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In recent years, hydroponic greenhouse cultivation has gained increasing

popularity: the combination of hydroponics’ highly efficient use of resources

with a controlled environment and an extended growing season provided by

greenhouses allows for optimized, year-round plant growth. In this direction,

precise and effective irrigation management is critical for achieving optimal crop

yield while ensuring an economical use of water resources. This study explores

techniques for explaining and predicting daily water consumption by utilizing

only easily readily available meteorological data and the progressively growing

records of the water consumption dataset. In situations where the dataset is

limited in size, the conventional purely data-based approaches that rely on

statistically benchmarking time series models tend to be too uncertain.

Therefore, the objective of this study is to explore the potential contribution of

crop models’ main concepts in constructing more robust models, even when

plant measurements are not available. Two strategies were developed for this

purpose. The first strategy utilized the Greenlab model, employing reference

parameter values from previously published papers and re-estimating, for

identifiability reasons, only a limited number of parameters. The second

strategy adopted key principles from crop growth models to propose a novel

modeling approach, which involved deriving a Stochastic Segmentation of input

Energy (SSiE) potentially absorbed by the elementary photosynthetically active

parts of the plant. Several model versions were proposed and adjusted using the

maximum likelihood method. We present a proof-of-concept of our

methodology applied to the ekstasis Tomato, with one recorded time series of

daily water uptake. This method provides an estimate of the plant’s dynamic

pattern of light interception, which can then be applied for the prediction of

water consumption. The results indicate that the SSiE models could become

valuable tools for extracting crop information efficiently from routine

greenhouse measurements with further development and testing. This, in turn,

could aid in achieving more precise irrigation management.

KEYWORDS

GreenLab model, greenhouse, MLE, Stochastic Segmentation of input Energy, water
consumption, Beer-Lambert law, light interception
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1 Introduction

Recent years have witnessed considerable research interest in

the topic of water uptake by plants, particularly in the context of

hydroponic greenhouse cultivation. For tomato plants in particular,

numerous studies have stressed the importance of water uptake in

comparing different cultivation methodologies. For instance, Reina-

Sánchez et al. (2005) explored the effects of salinity concentration

on water uptake, and Biswas et al. (2016) evaluated the impact of

differing drip irrigation techniques. Moreover, investigations have

been carried out to assess the influence of nitrogen supply on

growth, yield, and Water Use Efficiency (WUE), incorporating

biomass measurements either in field conditions (Cheng et al.,

2021) or within a hydroponic greenhouse environment (Martıńez-

Ruiz et al., 2019). In Sigrimis et al. (2001), a distinct approach has

been proposed, which suggests a methodology predicated upon

measurements taken postirrigation, accompanied by online re-

estimation of the parameters of their model. While the study

reported a high degree of accuracy for the proposed methodology,

it is crucial to highlight its significant dependence on measurements

taken after each individual irrigation event, requiring sophisticated

instruments. This continuous monitoring may challenge the

average producer, who may lack access to such advanced tools.

Furthermore, the solution appears to be largely engineering-based,

neglecting the biological representation of the plant’s development.

Adhering to a common practice of daily measurements, the

challenge in our setting consists in making the best use of limited

information from data that concerns only water uptake and easily

accessible meteorological data/parameters. This framework

resembles the typical evaluation scheme that an average producer

might employ to assess the productivity of their cultivation (Resh,

2022). However, despite the potential benefits for average

producers, the proposed simplified experimental protocol may

face serious limitations if data are not sufficiently informative due

to measurement or even modeling errors caused by oversimplified

assumptions. These limitations will be further discussed in

the sequel.

Plant water uptake is directly related to many greenhouse

functions such as electric power usage (fertilizer mixer, climatic

regulating facilities, etc.), fertilizer consumption, and yield

production and quality (Resh, 2022). Predicting water

consumption in a given day could help the average producer

regulate these costs, prevent excess-deficit irrigation, and increase

production. Another aspect of the problem is water waste: In an

extensive study spanning 165 countries, the Food and Agriculture

Organization of the United Nations (FAO) estimated the total

requirements and measurements of total withdrawals per country,

thus documenting a 56% irrigation efficiency only (Food and

Agriculture Organization of the United Nations (FAO), 2012).

Water consumption prediction can primarily be accomplished

through two distinct methods. The first approach is purely

statistical, relying entirely on analyzing data series (Sigrimis et al.,

2001). The second approach employs process-based models or

Functional-Structural Plant Models (FSPMs) (Sievänen et al.,

2014), which, despite requiring detailed and potentially costly
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longitudinal plant measurements, are invaluable for their ability

to convey information about underlying physiological processes

and potential interactions. The GreenLab model (Yan et al., 2004)

is such an FSPM, combining both functional and structural

description of metabolic processes with phytomer-level structures

(De Reffye et al., 2021), and integrating the effects of water

dynamics on plant growth (Wang et al., 2012), thus allowing

optimization of water supply (Wu et al., 2005). However, in many

cases of professional practices where access to detailed plant

measurements is unavailable, neither of these approaches directly

applies. Our objective, therefore, is to find the appropriate level of

complexity for a model that remains as mechanistic as possible. The

necessity of maintaining a mechanistic orientation stems from a few

key reasons: the interpretability of certain parameters allows using a

priori biological knowledge and, crucially, our data’s limited and

uncertain nature. This uncertainty makes a purely statistical

approach infeasible, underscoring the need for a method that

captures the underlying physiological processes to a suitable

extent. To this end, we developed a new set of aggregated model

versions, which inherit from the GreenLab principles but differ in

the representation of the Light Interception Ratio (LIR) of the plant.

In GreenLab, as in most process-based models, light interception

is classically represented through the Beer–Lambert–Bouguer law,

hereafter named as Beer-Lambert (BL), assuming a simple

exponential relationship to describe light attenuation within a

homogeneous canopy [Monsi and Saeki 1953, cited in English

translation in Hirose (2005)]. It relies on a simple one-dimensional

turbid medium model, which raises several limitations regarding its

consistency with experimental data (Ponce de León and Bailey, 2019),

its stability in relation to other environmental variables (Valladares

et al., 2012), and the vertical variation of leaf photosynthetic

parameters in the canopy (Sarlikioti et al., 2011), as well as its

theoretical foundations (Kostinski, 2002). In particular, this

equation assumes that foliage is randomly dispersed, a hypothesis

that, depending on the species architecture, can lead to over-

estimation of light interception if the foliage is clumped or, on the

contrary, under-estimation if the plant plasticity allows optimizing

foliage distribution for an enhanced light interception [e.g., for beech

tree (Schröter et al., 2012)]. In order to overcome these problems,

other approaches have been proposed recently, notably that of

(Shabanov and Gastellu-Etchegorry, 2018) and Casasanta and

Garra (2018). In Shabanov and Gastellu-Etchegorry, 2018, the

authors derive a stochastic formulation of the BL law, which

accounts for heterogeneous canopies. Their virtual experiments

reveal that the traditional law is not universally applicable across

different canopy structures. In Casasanta and Garra (2018), the

authors introduce two stochastic approaches to the problem. The

first one is based on a fractional Poisson process, resulting in a

fractional BL law based on the Mittag-Leffler function, also discussed

later in the present study (see Eq. 16). The second is based on

weighted Poisson distributions, resulting in a Mittag-Leffler weighted

BL law. In line with their work, we also propose some possible

generalizations of the BL law. In particular, by modeling

appropriately the probability of the event of interception, we derive

a class of models for water consumption prediction.
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Therefore, the main objective of our study was to explore to

which extent some mechanistic principles borrowed from

physiologically based models could be incorporated into more

statistical approaches for predicting the water consumption of

plants. To this end, our approach was (i) to analyze the

identifiability of some compartmental simplifications of the

GreenLab model for tomato plants in the case where the data set

consists only of environmental variables, (ii) to derive from the

GreenLab principles a new family of models focusing on water

consumption as the main state variable and differing by their

assumptions regarding the dynamics of the LIR, and (iii) to

perform a very preliminary comparison of these models using an

experimental dataset of water consumption by tomato plants.

