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Maize (Zea mays L.) is one of the most important crops, influencing food

production and even the whole industry. In recent years, global crop

production has been facing great challenges from diseases. However, most of

the traditional methods make it difficult to efficiently identify disease-related

phenotypes in germplasm resources, especially in actual field environments. To

overcome this limitation, our study aims to evaluate the potential of the multi-

sensor synchronized RGB-D camera with depth information for maize leaf

disease classification. We distinguished maize leaves from the background

based on the RGB-D depth information to eliminate interference from

complex field environments. Four deep learning models (i.e., Resnet50,

MobilenetV2, Vgg16, and Efficientnet-B3) were used to classify three main

types of maize diseases, i.e., the curvularia leaf spot [Curvularia lunata (Wakker)

Boedijn], the small spot [Bipolaris maydis (Nishik.) Shoemaker], and the mixed

spot diseases. We finally compared the pre-segmentation and post-

segmentation results to test the robustness of the above models. Our main

findings are: 1) The maize disease classification models based on the pre-

segmentation image data performed slightly better than the ones based on the

post-segmentation image data. 2) The pre-segmentation models overestimated

the accuracy of disease classification due to the complexity of the background,

but post-segmentation models focusing on leaf disease features provided more

practical results with shorter prediction times. 3) Among the post-segmentation

models, the Resnet50 and MobilenetV2 models showed similar accuracy and

were better than the Vgg16 and Efficientnet-B3 models, and the MobilenetV2

model performed better than the other three models in terms of the size and the

single image prediction time. Overall, this study provides a novel method for

maize leaf disease classification using the post-segmentation image data from a

multi-sensor synchronized RGB-D camera and offers the possibility of

developing relevant portable devices.

KEYWORDS
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1 Introduction

As one of the major crops in the world, maize (Zea mays L.) is

not only an essential source of feed for livestock, aquaculture, and the

fisheries industry, but also an indispensable raw material in food,

healthcare, light industry, and chemical industries (Olawuyi et al.,

2014). In recent years, maize diseases have become increasingly

severe, seriously affecting the yield and quality of maize. Therefore,

breeding new varieties with strong disease resistance, high yield, and

excellent quality has become one of the vital approaches to improve

maize yield and quality (Song et al., 2021), which requires maize

disease classification thus to accurately identify germplasm for

breeding. However, the current judgment for maize leaf diseases in

germplasm identification and breeding primarily relies on the

experience of experts. This requires high professional knowledge,

but efficiency is relatively low, which is the reason maize germplasm

identification at large-scale and new variety breeding has become a

bottleneck (Fang et al., 2022). The development of sensors and data

analysis methods. However, the existing crop disease recognition

still has low accuracy and poor targeting. In addition, the existing

crop disease recognition has a variety of problems, such as low

accuracy, poor targeting, etc., which cannot meet the actual needs of

corn growers. Deep learning, as an emerging technology in the field

of machine learning, has a wide range of applications in the field of

image recognition. Consequently, there is an urgent need to develop

a newmethod to identify disease information quickly and accurately

in complex field environments.

In recent years, object recognition and classification research

based on the convolutional neural network (CNN) has gradually

become a hotspot (Cap et al., 2022), which has been widely applied

in fields like animal husbandry, agriculture, and land use

classification (Priyadharshini et al., 2019; Hitelman et al., 2022;

Campos-Taberner et al., 2023). For example, Zeng et al. (2022)

proposed improving the SKPSNet-50 models to classify eight kinds

of maize leaf diseases. Agarwal et al. (2020) developed an efficient

CNN model for tomato disease identification and achieved 93.5%

accuracy. Azgomi et al. (2023) designed a multi-layer neural

network for classifying four diseases with low computation cost at

only. However, the classification performance was not competitive

with an accuracy of 73.70%. Kumar et al. (2022) proposed an

automatic system for tomato leaf disease recognition based on the

deep convolutional neural network (DCNN). Ma et al. (2023)

proposed an improved YOLOv5n model to identify common

maize leaf spots, gray spots, and rust diseases in mobile

applications. The average recognition accuracy of the model

reached 95.2%, which was 2.8% higher than the original model.

