 106.472

24 instances of DSP-MultiBlock 95.34 79.5952 39.174 108.952

35 instances of DSP-MultiBlock 95.42 79.9456 39.456 108.564

23 instances of DSP-MultiBlock 94.78 79.8744 39.165 108.497

45 instances of DSP-MultiBlock 95.69 79.9361 39.207 109.011
f

The bold font highlights the advantages in 45 instances of DSP-MultiBlock mAP.
A B

D

E

C

FIGURE 11

Comparison of the performance of the best model in each method. (A) Comparison of different backbone networks. (B) Comparison of different
SPPs. (C) Comparison of applying CA attention mechanisms to different locations. (D) Comparison of applying different attention mechanisms to
location two. (E) Comparison of each best model.
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module, a large number of convolutional modules are reduced, the

model is more lightweight, and these improved methods achieve

significant improvements in terms of average accuracy, FPS,

number of parameters, and floating-point computation.
3.2 Comparative experiments with different
attentional mechanisms

3.2.1 Comparison of results for different positions
imposed by the coordinate attention mechanism

For the complexity of the cherry tomato growing environment

and the need to further improve the detection accuracy, this section

applies the coordinate attention mechanism CA to different

positions in the feature fusion network based on the original

YOLOv7, as shown in Figure 9. By comparing the effects of

applying the attention mechanism to varying situations on the

detection performance of the model, the results are shown in

Table 3 and Figure 11C. By using the attention mechanism at

position 2, 0.88 percentage points improve the average accuracy of

the model, and the FPS is not reduced but slightly improved.

Applying the attention mechanism at position 1 and position 3

improved the accuracy by 0.19 and 0.05 percentage points,

respectively. Since position 2 is at the intersection of different

scales of information in the enhanced feature extraction network,

richer feature information can be obtained compared to position 1

and position 3, thus improving the detection effect of the model.

3.2.2 Comparison of results for different
attentional mechanisms at position 2

To further validate the performance of different attention

mechanisms in position 2, this section conducts a comparison

experiment based on the original YOLOv7. The investigation

results are shown in Table 4 and Figure 11D, and it can be found

that the highest mAP value is achieved when using the CA attention
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mechanism module. The CA module introduced in this paper uses

two one-dimensional attention maps for feature encoding, and

embeds feature information at different scales. The model’s

sensitivity to dense targets can be effectively improved through

this approximation of coordinates, which in turn improves the

negative impact of various occlusion situations on detection

accuracy in the cherry tomato detection task.
3.3 Ablation experiment

This section conducts the comparison experiments of each

optimal method and the combination of each optimal strategy.

The DSP-YOLOv7-CA model is the optimal model obtained by

combining each optimal approach. The results of the experiments

are shown in Table 5; compared with the original YOLOv7 model,

the number of parameters of the DSP-YOLOv7-CA model is

reduced from 37.62MB to 33.711MB, and the running speed is

reduced from 106.472Gflops to 104.609Gflops, and FPS increased

from 78.9234 to 80.5433. As shown in Figure 11E, the DSP-

YOLOv7-CA is higher than the other best models’ average

accuracy, and the mAP value reaches 98.86%. Figure 12 depicts

the obtained performance graphs, including the accuracy P, the

recall R, the AP value, and F1 and mAP values. However, DSP-

YOLOv7-CA is not the best regarding FPS, Parameter, and FLOP,

and the DSP-SPPF model has a higher detection speed.
3.4 Comparison with other model results

To compare the performance between the models in this paper

and the latest detection models, we conducted comparison tests,

which include YOLOv3, YOLOv4, YOLOv5, YOLOX, YOLOv7-

tiny, YOLOv8, Faster R-CNN, and DSP-YOLOv7-CA. The results

are shown in Table 6, and the mAP value of the model in this paper
TABLE 3 Comparison of detection capabilities by applying attention mechanism to different positions.

Apply position mAP(%) FPS(f/s) Parameter(M) FLOPs/G

NO 95.20 78.9234 37.620 106.472

Location one 95.39 77.5485 37.821 106.496

Location two 96.08 78.9315 37.630 106.479

Location three 95.25 78.2112 37.652 106.477
f

The bold font denotes which model performs best on a particular metric.
TABLE 2 Comparison of detection capabilities of different SPP spatial pyramid networks.