Although mostly theoretical at this stage, this work has some

conceptual interest in presenting an original stochastic approach

to derive a new class of simple models and providing a procedural

guideline to further confrontations to experimental results.
2 Materials and methods

2.1 Data collection

Between May 10 and July 2, 2021, an extensive study was

conducted in a hydroponic greenhouse near Therma village, within

the Nigrita-Serres region (40.91, 23.55), Greece, to examine the

tomato plant’s (cv. ecstasis) water consumption patterns. A drip

irrigation system was used to ensure precise irrigation for each

individual plant. Rockwool was used as a substrate growing

medium, a product of basalt mainly composed of Oxide of

Calcium (CaO) with small percentages of Iron (Fe) and

Aluminum (Al), in keeping with common practices in the region.

Plants’ density is reported as 5 stems per m2 (one stem per plant).

Indoor measurements were performed using an Efento Logger

(Efento, 2020). Additionally, meteorological data were collected

using a Davis Vantage Pro 2 (Plus) weather station close to the

greenhouse. A comprehensive overview of the measured quantities,
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including Solar Radiation, Temperature, Humidity, and Air

pressure, averaged on a daily level, is presented in Table 1.

Initially, the plants were grown in a location separate from the

greenhouse before being relocated to the designated study area. The

period spanning from seed planting to the onset of observations was

38 days. Upon arrival, the plants were observed to be in the initial

stage of their first inflorescence, i.e., for the majority of plants, the

first truss has just been formed. The measurements were thus

performed from day 39 to day 92 of the plant growth, from 10/5/

2021 to 2/7/2021, for a total of 54 days. Tomato plants are usually

grouped into stations, each combining a substrate (slab) with n

plants and a pot for water collection. The per average plant volume

of water consumed by a station is referred to asWater Consumption

(Wc), given by

Wc(t) =
VIrr(t) − Rof  f (t)

n
, (1)

where VIrr(t) is the volume (L) of applied water at time t, and

Rof f(t) the volume (L) of the corresponding collected excess water

which accumulates from the application time until the next

morning during 12 hours. In our study, n = 3, and the Water

Consumption (Wc) corresponds to the dependent variable we try to

estimate and predict.
2.2 Brief presentation of the GreenLab
model for tomato

The GreenLab model has been extensively explored in the

literature, see, e.g., Dong et al. (2008) and Zhang et al. (2009) for

its application on tomato. Hereafter, we briefly recall its main

principles, and the interested reader is referred to Appendix 1.1

for a more comprehensive description of the model and to Table 2

for the specific parameter values that we used in this work.

Plant development is assumed to be deterministically driven by

the rules of a parameterized automaton which determines the

sequential appearance of phytomers (plant species-specific
TABLE 1 Summary of all measured variables (units in parenthesis) in column 1.

Variables Mean St. Dev. Min Max

Avg Solar Radiation (W/m2) 286.944 45.844 114.590 340.310

Max Solar Radiation (W/m2) 1,021.830 131.702 571 1,329

Avg Air pressure (hPa) 1,014.045 3.601 1,007.120 1,022.720

Avg Temperature (°C) 22.043 2.642 17.060 28.630

Max Temperature (°C) 29.306 3.086 23.100 37.800

Min Temperature (°C) 15.707 3.403 9.100 22.000

Avg Humidity (%) 0.837 0.109 0.618 0.976

Max Humidity (%) 0.984 0.031 0.840 1.000

Min Humidity (%) 0.591 0.161 0.230 0.860

Water Consumption (L) 1.102 0.519 0.090 2.250
The most basic descriptive statistics (mean, sd, min, max) from a sample of N = 54 measurements are given in columns 2-5.
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combinations of organs) and their respective positions. The thermal

time elapsing between the appearance of two successive phytomers,

assumed to be constant, serves as the discrete (simulation) time step

and is referred to as a Cycle of Development (CD). The

organogenesis depends solely on thermal time, triggered above a

base temperature of 12°C (Shamshiri et al., 2018).

The structure of a tomato plant can be delineated by four types

of primary organs (excluding roots): blade (b), petiole (p), internode

(e), and fruit (f). Following the simplifications proposed by Dong

et al., (2008) and Zhang et al., (2009), we considered flowers and

fruits as the same organ (i.e. the dynamics of biomass allocation do

not distinguish the transition from flower to fruit). Typically, in the

cultivation of single-stem, pruned, tomato varieties within

greenhouses, seven to eleven phytomers devoid of flowers develop

prior to the emergence of the first inflorescence. In the present

study, it is assumed that, following the first eight phytomers without

flowers, a truss appears at every third phytomer, producing three

flowers that bud. This specific assumption is consistent with

empirical evidence from the present study and translates to an

average of three fruits per truss.

The integration of photosynthetic production is calculated

using the Beer-Lambert (BL) law (Monteith, 1977; Hirose, 2005),

which is analogous to the approach employed in most process-

based models:

Q(t) = E(t) · RUE · Sp · (1 − exp  −k SL(t)=Sp
� �

), (2)

where during CD(t), Q(t) corresponds to the newly synthesized

(dried) biomass, E(t) to the Solar Radiation, and RUE is the
Frontiers in Plant Science 04
Radiation Use Efficiency (the vegetation efficiency of converting

radiative energy into biochemical energy through photosynthesis).

Moreover, Sp represents the projected surface potentially occupied

by a single plant , while SL( t) stands for the plant ’s

photosynthetically active leaf area, calculated as the sum of the

total photosynthetically active biomass of the blades multiplied by

the specific leaf area (SLA: coefficient converting a unit of produced

biomass to leaf surface). The variable k corresponds to the

extinction coefficient in the Beer-Lambert law, and it is set to 0.8

for the tomato crop, as in Zhang et al. (2009). For t = 0, the initial

biomass of the seed is denoted by Q0.

At each CD, the available biomass is shared between all growing

organs of the plants, regardless of their spatial position and

proportionally to their current sink strength, according to the so-

called common pool assumption that was investigated for tomato

by Heuvelink, 1995. The growth Dqo(u, t) of an organ of type o and

chronological age u (days or CDs), while the plant is in cycle t ≥ u,

can then be expressed as:

Dqo(u, t) = po · fo
u
To

� �
·
Q(t − 1)
D(t)

, (3)

where po is the relative sink strength of the organ of type o, fo (·)

its sink variation function related to the organ’s biomass demand

profile during its expansion and D(t) the total demand in cycle t

(see Eq. 23). As in Yan et al., 2004, fo (·) corresponds to a discretized

beta law function with shape parameters ao and bo (see Eq. 26).