In addition, the memory size was reduced to 5.1 MB compared to

92.9 MB of YOLOv5l, which was 94.5% smaller, meeting the light

weighting requirement. Sun et al. (2021) proposed an improved

InceptionV3 model based on deep data with a maturity class

classification accuracy of up to 98%. The depth data can reflect

the characteristics of flower buds well, which helps to classify the

maturity grade. Fei et al. (2023) proposed an improved ShuffleNet

V2 for fresh cut flowers classification, which can achieve a

classification accuracy of 99.915% in the RGB-D flowers dataset,
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with an overall predicted classification speed of 0.020 seconds per

flower. Compared with the fresh-cut flower classifiers currently

available in the market, this method has a great advantage in speed.

Current research trends in classification networks can be

categorized into two main types: 1) Pursuing higher performance,

which often results in an increase in the number of model

parameters and complexity. 2) Balancing classification

performance with accuracy, which can reduce the model’s

parameters and complexity while accepting a slight decrease in

classification accuracy. We can classify the networks representing

these two trends as heavyweight (e.g., Vgg16) and lightweight (e.g.,

Resnet50, Efficientnet-B3, and MobileNetV2) networks (Hussein

et al., 2023). In addition, previous studies have primarily relied on

public datasets, usually characterized by enough lighting conditions,

with fixed shooting angles and distances, as well as relatively simple

image backgrounds. This presents a significant challenge when

attempting to transition these models to natural field conditions

(Ferentinos, 2018; Guo et al., 2019). Usual RGB images in complex

field environments are easily affected by illumination and

perspective, by which a large amount of interference makes leaf

segmentation and disease identification difficult. In response to this

issue, the RGB-D sensors present a practical approach. Specifically,

RGB-D cameras can extract target information based on the distance

of the object, making it more suitable for segmenting infected maize

leaves in complex field environments (Song et al., 2022).

The above studies mainly focused on recognizing crop types

based on RGB images using deep convolutional networks to

improve the accuracy of recognition. However, there are few

studies using RGB-D images for maize disease classification. This

research focuses on the classification of three maize diseases using

deep convolutional neural networks with RGB-D images. We would

like to develop an approach that can be successfully integrated into

portable mobile devices for timely and accurate classification of

crop diseases in the field environment. To achieve this goal, we first

collected the maize germplasm leaf disease data under complex field

conditions using an RGB-D camera. We then segmented the

captured maize leaf disease data using the RGB-D depth

information to extract leaf contours and remove background

interference. Later, we use four deep learning models to complete

disease classification based on the pre-and post-segmentation

datasets. By comparing their performances, we struck a balance

between efficiency and accuracy in classification to select the best

classification model. Finally, we analyzed the contribution of leaf

and background in pre- and post-segmentation images on our

results. This analysis aims to illuminate the stability performance

of disease classification models based on pre-and post-

segmentation datasets.
2 Materials and methods

2.1 Experimental site

The field experiments were conducted at two sites (Figure 1A).

Site 1 is located at the experimental base of Henan Agricultural
frontiersin.org

https://doi.org/10.3389/fpls.2023.1268015
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nan et al. 10.3389/fpls.2023.1268015
University in Yuanyang, Henan Province (Figure 1B), with a mean

annual temperature of 14.5°C, a mean annual precipitation of

573.5 mm, a mean annual evaporation of 1908.7 mm, a mean

annual sunshine hour of 2407.7 hours, and a mean annual frost-free

period of 200.5 days. Site 2 is a comprehensive experiment site, the

Chinese Academy of Agricultural Sciences in Xinxiang County,

Henan Province (Figure 1C), with a mean annual temperature of

14°C, a mean annual precipitation of 548.3 mm, a mean annual

evaporation of 1748.4 mm, a mean annual sunshine hour of 2323.9

hours, and a mean annual frost-free period of 205 days. Both sites

are in the Huang-Huai-Hai region, with a continental climate with

abundant heat, providing a suitable environment for maize growth

and disease trials.
2.2 Experiment design

The experiments were conducted from July to August, 2022.

The Yuanyang site was planted with 20 rows for each material, and

the Xinxiang site was planted with 4 rows for each material. In the

Xinxiang experiment field, a total of 246 maize materials were

planted, consisting of 226 maize breeding inbred lines, 8 sweet

maize varieties, and 17 main cultivated varieties. The Yuanyang

experiment field comprised 6 maize materials, including 5 types of

maize breeding inbred lines and 1 main cultivated variety. Both test

areas were inoculated with diseases: the small spot [Bipolaris maydis

(Nishik.) Shoemaker], the curvularia leaf spot [Curvularia lunata

(Wakker) Boedijn], and the mixed spot. Each disease was

inoculated in one plot within each of the two trial areas. The

disease inoculation was carried out during the maize bell stage in

the evening of 2nd August, 2022. The inoculation was carried out by
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spraying at a spore concentration of about 100000 per ml. The