Backbone Neck mAP_0.5(%) FPS(f/s) Parameter(M) FLOPs/G

Original MultiBlock SPPCSPC 95.20 78.9234 37.620 106.472

Original MultiBlock SPPF 94.34 84.2119 31.586 101.641

Original MultiBlock DSP-SPPF 95.42 79.9456 39.456 108.564

45 instances of DSP-MultiBlock DSP-SPPF 96.16 82.2568 33.701 104.602
The bold font denotes which model performs best on a particular metric.
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is 98.86%, which is improved by 3.66 percentage points relative to

YOLOv7 and 39.34 percentage points close to Faster R-CNN.

Compared with YOLOv3, YOLOv4, YOLOv5, YOLOX, YOLOv7-

tiny, and YOLOv8, the improvement is 41.48, 36.6, 8.18, 6.39, 14.97,

and 12.8 percentage points, respectively. The memory footprint of

the model in this paper is 33.711MB, which is 3.9M, 20.498M, and

13.346M less compared to YOLOv7, YOLOX, and YOLOv5,

respectively. Compared to YOLOv3 and YOLOv4, the memory

footprint is about half of them; compared to Faster R-CNN, it is

one-fourth of them; compared to YOLOv8 compared to YOLOv8

and YOLOv7-tiny, the memory usage is increased by a factor of 3;

compared to YOLOv7-tiny, the memory usage is increased by a

factor of 5. DSP-YOLOv7CA is not as fast as YOLOv8 and

YOLOv7-tiny, which are two lightweight models, but it still has a

significant advantage in detection speed compared to YOLOv7 and

other standard target detection models. In Figure 13, the red

rectangles show the performance of YOLOv3 and YOLOv4, and

the red circles and red triangles are the best performance points.

The older YOLO models perform poorly on occluded cherry

tomato detection, and DSP-YOLOv7-CA has the highest accuracy

among the nine detection models and is the best means of solving

the occluded cherry tomato detection problem.
3.5 Comparison of model detection effects

To test the actual detection effect of the model in this paper, we

look for cherry tomatoes in different occlusion situations in the

dataset (TSOL), as shown in Figure 14, in light occlusion (0-30%),

the six sets of maps tested include 15 ripe cherry tomato targets. The

number of false detections is 0, the number of missed detections is 0,

and the success rate is 100% for DSP-YOLOv7-CA. Due to the

retention of a large amount of complete cherry tomato feature

information, the detection effect is good.

As shown in Figure 15, in moderate occlusion (30-70%), the six

sets of images tested include 38 ripe cherry tomato targets; the
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number of false detections is 0, and the number of missed detections

is 1. The detection success rate of the DSP-YOLOv7-CA is 97.4%.

The missed cherry tomatoes are marked by yellow circles, obscured

by leaves, relatively far away, and have fewer surface features,

meeting the actual detection requirements.

This paper attempts to solve the problem of cherry tomato

detection under different occlusions, and the cherry tomato

detection under heavy occlusion (70-95%) better reflects the model’s

performance. Therefore, this section compares the detection effect of

DSP-YOLOv7-CA and the latest model YOLOv8, as shown in

Supplementary Figure 1; the six sets of images tested include 51 ripe

cherry tomato targets, and DSP-YOLOv7 -CA’s number of false

detections is 0, the number of missed detections is 4, and the

success rate is 92.2%, with a slight decrease in the success rate. The

cherry tomatoes in the yellow box are long-distance small targets,

which are not included in the test. It can be found that YOLOv8 has

more missed detections relative to the model in this paper, and the

missed targets are in a variety of occlusion situations. In contrast, at

the edge of the picture, the detection effect is average due to the

incompleteness of the cherry tomatoes.

As shown in Supplementary Figure 2, in severe occlusion (95-

100%), six sets of images, including 28 severely occluded targets and

33 targets with another degree of occlusion, are tested, the number of

false detections of DSP-YOLOv7-CA is 0, and the number of missed

detections of severely occluded targets is 15. The success rate is 46.4%,

which is a general effect of the detection, especially in the case of

composite occlusion. Still, the degree of occlusion greater than 95% of

the target is not considered as the detection category of this model.