For identifiability reasons, discussed in Dong et al., 2008, the

constraint ao + bo = 5 is imposed for tomato plants.
2.3 Link with water consumption

Howell and Musick (1985) demonstrated that transpiration and

biomass production are proportional in their set of environmental

conditions that encompasses our experimental conditions (Table 1)

(Howell et al., 1984). In our greenhouse setting, evaporation is

assumed to be negligible, so transpiration could, in turn, be

considered proportional to water consumption (Food and

Agriculture Organization of the United Nations, 1998), thus

rendering the latter linearly related to dry matter production.

Disregarding evaporation is not a particularly far-fetched premise

within the framework of hydroponic greenhouses. These

greenhouses are designed to reduce evaporation to a minimum,

utilizing substrates wrapped in white sacks that offer a minimal

surface area for water to evaporate from (Resh, 2022).

Adding normally distributed homoskedastic errors, we obtain

the following initial model:

Wc(t) = m0 · Q(t) + et , where et ∼ N(0,s 2), (4)

where µ0 is a positive proportionality constant and s2 is a

variance parameter representing the experimental variability of the

measurement process.

As Wc measurements were conducted daily, but the GreenLab

model runs on Cycles of development (CD), we need to map CDs

on days. Elapsed days between two successive leaf developments
TABLE 2 Parameters of the GreenLab model for tomato and their values
in our study.

Parameter Comments value

pb Blade relative sink strength 1

pp Petiole relative sink strength 1.09

pe Internode relative sink strength 0.93

pf Individual fruit relative sink strength 61.3

Bb Blade sink variation parameter 0.43

Bp Petiole sink variation parameter 0.45

Be Internode sink variation parameter 0.38

Bf Fruit sink variation parameter 0.36

Sp Projection surface (cm2) 5047

k Beer Lambert coefficient 0.8

RUE Radiation Use Efficiency 0.05

Tb maximum expansion time of blade (CDs) 10

Te maximum expansion time of internode (CDs) 8

Tp maximum expansion time of petiole (CDs) 10

Tf maximum expansion time of fruit (CDs) 15

phyllocron elapsed time between two leaves emergences
(days)

2
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(phyllochron) can vary from 1.5 (summer) to 3 (autumn) days

according to the genotype, and the climatic conditions (Pivetta et al.

(2007); Schmidt et al. (2017)). We assume that the phyllochron is

stable and equal to 2 days, as we measured a mean value of 10°Cd

with a base temperature of 12°C. To aggregate the two separate

measurements into one CD, a weighted average is utilized with a

weight proportional to the fraction of the Solar Radiation of

each day.
2.4 Identifiability issues and compartmental
simplification of the GreenLab model

In our realistic setting, where no plant data are available, estimating

the parameters of the complete Greenlab model is unfeasible since

identifiability problems typically arise: it means that different sets of

parameter values generate the same simulated dynamics, for a specified

set of output variables. Thus, in our case, plants with different

characteristics could have the same dynamics of water consumption.

Adopting a general dimensionality reduction strategy for non-

identifiability issues—outlined in Hastie et al. (2009)—we analyzed

a simplified version of the model. We trade precision in

representing the biological model for enhanced identifiability

within the parameter space. In this version, we combined all the

biomass of petioles (p), internodes (e), and fruits (f) into a single

representative referred to as body.

Parameters requiring estimation thus comprise:

q = (ab,  bb,  pbody ,  abody ,  bbody ,  Sp,  RUE,  SLA,  m0,  s ,  Q0) (5)

We will refer to this specific parametrization as comp1.

To explore the identifiability of parameters we performed

simulation experiments under realistic scenarios. It consists of

generating virtual observations from a realistic set of parameter

values and investigating which parameters can be accurately

estimated: non-identifiability is revealed when the estimated

values are significantly different from the ones used for simulating

the observations. In that case, the corresponding parameters should

be set as a constant and removed from the list of parameters to

estimate, in order to reduce the dimension of the parameter vector

until reaching an identifiable subset.

For the sake of simplicity, we present in Section 3.1 the results

from two characteristic cases only, which correspond to the comp1

model. In the first one, we fix SLA, the specific leaf area, and Q0, the

initial biomass of the seed, quantities that can typically be measured.

Parameters Sp and RUE are also fixed, since we incorporated the µ0
parameter in the model 4, a simplification justified by the

compensation effect between those parameters. In the second

case, additionally to the previously mentioned parameters, we fix

Pbody, the sink strength of the “body” compartment. By initializing

5000 randomly selected starting points, we recorded the solutions

that maximize the likelihood function of the model, with a tolerance

of < 10−3 to account for numerical approximations. The

maximization of the function was performed via a BFGS

(Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm

for Bound Constrained Optimization (Byrd et al., 1995).
Frontiers in Plant Science 05
2.5 Two model versions for water
consumption time series based on the
recurrence equation of GreenLab

As shown in Letort et al. (2009), the GreenLab model can be

synthesized into a single recurrence equation that, for the sake of

simplicity, we chose here to formulate as:

Q(t) = E(t) · RUE · Sp 1 − exp  −
k · SLA
Sp

  o
t−1

n=0
r(n)Q(n)

( ) !
,

where r(n) represents the proportion of green to the totally

produced biomass Q(n), a quantity that can be calculated as a

function of the model parameters. Assuming proportionality (with

constant µ0) between biomass production and water consumption

and no leaf senescence, we obtain a general model form for water

consumption:

Wc(t) = q1 · E(t) · 1 − exp  −q2 o
t−1

n=0
r(n)Wc(n)

� �� �
, (6)

where q1 = RUE·Sp ·µ0 and q2 = k·SLA
Sp·m0

are estimated, while the

other parameters which appear implicitly in the coefficients r(n) are

fixed at the values found in Dong et al. (2008) (see Table 2). This

model will be referred to as GreenLab exp.

To account for the obviously existing differences between the

tomato plants in Dong et al. (2008) and those available in this study,

we propose a modified parametric version of the coefficients as

follows:

r(t) =
ta

I(a)
, where  I(a) =

Z tmax

0
ta dt =

ta+1max

a + 1

corresponds to a normalization constant with respect to a, a

parameter to estimate, and to the maximum time of observation

tmax. This model will be referred to as exp + rate.
2.6 Stochastic models of light interception
to predict water consumption

Building upon the prior discussion, we now focus on a novel

aspect that broadens the model formulation. Here, we aim to

represent biomass production at time t, as the cumulative

byproduct of a composite stochastic experiment, which consists of

many independent individual experiments, each one deciding

whether elementary radiative inputs will be absorbed by the

plant or not. We thus derive a family of models, which will be

referred to as “Stochastic Segmentation of input Energy”

models (SSiE).