amount of the inoculum in each plot was controlled at 5 ml, and the

disease was evenly distributed in all plots.
2.3 Data acquisition

The RGB-D camera model employed for data capture is the

Intel RealSense D435 (Figure 2A), which has a measuring range of

0.1m to 10m. The maximum resolution of images obtained through

the binocular depth lens is 1280 × 720 pixels, while the maximum

resolution of RGB camera is 1920 × 1080 pixels. Complementary

operating software for the camera is installed on the XPLORE tablet

(Figure 2B), with an Inter E3845 CPU and 4GB DDR3 memory

running on Windows operating system. For each pathogen

inoculation area, three random image collection points were

selected. From each image collection point, 3–4 maize plants were

chosen to capture images of infected maize leaves with handheld

cameras. Our data acquisition time was mainly from 7 a.m. to

12 a.m. and 5 p.m. to 7 p.m., with a total of about 1200 images

collected. During the image acquisition process, the shooting angle

was not fixed to ensure the randomness of image capture and enrich

the data characteristics (Khanramaki et al., 2021).

With the help of the RealSense D435 depth camara (RGB-D),

RGB data of maize leaves can be obtained along with depth

information. The depth information from the RGB-D image can

be used to eliminate the interference from background based on

distance in the depth direction, thereby reducing computational

effort and improving processing speed (Figure 3A). In this study,

background objects located one meter away from the camera were

discarded (Wang et al., 2021; Lao et al., 2022). The pixels
B

C

A

FIGURE 1

Overview of experimental sites used in this study. (A) The location of study sites, (B) the Yuanyang site, and (C) the Xinxiang site. Yellow and red
rectangles represent the plots inoculated by the small spot and the curvularia leaf spot, respectively.
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correspond to the 1-meter distance were set gray, effectively

preserving the close-up maize images within one meter from the

camera. Figure 3B presents the comparison between images

captured by the RGB camera and images processed after applying

the threshold using the RGB-D camera.
2.4 Data augmentation

In this study, RGB images and RGB-D segmented images were

collected simultaneously using a depth camera. Two datasets,

namely the pre-segmentation dataset and the post-segmentation

dataset, were constructed under the same experiment conditions.

Both datasets consisted of images of three maize diseases (Figure 4).

The resolution of the images was 640 × 480 pixels, and the dataset

contained approximately 1012 images in total. The pre-

segmentation dataset comprised 414 images of the maize

curvularia leaf spot disease, 180 images of the maize small spot

disease, and 418 images of the mixed spot. The post-segmentation

dataset, obtained after applying segmentation techniques, was equal

in sample size. To address the issue of data imbalance and improve

the generalization ability of model, data augmentation was applied.

Data augmentation involves generating new data by transforming

existing data and is commonly used in deep-learning models across

various fields (Yu et al., 2023). In addition, we used data
Frontiers in Plant Science 04
augmentation techniques, including original, blurred, rotated,

flipped, noisy, and brightened images to expand our examples

(Figure 5). After data augmentation, the number of samples in

both the pre-segmentation and post-segmentation datasets

increased to 6072 images. Then, the augmented maize leaf disease

dataset was divided into the training set, test set, and validation set

in a ratio of 8:1:1 ratio. Specifically, 4860, 606, and 606 samples were

allocated to the training set, test set, and validation set, respectively.

Both model accuracy and number of parameters were carefully

considered to select the best model for classification of maize leaf

diseases under field conditions.
2.5 Classification models

Image classification is a fundamental task in computer vision

that involves categorizing images into specific semantic categories.

Over the years, CNNs have emerged as highly successful models for

image classification since the introduction of AlexNet in 2012

(Waheed et al., 2020). These models excel at image classification,

which typically employ CNNs as backbone networks, known for

their strong feature extraction capabilities (Ni et al., 2019). CNN

networks are designed with various layers, including convolutional

layers, pooling layers, and fully connected layers, which enable

efficient extraction of significant features from the input data (Zhu
BA

FIGURE 3

Data acquisition process in this study. (A) Schematic of data collection, and (B) the comparison of RGB and RGB-D images.
BA

FIGURE 2

Experiment devices. (A) Inter RealSense D435 depth camera, and (B) the XPLORE tablet.
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et al., 2021). The convolutional layer effectively extracts local

features from images, while the pooling layer down-samples and

aggregates these features. Finally, the fully connected layer

combines these features to form high-level features that can be

used for classification or regression tasks (Paymode and Malode,

2022). In this study, we used the following models: MobilenetV2,

Vgg16, Efficientnet-B3, and Resnet50.