To discuss the generalization ability of DSP-YOLOv7-CA to

different occlusion scenes or environments other than cherry

tomato, tests on other cherry tomato varieties, including ripe saint

tomato, jade tomato, beautiful orange honey fragrance, and gold

glittering tomato, were conducted in this section. The test results are

shown in Supplementary Figure 3, where the Jade tomato has the

highest confidence score due to the similarity in colour and shape

between the Jade tomato and the dataset (TOSL) in this paper. In
TABLE 5 Comparison of results of ablation experiments.

Optimal method mAP_0.5(%) FPS(f/s) Parameter(M) FLOPs/G

NO 95.20 78.9234 37.620 106.472

DSP-backbone 95.69 79.9361 39.207 109.011

DSP-SPPF 95.63 83.7978 32.115 102.064

CANet 96.08 78.9315 37.630 106.479

DSP-YOLOv7-CA 98.86 80.5433 33.711 104.609
f

The bold font denotes which model performs best on a particular metric.
TABLE 4 Comparison of detection capabilities with different attention mechanisms applied.

Attention mechanisms mAP_0.5(%) FPS(f/s) Parameter(M) FLOPs/G

SE 95.89 79.1223 37.628 106.476

CBAM 95.57 78.9286 37.631 106.484

CA 96.08 78.9315 37.630 106.479
The bold font denotes which model performs best on a particular metric.
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contrast, the Beautiful orange honey fragrance and Golden shiny

tomato have lower confidence scores, and the ripe Beautiful orange

honey fragrance and Golden shiny tomato showed a golden yellow

colour, which was somewhat different from the dataset of this paper

and appeared to be missed. Sage tomato presents a long strip shape,

and this paper’s dataset has some differences; the detection of the

location of the effect is general, this paper’s model has a certain degree

of stability, and the future can update the dataset to achieve a variety

of varieties of ripe small tomatoes recognition.

According to the positional relationship between cherry tomatoes

and branches and leaves in Figure 2, this section builds a detection
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platform for different occlusion situations indoors through plastic

models of cherry tomatoes and potted picking plants, with other

branches passing through the cherry tomato model to realize branch

occlusion, leaf occlusion through different sizes of leaf occlusion of

cherry tomato models, and fruit overlap through the stacking of two

cherry tomato models. The detection results are shown in

Supplementary Figure 4; DSP-YOLOv7-CA can not accurately

detect cherry tomatoes with 95-100% complex shading area, and in

the case of overlapping each other, there are many times of missed

detection, and the detection success rate of DSP-YOLOv7-CA for

cherry tomatoes with shading area less than 95% is 94.7%.
TABLE 6 Comparison of detection performance among different models.

Model Network structure P(%) R(f/s) F1 mAP _0.5(%) FPS(f/s) Parameter(M) FLOPs/G

YOLOv3 Darknet53 87.31 26.36 0.56 57.38 80.3854 61.949 66.171

YOLOv4 CSPDarknet53 and SPP 85.38 28.91 0.62 62.26 109.9375 64.363 60.527

YOLOv5 CSPDarknet53 and SPPB 93.09 79.55 0.81 90.68 89.4606 47.057 115.918

YOLOX Darknet53 and SPPB 89.85 80.45 0.85 92.47 39.6921 54.209 156.011

YOLOv7 MCB and SPPCSPC 95.63 80.92 0.88 95.20 78.9234 37.620 106.472

YOLOv7-tiny MCB and SPPCSPC 91.09 65.17 0.76 83.89 178.5684 6.227 13.860

YOLOv8 C2f and SPPF 90.20 73.92 0.81 86.06 167.3426 11.167 28.817

Faster R-CNN VGG16 82.45 38.12 0.56 59.52 22.6547 137.099 370.210

DSP-YOLOv7-CA DSP- MSB and DSP-SPPF 98.3 93.64 0.96 98.86 80.5433 33.711 104.609
f

The bold font denotes which model performs best on a particular metric.
A B
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FIGURE 12