2.6.1 Formulation of the water
consumption series from a stochastic
model of light interception

In this section, we discuss the intuition behind a probabilistic

interpretation of biomass production, and we formalize this

intuition with tools from theoretical probability. At each time t, a
frontiersin.org
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total radiative input E(t) is channeled into the system per m2. We

assume that this input is equally quantized into very small

elementary quantities fEi(t)gni=1 in such a way that either they are

completely absorbed by the plant and converted into biomass by the

enlightened parts of the plant or they exit the system without

affecting it. In this case, Ei(t) = E(t)/n where n represents the

number of “elementary” units. If no other specific details are

known, one could assume that the individual events of

absorption, say Ai(t), are independent with identical probability of

occurrence p(t). With this interpretation and if 1Ai(t) stands for the

indicator function of the corresponding event, each elementary

radiative input Ei(t) is associated with a random variable

Qi(t) = RUE · Sp · Ei(t) · 1Ai(t), (7)

which records its produced biomass, either 0 if the event Ai(t) is

not realized or RUE · Sp · Ei(t) if the event is realized, and thus it is

totally transformed. The total biomass produced by the plant at

time t can thus be expressed as follows:

Q(n)(t) =o
n

i=1
Qi(t) = RUE · Sp · E(t) ·

on
i=11Ai(t)

n
: (8)

Clearly, the last factor of the above expression corresponds to

the sample mean of independent and identically distributed random

variables and in particular Bernoulli random variables with

common probability p(t). Intuitively, one should expect by the

strong law of large numbers that the sample mean value should be

very near to their common probability of absorption, that is, p(t).

These arguments give an intuitive interpretation of the fact that the

following approximations should be plausible:

Q(t) ≈ Q(n)(t) ≈ RUE · Sp · E(t) · p(t): (9)

However, despite the seemingly sound arguments underlying

these approximations, a theoretical justification of their validity is

more complex. An obvious theoretical caveat regarding the validity

of these approximations is that we cannot conceptualize a countably

infinite sequence of events of common probability that play the role

of the elementary events of biomass absorption, or equivalently the

total radiative input cannot be partitioned into a countably infinite

number of positive parts potentially transformed into biomass. One

possibility for justifying the above approximations would be to

resort to an uncountable number of stochastic experiments. This

approach involves more mathematical intricacies. For this reason,

and since a rigorous justification of this part is not necessary for the

rest of the paper, the interested reader is referred to Appendix 1.2

for more details.

The next step is to appropriately model the probability of

absorption p(t), which can classically be done through a

parametric family of continuous distribution functions. For each

time t,  letfZu(t)gE(t)u=0 represent the Bernoulli experiments of

absorption of the radiative input for all possible u ranging from 0

to E(t). If we denote by LIS(t) the Light Interception Surface at time

t, then, assuming that the maximum available soil surface is Sp, one

could construct a new family of random variables fUu(t)gE(t)u=0
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uniformly distributed on [0,Sp] which concretize the above

experiments. In particular, the interval [0,Sp] is partitioned into

two subintervals [0,LIS(t)] and (LIS(t),Sp]. Then, the absorption

events can be written as

Au(t) : = Zu(t) = 1f g = Uu(t) ≤ LIS(t)f g ;   0 ≤ u ≤ E(t): (10)

In probability theory, such a family exists; loosely speaking, this

reinterpretation of the absorption events corresponds to a collection

of idealized experiments where an elementary radiative input enters

into the system if it intersects with the green part of the plant. Now,

notice that p(t) corresponds exactly to the probability of the event

given by (10), which is related to the Light Interception Surface LIS

(t) at time t. However, LIS(t) is not directly observable, but only

indirectly via the cumulated water consumption prior to time t,

denoted by SWc(t
−) (itself proportional to the cumulated produced

biomass). A novelty of this study consists in making a link between

LIS(t) and SWc(t
−) through an increasing (non-decreasing) function

g: R+ →R+, that is, LIS(t) = g(SWc(t
−)). By the above argument, Eq.

(10) and the fact that Uu(t) ∼Unif(0,Sp) we get that all the following

equalities hold:

p(t) = P(Uu(t) ≤ LIS(t)) = P(Uu(t) ≤ g(SWc(t
−)))

=
g(SWc(t

−))
Sp

=
LIS(t)
Sp

≕  LIR(t),

where the last term stands for the Light Interception Ratio. Now,

also notice that if U ∼ Unif(0,Sp) is a copy from the family fUu(t)gE(t)u=0

and g is invertible, then the third term above can be rewritten as

LIR(t) = P(g−1(U) ≤ SWc(t
−)) = P(X ≤ SWc(t

−))

= FX(SWc(t
−)), (11)

where we set X = g−1(U). In fact, since g is assumed to be an

increasing function, its inverse exists at least in a generalized

form (generalized inverse) and the above equations still hold. The

problem is then to define the relationship between LIR(t) (or LIS(t))

and SWc(t
−) without having any information on the plant itself and in

the next section we discuss several such possibilities.
2.6.2 Different options for the distribution of X
The determination of a mechanistic functional relationship

between LIR(t) and SWc(t
−) is unrealistic. Biologically speaking,

the underlying processes are complex and involve, among others,

the patterns of biomass allocation to blades and their arrangement

in space. An approach to this objective is, however, feasible and a

selected number of possible distribution families could be used to

compete for their fitting quality and their predictive ability. By

introducing additive errors as in Section 2.3, we can derive a model

directly applicable to the Water Consumption variable

Wc(t) ∼ N  q1 · E(t) · FX(SWc(t
−)),  s2 

� 	
, (12)

thereby eliminating the requirement for biomass as

intermediary variable. Each model is determined by specifying FX
in one of the following parametric family of distributions.
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Exponential distribution

The exponential distribution is one of the most fundamental

suppositions that one can make when faced with an undetermined

distribution, since it corresponds to the maximum entropy solution

for a given expected value on the positive line (Jaynes, 1957).

Besides, in our setting, it leads to a Beer-Lambert-like model. By

(11) and the assumption of an exponential model, we get:

LIR(t; k) = 1 − exp  −k · SWc(t
−)ð Þ ;   t ≥ 0: (13)

Gamma distribution

The gamma distribution is a generalization of the exponential

distribution. This provides a logical progression from our initial

assumption of an exponential distribution. By (11) and the

assumption of a gamma model, we get:

LIR(t; k, ag ) =
Z SWc(t

−)

0

kag

G(ag )
  sag −1 e−k·s ds, t ≥ 0: (14)

Mittag-Leffler distribution

Mittag-Leffler introduced the function bearing his name in 1903

(Bateman, 1953). Different properties of the distribution generated

by the Mittag-Leffler function were explored in Pillai (1990). The

concept of generalizing the Beer-Lambert law with the use of the

Mittag-Leffler function was proposed by Casasanta and Garra

(2018). Following their work, we incorporate this generalization

into our analysis, leading to the following LIR term:

LIR ðt; k, aML Þ = 1 − EaML
ð − (k · SWc(t

−))aML Þ, t ≥ 0, (15)

where EaML is the Mittag-Leffler function:

EaML
(x) =o

∞

j=0

xj

G(j · aML + 1)
, x ∈ R, (16)

with aML∈ (0,1] the tail parameter and k > 0 the rate parameter.

For aML = 1 the above formulation reduces to the exponential

distribution with rate parameter k.