MobileNetV2 is a lightweight convolutional neural network

model suitable for environments with limited computational

resources. Given the constraints of data collection and processing

in field environments, MobileNetV2 was chosen to achieve high

classification performance while minimizing the computational

burden. Vgg16 is a classic deep convolutional neural network

model that has shown excellent performance in various image
Frontiers in Plant Science 05
classification tasks. With its deep network structure, Vgg16 can

learn rich feature representations and is well-suited for classifying

complex images. In the context of RGB-D data, Vgg16 can extract

more comprehensive feature information from both RGB and depth

images. Efficientnet-B3 is a series of convolutional neural network

models based on automated model scaling methods. Efficientnet-B3

strikes a good balance between model size and computational

resource consumption. It achieves high performance while having

fewer parameters, making it suitable for corn leaf disease

classification tasks with limited computational resources.

Resnet50 is a deep convolutional neural network model with

residual connections. It effectively addresses the issue of gradient

vanishing that can arise from deep networks, resulting in better

training performance. Resnet50 is suitable for image classification
B CA

FIGURE 4

Types of maize leaf diseases, including (A) the curvularia leaf spot disease, (B) the small spot disease, and (C) the mixed spot disease.
B C

D E F

A

FIGURE 5

Data augmentation examples, including (A) original, (B) blurred, (C) rotated, (D) flipped, (E) noisy, and (F) brightened images.
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tasks in complex environments and can capture rich feature

representations from multiple perspectives when handling RGB-

D data.

These selected models have demonstrated strong performance

in image classification tasks and are well-suited for classifying corn

leaf diseases in complex field environments based on RGB-D data.

The choice of these specific models aims to balance classification

performance while considering computational resources and model

size limitations. By comparing the performance of these models on

training and validation datasets, researchers can select the best

model for accomplishing the corn leaf disease classification task.

2.5.1 MobilenetV2
MobilenetV2 (Indraswari et al., 2022) is a lightweight neural

network as an improvement over MobileNetV1 introduced by the

Google team in 2018. It retains the deep separable convolution

concept of MobileNetV1 while introducing linear bottleneck and

inverse residual structures. MobilenetV2 utilizes a deeply separable

convolutional network design, combining standard convolutional

layers with deeply separable convolutional layers. This design

significantly reduces the number of network parameters and

computational effort while maintaining accuracy. Additionally,

MobilenetV2 introduces a linear bottleneck structure in the

network architecture, which reduces the number of parameters in

the depth dimension. To further enhance performance and

computational efficiency, MobilenetV2 incorporates techniques

such as residual blocks and asynchronous data batching. The

residual blocks accelerate model convergence, minimize the risk

of overfitting, and optimize the speed of forward inference.

Asynchronous data batching overlaps computation and

communication execution to improve parallelism and data

throughput in the model.

2.5.2 Vgg16
Vgg16 (Kristiani et al., 2020; Raghu et al., 2020; Rangarajan and

Purushothaman, 2020) is a well-known convolutional neural

network model in deep learning. It was developed by researchers

at the University of Oxford and achieved the second-place ranking

in the 2014 ImageNet Large Scale Image Recognition Competition

(ILSVRC). The name “Vgg16” comes from the structure of the

network, which consists of 16 convolutional layers and 3 fully

connected layers. In the convolutional layers, Vgg16 uses 3 × 3

convolutional kernels with a stride of 1 and padding set to “same”.

The ReLU activation function is applied after each convolutional

operation. The output of the convolutional layers is then down

sampled using pooling layers to reduce the size of the feature maps.

At the top of the network, the feature maps are mapped to the 1000

categories of the ImageNet dataset using a fully connected layer.

One advantage of Vgg16 lies in its simple and easy-to-understand

network structure, which makes it straightforward to implement. It

also performs well on various visual tasks. However, there are some

disadvantages to consider. Vgg16 has many parameters, which

requires higher computational resources and training time.

Additionally, the model is prone to overfitting issues, where it
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may struggle to generalize well to unseen data. Overall, Vgg16 is a

powerful model that has made significant contributions to image

recognition tasks, but it should be used with consideration for its

computational requirements and potential overfitting challenges.