Performance metrics of DSP-YOLOv7-CA. (A) mAP value. (B) precision rate. (C) recall rate. (D) F1 value.
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Therefore, synthesizing the above analysis results, it can be

concluded that the actual detection effect of DSP-YOLOv7-CA on

cherry tomatoes with less than 70% shading in the dataset (TSOL) is

better; there will be a leakage in the detection of cherry tomatoes
Frontiers in Plant Science 16
with 70-95% shading, and the effect is general in the detection of

cherry tomatoes with higher than 95%, and the different cherry

tomato varieties and cherry tomato models with the dataset differ

significantly, the model can not accurately recognize the feature
FIGURE 14

Detection of various light shade (0-30%).
FIGURE 13

Performance comparison chart between the latest detection models.
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information, and the detection effect is general. However, DSP-

YOLOv7-CA significantly outperforms the latest YOLOv8

detection model in terms of performance.DSP-YOLOv7-CA

balances detection speed and accuracy in shading cherry tomato

picking ensures a low false detection rate, improves detection speed

simultaneously, and is more suitable for cherry tomato picking.
4 Discussion

In this paper, the DSP-YOLOv7-CA model focuses more on the

feature information around the target and has good detection ability

in the face of occluded cherry tomatoes in the natural environment.

However, there are still potential drawbacks, such as the relatively

average detection effect in the case of severe occlusion, the average

detection effect in the face of different varieties of cherry tomatoes,

and the fact that it is limited to cherry tomatoes similar to the dataset

in shape and colour. In the future, different types of cherry tomatoes

can be added to enrich the dataset of cherry tomatoes. In this paper,

cherry tomatoes with masked area higher than 95% are not used as

the detection target; in the future, the model should deal with more

complex masking scenarios, such as cherry tomatoes with masked

area higher than 95%; this model can learn the detection method of

the significant model Segment anything, which is effectively queried

by various input hints, corresponding to fuzzy suggestions for
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multiple objects, and then outputs multiple effective masks and

associated confidence scores Kirillov et al. (2023). By designing

more advanced datasets and detection models, the detection of

various occluded targets in natural environments is realized.
5 Conclusion

The dense overlapping of cherry tomatoes and the occlusion

situation of leaves and branches are common phenomena in the

natural environment, and solving the complex problem of occluded

cherry tomato detection will improve the efficiency of cherry tomato

picking robots. This paper proposes an occluded cherry tomato

detection model DSP-YOLOv7-CA with good performance. First,

cherry tomato images with different degrees of occlusion are

collected, four occlusion areas and four occlusion methods are

defined, and a cherry tomato data set (TOSL) is constructed. Then,

the deep residual DSP-MultiBlock module with multiscale detection

was used in the backbone network, and the detection accuracy

reached 95.69%, which was improved by 0.49 percentage points

compared with the original model. Then, using both the deep

residual DSP-Multiblock module with multiscale detection and the

DSP-SPPF module, the average accuracy of DSP-YOLOv7 is

improved by almost one percentage point compared to the original

model, 3.3 f/s enhance the FPS, the amount of parameters is reduced
FIGURE 15

Detection of Various Moderate Occlusions (30-70%).
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by 4M, and the floating-point computation is reduced by 1.8s/G.

Introducing coordinates at critical locations in the enhanced feature

extraction network Attention Mechanism (CA) layer improves the

model’s accuracy by 0.88 percentage points. Then, the DSP-YOLOv7-

CAmodel is obtained by combining the individual best methods, and

the AP value of the model reaches 98.86%, which is improved by 3.66

percentage points concerning YOLOv7, 39.34 percentage points

concerning Faster R-CNN, and 12.8 percentage points concerning

the latest target detection model YOLOv8. In the actual detection,

DSP-YOLOv7-CA has a better detection effect on cherry tomatoes

with less than 70% occlusion, misses in the detection of cherry

tomatoes with 70-95% occlusion, and has an average impact on the

detection of cherry tomatoes with higher than 95% occlusion, which

is better than the latest target detection model YOLOv8. This model

can satisfy the picking while maintaining the detection accuracy.

Robot’s real-time needs while maintaining detection accuracy.
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