Log-normal distribution

The log-normal distribution is commonly employed to model

growth rates. Our reasoning for incorporating this distribution in

our analysis stems from the presumption that the elementary events

(Ai)
n
i=1 are influenced by the incremental growth of smaller plant

elements. This growth is contingent on their size. For the density

function, we proceed by adopting the ensuing parametrization:

LIR(t;mlog,slog) =
Z SWc(t

−)

0

1

s · slog ·
ffiffiffiffiffiffi
2p

p exp −
( log (s) − mlog)

2

2s 2
log

 !
  ds,        

t > 0:

(17)

Pareto distribution

The last distribution we explore is Pareto. Following Van der

Zande et al., 2010 (mainly the results depicted in Figures 2, 3), we

observe that the percentage of the biomass responsible for most of

the energy interception follows a similar law to the Pareto 80/20 rule

(Juran and De Feo, 2010). The formulation of the distribution

function that we adopt is as follows:

LIR(t; q ,h) = 1 −
h

SWc(t−)

� �q
, SWc(t

−) > h : (18)
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2.7 Model comparison and prediction
performance criteria

To have a challenging baseline model to compete with, we first

estimated a linear first-order autoregressive model with one exogenous

variable, namely the average solar radiation received at day t, E(t):

Wc(t) = b0 + b1Wc(t − 1) + b2E(t) + et , (19)

where the bi coefficients are estimated via the ordinary least

squares method.

In terms of forecasting, a sequential methodology is employed.

From the original dataset, we initially extract the first 55% days (days

39 to 68) for training and predict the next day’s water consumption

(day 69). Subsequently, we increase the size of the training set by one

additional day at each step, continuing to predict the following day

until we reach the end of the time series. The parameters are re-

estimated at each step of the procedure, using a total of 1000 distinct

starting points in our calculations, subsequently selecting the point

with the highest likelihood value as the model’s parameter for

prediction. However, in the case of the ml f model, the number of

initial points was reduced to 20, to reduce the computational burden.

After the parameter estimation process, a model selection procedure

was performed with the two most classical model selection criteria,

namely the corrected Akaike Information Criterion (AICc) (Hurvich

and Tsai, 1989) and the Bayesian Information Criterion (BIC).

The setting described above reflects real-world conditions as it

emulates the practical scenario where we have a bunch of

observations, and our objective is to forecast Water Consumption

for the upcoming day. Two different settings were considered for the

inputted Solar Radiation (E): (i) assumed to be perfectly known (fixed

covariate setting), or (ii) with an additive white noise factor associated

with predicting solar radiation, where the standard deviation was set

empirically at 20, a value that corresponds to a bound on values

typically obtained with current prediction models (Tao et al., 2019).

The predictive performance of the models was compared with

the Root Mean Square Prediction Error (RMSPE):

RMSPE(ŷ ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
(yi − byi)2

s
, (20)

where y = (yi) is the vector of observed values and y ̂ = (yî) the

predicted ones. For the testing set, according to the previously

described protocol we used m = 24 observations. The computer

programs were developed in R (version 4.3.1.) and the packages

MittagLeffleR (Gill and Straka, 2018) and tidyverse (Wickham et al.,

2019) were used for computations with the Mittag-Leffler distribution

and other data manipulations and visualization respectively.
3 Results

3.1 Identifiability analysis of the GreenLab
model with compartmental simplification

When considering only water consumption data, a certain

number of the GreenLab parameters are not identifiable. This is
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true even when the simplified and parsimonious comp1 model is

used which has fewer parameters than the complete one (Section

2.4). The boxplots in Figure 1 allow comparing the case where Pbody
is estimated (in addition to Bb, Bbody, µ0, and s) with the case where

it is set at its reference value. Each point represents an estimated

parameter value, and specific combinations of these points

correspond to the estimated solutions of the maximization

problem. Note that, for scaling purposes, Pbody has been

normalized by its maximum value. The plots reveal that many

distinct solutions yield similar likelihood values. As can be seen by

comparing the ranges of the estimated parameters (see Figure 1, left

and right), this identifiability issue diminishes as we set more

parameters, but never disappear. Even with only four estimated

parameters, we remark compensation effects between Bb and Bbody,

since the resulting estimates still vary significantly. However, the

parameters µ0 and s are identifiable, at least locally, around the

chosen reference values, a noteworthy result which enables

the elaboration of the stochastic framework discussed in Section 2.6.
3.2 Estimation of the linear and SSiE
models’ parameters

The regression results for the linear autoregressive model 19

with Average Solar Radiation as an exogenous variable show that all

parameters appear to be statistically significant at a 0.01 significance

level (Table 3). The coefficient of determination R2 and the adjusted

one have similar values, of approximately 0.88.

The estimated parameter values of each SSiE model (Table 4)

and their relative performances (Table 5) according to the

comparison criteria defined in 2.7 highlight a slight superiority

of the lognormal and pareto models in terms of both the Bayesian

Information Criterion (BIC) and the corrected Akaike

Information Criterion (AICc). A straightforward application of

Eq. 6 by estimating the green biomass by an already fitted

model (Dong et al., 2008) does not appear to be highly

promising, as it still results in higher values in these criteria.
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Similar behavior is present in the Beer-Lambert-like approach of

the exponential distribution.

A notable result is the estimation of aML ≃ 0.5 (see Table 4). For

aML = 0.5 the Mittag-Leffler function (16) reduces to (Haubold et al.,

2011):

E1=2(x) = ex
2

  1 −
2ffiffiffiffi
p

p
Z x

0
e−s

2

 ds

� �
,

where 2ffiffiffi
p

p
Z x

0
e−s

2

 ds, also known as the Gauss error function, is

a quantity which expresses the probability of a typical Gaussian

distribution to be found in the interval [−x,x] for x ≥ 0. In our case

this translates to:

LIR(t) ≃ 1 − exp ( − k · SWc(t
−)) · P Zj j >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k · SWc(t−)

p� �
, t ≥ 0,

where Z ∼ N(0,1). Another noteworthy finding is related to the

pareto model and specifically the parameter h which corresponds to

the initial cumulative water consumption SWc(t) up to the first

observation time. This parameter was estimated at 0.403 (see

Table 4) and corresponds approximately to 400ml over a span of

38 days.

Observing the temporal change of the estimated LIR with the

different methods described in Section 2.6.2 reveals that the pairs

(lognormal, GreenLab-exp), and (gamma, lognormal + rate)

exhibit similar trends (Figure 2). This similarity is even more

visible when the LIR is normalized by its maximal value and

displayed with respect to SWc, as shown in the Supplementary

Material (Appendix 4). As the optimization procedure revealed,

there is a compensation effect between q1 and the LIR scaling, thus

justifying the normalized representation in Appendix 1.3.

However, the pareto and mlf methodologies demonstrate

distinct trends that can be clearly differentiated from the others.

The unique trend of the pareto methodology is also evident in

Figure 3, where it manages to track the initial and final trends

concurrently during the observation period, as opposed to the

other methods, which are only capable of capturing either the

beginning or the end trend, but not both simultaneously. Another
FIGURE 1

Boxplots of estimated values with similar likelihood for the two cases presented in Section 3.1. Each dot represents an estimated value. The sink
strength of the body compartment (Pbody) is normalized by its maximum for scaling reasons. (Left) Fixed parameters: SLA, Sp, RUE, Q0. (Right) Fixed
parameters: SLA, Sp, RUE, Q0, Pbody.
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notable result concerns the grouping of the best-performing

models according to the BIC criterion (Table 5). The estimated

LIR resulting from the best representative of these models is also

shown in Figure 2.
3.3 Prediction results

The results of the predictive analysis revealed that the pareto and

the LR models exhibited the best predictive performance both under

known and unknown but predicted Solar Radiation, indicating their

relative superiority within the context of our investigation (Table 6).

However, the lognormal and themlfmodels were slightly inferior and

almost equivalent between them in both settings of Solar Radiation,

followed by the gamma model. Surprisingly, it is crucial to

acknowledge the underperformance of the lognormal, GreenLab

exp and lognormal + rate models, which implement a methodology

similar to the Beer-Lambert law. Compared to other models, these

models’ inferior performance underlines the importance of

generalizing the BL-law for optimizing performance.
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4 Discussion

4.1 Different possible uses of crop models
for predicting water consumption without
plant information

Our primary objective was to investigate methodologies for

modeling and predicting Water Consumption in tomato plants by

utilising concepts derived from the crop models but without any

information on the crop. While ambitious, this objective is

grounded in uncovering hidden patterns within the crop’s

behavior through the model’s learning process, particularly

patterns of light interception. This approach is inherently

interdisciplinary, combining methodologies from data science,

statistics, and biology to address a complex biological problem.

Initially, we focused on the well-researched GreenLab model

[Yan et al. (2004); De Reffye et al. (2021)], but the methodology

could be considered generic and applied to other FSPMs (Sievänen

et al., 2014) or crop models of tomato [e.g. Marcelis et al. (2008)].

Various strategies for using a mechanistic model in such a setting

can be considered, each with a unique potential role. The first

strategy revolved around employing GreenLab as a completely pre-

fitted model, as done in Chew et al. (2014) for the case of

Arabidopsis. However, the issues here concerned uncertainties

and discrepancies among various genotypes. The second strategy

would be to estimate all the parameters of GreenLab, but due to the

incomplete dataset and the current experimental protocol, this

strategy proved infeasible as the model exhibited identifiability

problems, similar to the ones reported in Letort et al. (2012) for

Coffea trees when only compartment data are available. Such an

estimation procedure would necessitate destructive plant data, at

different growth stages, for estimating the sink strengths and their

variations Guo et al. (2006). The third strategy involved using

GreenLab as a partially pre-fitted model, estimating only a fraction

of its parameters. This was done for the GreenLab expmodel, where

only two parameters of the production equation were estimated.

This strategy also encompassed the use of GreenLab as a submodel,

assuming a similar pattern for the globally allocated biomass

fraction to the leaves, as done for the GreenLab rate, or by

combining some of its basic principles in the proposed SSiE
TABLE 3 Summary of the base linear regression model of Water
Consumption vs the predictors given in the first column (units in
parenthesis).

Dependent variable:

Wc(t) (L)

Avg Solar Radiation (W/m2) 0.002 (0.001) ∗∗∗

Wc(t − 1) (L) 0.893 (0.051) ∗∗∗

Constant −0.480 (0.156) ∗∗∗

Observations 53

R2 0.884

Adjusted R2 0.879

Residual Std. Error 0.178 (df = 50)

F Statistic 189.652*** (df = 2; 50)

Note: *p<0.1; **p<0.05; ***p<0.01
The estimated coefficients (sd in parenthesis) are given in the second column. Asterisks
denote the statistical significance according to Student’s t-test.
TABLE 4 Estimated parameters for the models described in (6) and (12) (see Section 2.6.2).

Version q1 s k or q2 a mlog slog q h

lognorm 0.011 0.165 – – 3.958 9.273 – –

pareto 370.112 0.165 – – – – 3.02·10-6 0.403

mlf 0.01 0.166 0.017 0.501 – – – –

gamma 0.007 0.169 0.01 0.386 – – – –

exp +rate 0.007 0.172 2.037 -0.834 – – – –

GreenLab exp 0.005 0.208 0.559 – – – – –

exp 0.005 0.211 0.133 – – – – –
frontier
The pair (k, q2) is aligned in the same column.
"-" denotes that the parameter of the model represented by the row does not include the parameter, represented by the column. In short the model does not use this parameter.
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models (e.g. proportionality between biomass production and water

consumption is retained as an underlying hypothesis).
4.2 Summary of our main findings

The proposed models, employing pareto, LR, mlf or Lognorm,

yielded comparable predictive outcomes

(RMSPE 0.2-0.23). In the context of our problem formulation,

which involves one measurement of Water Consumption per day

and relies solely on climatic data, this RMSPE translates to an error

of approximately 215ml per day. This level of accuracy can

contribute to the sustainability of agricultural practices by

optimizing water usage. Importantly, the pareto and mlf models

are feasible for application in a scheme of one measurement per day.

However, both of them have disadvantages. The pareto model

presents some identifiability issues among the µ0 and q
parameters, which warrants further investigation. On the other
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hand, the mlf is computationally heavy, a disadvantage that can be

minimal in a scenario with only one measurement and only one day

to predict. Despite these challenges, the models remain viable

choices for real-world applications. Even though lognormal + rate

and gamma models do not present equivalent results as the

aforementioned, the LIR estimated by these methods,

approximately 80%, are similar to the results reported in Wilson

et al. (1992) and Ohashi et al. (2022). Measurements at 7 farms

showed that in the summer season, the light interception was on

average 90%, with values varying between 86% and 96%” in

Heuvelink et al. (2004), with reported densities of 2.3 and 3.4

stems perm2, in contrast to our case, where the reported density is 5

stems per m2.

This work can be considered as a methodological proposition

for determining the LIR profile with only a subset of the variables

routinely measured by professional growers in a hydroponic setting,

i.e., Water deficit volume, Solar Radiation. Interestingly, the profiles

of LIR that we obtain in Figure 2 are consistent with those reported
TABLE 5 Comparison of different distribution choices regarding the formulations in (6) and in (12).

Version log lik val RMSE # param BIC AICc

1 lognorm 20.45 0.16 4 -25.02 -31.62

2 pareto 20.39 0.16 4 -24.9 -31.5

3 mlf 19.85 0.17 4 -23.82 -30.42

4 gamma 19.12 0.17 4 -22.36 -28.96

5 exp + rate 18.15 0.17 4 -20.42 -27.02

6 LR 17.7 0.17 3 -19.51 -26.57

7 GreenLab exp 8.14 0.21 3 -4.37 -9.45

8 exp 7.25 0.21 3 -2.59 -7.67
The columns refer successively to the method’s name, the estimated log-likelihood value (log lik val), the RMSE, the total number of estimated parameters, the BIC and the AICc criteria.
Bold lines indicate the "best" values according to the criterion under consideration.
FIGURE 2

Estimated LIR from the competing models (2.6.2) as a function of the accumulated water usage. The right axis was included for the values of the
Pareto distribution. The Lognorm and GreenLab exp overlap, as well as the Gamma and the LR.
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in the literature [(Duursma et al., 2012), Ohashi et al. (2022)].

Selecting the models with the best predictive performances seems a

reasonable strategy. Nonetheless, this approach warrants further

empirical validation. Future research could focus on quantifying the

diffusion of light in relation to distinct plant attributes and may

include virtual experiments [as in (Duursma et al., 2012)].
4.3 Modeling light interception and its
relation with plant growth

The amount of energy a crop captures, crucial for modeling

crop growth and yield, is largely determined by canopy light
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interception (Higashide and Heuvelink, 2009). There is,

however, currently no consensus on how light interception

should be modeled: Liu et al. (2021) reviewed the canopy light

interception models of 26 crop models of wheat and reported that

the uncertainty in simulated wheat growth and final grain yield

due to the different light models could be as high as 45%. The light

interception modules form a continuum of approaches that range

from simple (empirically or theoretically grounded) relationships

between some characteristics of the photosynthetically active parts

of the plant [usually LAI, e.g., Sarlikioti et al. (2011)] and the way

they intercept light, to complex scene illumination algorithm,

incorporating a precise 3D geometric representation of the plant

[e.g. in Schipper et al. (2023)]. Our work contributes to that line of

research, proposing a new cost-effective methodology to assess the

time course of the LIR through its dependence on the water

consumption profile. Our results further address the discussion

of the need for generalizations or alternatives to Beer-Lambert

law. Shabanov and Gastellu-Etchegorry (2018) and Casasanta and

Garra (2018) have already proposed theoretical suggestions in this

direction, and we believe our work presents a practical application

of these theories.

Various variables have been employed in the literature to

characterize light interception [e.g. STAR (light interception per leaf

area) in Oker-Blom and Smolander (1988); Duursma et al. (2012),

FIPAR (Fraction of PAR intercepted by the photosynthetically active

radiation elements of canopies) in Liu et al. (2021)]. In this context, we

utilize the Light Interception Ratio (LIR) that characterizes light

interception per soil unit, a term we have intentionally left loosely

defined. In our usage, this is primarily because LIR is a more

empirically determined global variable rather than one rigorously

derived frommechanistic principles. Nevertheless, we anticipate that it

may still offer some interpretive value within the scope of our study.
TABLE 6 Prediction summary among the different suggested methods
discussed in (6) and in (12), under: (left) Solar Radiation assumed to be
known (right) an additive normal N(0,202) noisy prediction setting.

Version RMSPE RMSPE with noise

1 pareto 0.194 0.202

2 LR 0.205 0.212

3 mlf 0.226 0.234

4 lognorm 0.217 0.237

5 gamma 0.234 0.254

6 GreenLab exp 0.282 0.29

7 exp 0.296 0.319

8 exp + rate 0.341 0.364
Methods are compared using the RMSPE. The ordering is performed under the setting with
noise.
Bold lines indicate the "best" values according to the criterion under consideration.
FIGURE 3

Final fit of the models (solid lines) on the real data (dashed line). Time (days), represented on the x-axis, runs over the days of observation, with t = 1
being the day the seed was planted. The left y-axis represents the Water Consumption at time t, in liters. The right y-axis represents values of Avg
Solar Radiation (W/m2). The evolution of Solar Radiation is plotted at the top of the graph, with a dark orange color.
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Our models cannot disentangle the different factors influencing light

interception (leaf density, orientation, etc.) but provide a global

representation of light interception at the plant scale, which is easy

to obtain using routine measurements, and can assist in simple

predictions of Water Consumption.
4.4 Limitations of the work

Our work presents important limitations that must be

acknowledged. First, our modeling approach relies on strong

physiological simplifications: e.g. neglecting soil evaporation and

respiration of existing organs, constant radiation use efficiency,

constant SLA, no influence of external environmental conditions

except radiation and applied water volume, proportionality between

light intercepted and photosynthesis [a more refined model here

would have been to consider Farquhar’s photosynthesis model, for

instance Farquhar et al. (1980)], proportionality between water

consumption and biomass production. Regarding this last

assumption, the ratio of biomass to transpiration [Water Use

Efficiency (WUE)] is known to vary with weather, genotypes, and

practices [Blankenagel et al. (2018); Bhaskara et al. (2022)]. Therefore,

using a constant value is likely to be valid only in a limited range of

environmental conditions that would have to be determined using a

more extensive experimental dataset (Lanoue et al., 2017)

All these simplifications were required with respect to our

objectives and our context of using only routinely recorded variables.

They can, however, be considered applicable when describing the

average growth of plants in standard conditions, and most of them are

also laid in other models [Ma et al. (2022); Winn et al. (2023)].

An additional underlying assumption that deserves to be

highlighted is that the g function is time-independent. In reality, g

aggregates the effects of blade spatial arrangement, which

determines the probability of a radiation ray being intercepted,

the fraction of biomass allocated to the blades and the senescence of

the leaves. This fraction decreases with time, especially due to the

progressive appearance of fruits, whose demand competes with that

of blades, a phenomenon that our SSiE models do not account for.

However, in our case, because the time of observation is at a very

later stage than the initial planting, this fraction is, in fact, nearly

constant, taking values in the range (0.21-0.24), as simulated using

GreenLab (Zhang et al., 2009). This explains why the models exp

and GreenLab exp behave similarly.

In conclusion, we must acknowledge the limitations of our data,

which prevent us from drawing strong conclusions from our results.

Measuring and estimating the mean value of water consumption

among only three plants could potentially introduce some errors

because of the variance within them. Solar Radiation is measured

outside of the greenhouse, which introduces the need for simulating

an unknown transmission coefficient through the greenhouse: such

coefficient is accounted for in the constant q1 in model 12. Lastly,

since we do not have access to light distribution measurements in

our study, we cannot definitively conclude on the validity of our
Frontiers in Plant Science 12
models by comparing our simulation outputs to real measurements,

nor can we assess the stability of the values of the parameters of our

models for different environmental conditions. Nevertheless, we

believe that our work can be considered as a proof-of-concept for

our proposed methodology and that the SSiE model appears

promising for modeling Water Consumption.
4.5 Perspectives

In light of this, our future research will aim to apply further and

investigate the utility of the SSiE model in predicting such

quantities. The choice of distribution might be crop-dependent,

and we aim to explore this idea in the future by acquiring data that

would enable testing our models’ assumptions regarding the

relationship between water consumption, crop architecture, and

the different profiles of light distribution within the canopy.

From a methodological point of view, the current formulation is

particularly adapted for Bayesian methods, which will allow for an

easy way to quantify uncertainty and use the Bayesian predictive

distribution for forecasting purposes. An online Bayesian method with

sequential Monte-Carlo may be particularly relevant, and MCMC

methods could also be applied for more efficient estimation, as in

Logothetis et al., 2022. The comparison of MCMC with sequential

Monte-Carlo for MLE was done in Trevezas et al. (2014).
5 Conclusion

In this study, we aimed to better understand plant water

consumption, a subject of considerable importance for

greenhouse management. The widely-used GreenLab model was

not identifiable in our setting, even after compartmental

simplifications, but it could be considered in other applications if

at least partial information on the plant could be collected. Using

similar physiological assumptions but in a probabilistic framework,

we introduced the SSiE model as an alternative, directly applicable

to water consumption, thus avoiding the need for biomass

production as an intermediary variable. Despite the limitations of

our data, the SSiE model provided some useful preliminary insights,

particularly in the area of light interception over time. While these

findings are still at a mostly theoretical stage, our proof-of-concept

on our experimental dataset hints at the SSiE model’s potential

utility for water consumption and light interception analyses.

The practical implications of these initial findings could be

noteworthy and extend toward other crops and settings, offering a

pathway to more efficient water usage in greenhouses.
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1 Appendix

1.1 Appendix of GreenLab
model for tomato

The integration of photosynthetic production is calculated

using the Beer-Lambert (BL) law (Monteith, 1977), which is

analogous to the approach employed in most process-based models:

Q(t) = E(t) · RUE · Sp · (1 − exp  −k SL(t)=Sp
� �

), (21)

where during CD(t), Q(t) corresponds to the newly synthesized

(dried) biomass, E(t) to the system’s energetic contribution (in our

case, solar radiation), and RUE is the Light Use Efficiency (LUE)

(the vegetation efficiency of converting radiative energy into

biochemical energy through photosynthesis). Moreover, Sp
represents the projected surface potentially occupied by a single

plant, while SL(t) stands for the plant’s photosynthetically active leaf

area. This is calculated as the sum of the total photosynthetically

active biomass of the blades multiplied by the specific leaf area

(SLA). The variable k corresponds to the extinction coefficient in the

Beer-Lambert law, and it is set to 0.8 for the tomato crop, as per

Zhang et al. (2009). Q(0) = Q0 is the initial biomass of the seed. In

our case, because of the difference in planting and first observation,

the initial biomass will also be a parameter under estimation.

1.1.1 Dry matter allocation
The biomass ascribed to every organ, spread from the common

pool, is set proportional to its sink strength [Yan et al. (2004); De

Reffye et al. (2021)]. In the context of mechanistic models for

simulating dry matter partitioning, a common assimilate pool refers

to a shared pool of assimilates from which various sink organs of a

plant derive their growth resources. This implies that the plant does

not segregate into distinct source-sink units, and thus, any

resistance encountered during the transport of assimilates from

source to sink would not influence the distribution of dry matter

(Heuvelink, 1995). Sink strength adjusts during the period of organ

expansion, following the same form of sink function for all organs

of the same type o ∈ {b,p,e,f} in a cohort. A cohort is a set of organs

of the same nature, created at the same CD by the parallel

functioning of meristems.

If To stands for the expansion duration of an organ of type (o)

and t stands for its chronological age (days or CDs), then the sink

strength is modeled by the function:

Po(t) = po · fo
t
To

� �
, 0 ≤ t ≤ To, (22)

where po is its relative sink strength (with respect to the blade’s

one), fo (·) is the variation function of the sink related to its

development, chosen as a Beta density function.

The sum of the sink strength of all organs is the Demand D(t) at

a given time t:

D(t) =o
o
o
t

u=1
No(t − u + 1)Po(u), (23)
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where No(t − u + 1) is the total number of organs of type o at

time t that appeared at time u and are, therefore, of age t − u + 1.

The biomass growth of an organ o varies on the value of its sink and

the ratio supply produced to the previous cycle Q(t − 1) (2) by the

current demand D(t) (23). The growth of an organ of type o that

manifests during cycle u, while the plant is in a subsequent cycle t >

u, can be articulated as:

Dqo(u, t) = Po(t − u + 1)
Q(t − 1)
D(t)

, (24)

and the weight of the organ that appeared in cycle u when the

plant is at age t is then:

qo(u, t) =o
t

j=u
Dqo(u, j) : (25)
1.1.2 Beta sink function
In the initial GreenLab model (Yan et al., 2004), the sink

function is defined according to a discretized beta law function:

fo
t
To

� �
=

1
M

t
To

� �ao−1

1 −
t
To

� �bo−1

, 0 ≤ t ≤ To, (26)

where the parameters ao and bo, verifying the constraint ao,bo ≥

1, drive the curve shape and M is a normalization constant usually

modeled as the sum or the max over 1 ≤ t ≤ To.

In this case, the parameters to estimate are:

q = (ab, bb, pp, ap, bp, pe, ae, be, pf , af , bf , Sp, RUE, SLA,Q0) (27)

The absence of pb arises from the standard practice of

establishing pb = 1 as a reference point [Dong et al. (2008); Zhang

et al. (2009)].

A dimensionality reduction approach, discussed in (Dong et al.,

2008), stabilizes the sum of the two parameters ao, bo. The value of 5

has been specifically chosen for tomato plants, as it has been

observed to produce fine results. Under this assumption, the

parameter’s space dimension is reduced by 4.
1.2 Probabilistic justification of
the SSiE model

Let us now try to justify the rationale behind the discussion in

Section 2.6. The radiative input E(t) could be mapped to the interval

[0,E(t)] representing an uncountable number of points potentially

available for biomass production. At each point u of the interval,

one could attach a Bernoulli random variable, say Xu(t), deciding

whether the point u will enter the system or not. If it enters the

system, then it brings an infinitesimal contribution to biomass

production; otherwise, it is rejected and exits the system. One could

still keep the independence assumption and assume that there is a

common probability p(t) of the radiative points entering the system,

but there is a price to pay. If we assume that the radiative input is a

realization of the stochastic process fZu(t)gE(t)u=0, where the sample

(observed) paths would be an interval of points consisting of 0′s and
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1′s, then it can be proved with tools from probability theory that the

resulting processes are not measurable.

To give an interpretation of this nonmeasurability concept, it

roughly corresponds to the idea that it would be impossible to

associate the usual notion of length to the set of points that entered

the system and the set of points that exited the system in this ideally

conceptualized experiment. Luckily enough, there is still a solution,

and it gives a formal justification for our intuitive approximations.

It resides in the disintegration theorem (Chang and Pollard, 1997), a

result of measure and probability theory. In fact, this theorem gives

very powerful tools and a more intuitive approach to the definition

of conditional probability and conditional expectation than the one

that is usually presented in standard probability textbooks. A formal

description of this theorem and related conditions for its validity

would be out of the scope of this paper, and we refer to Chang and

Pollard (1997). However, we describe the basic ingredients and the

result we need in our context.

Instead of selecting points from the interval [0,E(t)], one could

think that the same interval is actually a bundle of Bernoulli

experiments, where each one of them is realized when the point u

is “activated”. Formally, one needs a measure space which consists of

the set Yt := [0,E(t)] × {0,1}, an appropriate measure µ and a function

p : Yt → [0,E(t)] (usually the projection function) which disintegrates

the measure µ into a family of measures fµugE(t)u=0, such that for a

measurable A

mu(A) = mu A ∩ (u, 0), (u, 1)f gð Þ (28)

and induces the measure n = µ ° p−1 on [0,E(t)]. In our case, the

choices are rather simple. Each µu is “living” (has its support) on

the fiber {u} × {0,1} and behaves as a Bernoulli measure, while the

induced measure n should be the Lebesgue measure restricted on

[0,E(t)]. In this way, the disintegration theorem justifies the

following way of computing the measure of a measurable set A:

m(A) =
Z E(t)

0
mu(A) du, (29)

where µu(A) is given by (28), and the integral should be

understood in the Lebesgue sense. We are now ready to make the

correspondence with the computation of the totally produced

biomass at time t. Since the set B = [0,E(t)] × {1} corresponds to

the set of all active points, in order to assess the totally absorbed

radiative input, we just have to compute

m(B) =
Z E(t)

0
mu(B) du = E(t)p(t), (30)

since B ∩ {(u,0),(u,1)} = {(u,1)} and µu({(u,1)}) = P(Au(t)) = p(t).

Multiplying by RUE·Sp to transform into biomass, we get the

expected approximation result given by (9). It is also interesting

to notice that the constant probability p(t) is actually playing the

role of a constant flow (with respect to the incoming radiation) of

biomass product ion. The discuss ion is continued in

paragraph 2.6.1.
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