2.5.3 Efficientnet-B3
Efficientnet-B3 (Zhang et al., 2020; Atila et al., 2021) is an efficient

convolutional neural network architecture proposed by the Google

team in 2019. It combines innovative neural network design principles

with automated model scaling techniques to improve model accuracy

while reducing the number of parameters and computational

requirements. Efficientnet-B3 is a member of the Efficientnet family,

specifically a larger variant. It has demonstrated excellent performance

on the ImageNet dataset. The network structure of Efficientnet-B3

consists of repetitive modules that include deep separable convolution,

dilated convolution, and normal convolution operations. One of the

key features of Efficientnet is its automated model scaling approach.

This approach scales the network architecture based on factors such as

depth, width, and resolution. Composite coefficients are used to

balance these three factors during the scaling process. By leveraging

this method, Efficientnet achieves higher accuracy while keeping the

model’s parameters and computational complexity relatively small.

Efficientnet represents a significant advancement in building efficient

and accurate convolutional neural network architectures.

Its innovative design and scaling technique make it a powerful tool

for various computer vision tasks while minimizing the

resource requirements.

2.5.4 Resnet50
Resnet50 (Tan et al., 2018; Yu et al., 2023) is a deep residual

network model that was proposed by the Microsoft Asia Research

Institute. It is considered one of the classical models in the Resnet

family and has gained significant popularity as one of the most

commonly used convolutional neural network (CNN) models. The

main concept behind Resnet50 is residual learning, which

introduces shortcut connections in the CNN architecture to learn

a residual mapping. This approach addresses the problem of

vanishing gradients that can occur during the training of deep

networks. By using residual connections, Resnet50 enables effective

training of deep networks and improves the accuracy of the model.

The network structure of Resnet50 is relatively deep, consisting of

50 convolutional layers. It includes 16 convolutional modules. The

first module performs initial feature extraction using 7x7

convolutional layers and pooling layers. The subsequent modules

are composed of residual blocks, each consisting of two

convolutional layers and a residual connection. In the final fully-

connected layer, Resnet50 maps the feature maps generated by the

convolutional layers to the 1000 categories of the ImageNet dataset.

The Resnet50 achieves better performance by increasing both the

depth and computational complexity of the model. It is widely used

in various computer vision tasks, such as image classification, object

detection, and semantic segmentation. Resnet50 has demonstrated

excellent results on the ImageNet dataset and has become one of the

most popular deep-learning models in use today.
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2.6 Class activation mapping

We analyzed the contribution of leaves and background in both

pre-segmented and post-segmented images using Class Activation

Mapping (CAM) (Feng et al., 2023). Class Activation Mapping

(CAM) represents a technique within deep learning, particularly in

the realm of Convolutional Neural Networks (CNNs). CAM

enables visual interpretability of CNN decision-making by

spatially highlighting the influential regions in an input image

that contribute most to a specific class prediction.

The implementation process of Class Activation Mapping

(CAM) is as follows: 1) Train the CNN: Begin by training the

Convolutional Neural Network (CNN) conventionally using a

dataset tailored to a specific classification task. 2) Remove the FC

layers: After training, strip away the fully connected (FC) layers that

succeed the final convolutional layer. This reveals the spatial

dimensions of the concluding feature maps, which will be crucial

for visual interpretation. 3) Compute the CAM: To generate the

Class Activation Map for a class, c, one must calculate a weighted

summation of the activations extracted from the feature maps of the

last convolutional layer. The weights determine the significance of

these feature maps with respect to class c. The formula for

computing CAM is:

CAMc(x, y) =okw
c
kFk(x, y) (1)

where CAMc(x, y) represents the class activation map’s value for

class c at the spatial location (x, y), wc
k symbolizes the weightage of

the kth feature map for class c, Fk (x, y) is the activation at location

(x, y) for the kth feature map. Using CAM, researchers can visually

understand which regions in an image have been crucial for the

CNN in making its decision for a class. This method provides an

intuitive way to inspect and interpret the workings of a trained

CNN model.
2.7 Evaluation metrics

The confusion matrix, also known as the error matrix, is a

standard evaluation metric indicating the classification accuracy

and is represented in the form of a matrix with n rows and n

columns, as shown in Table 1 (Yu et al., 2022). The “Accuracy”,

“Precision”, “Recall”, and “F1-Score” were selected to evaluate the

model performance comprehensively (Wu et al., 2020).

Accuracy is the ratio of the number of samples correctly

classified by the model to the total number of samples. The

higher the precision, the higher the classification accuracy of the
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model. The precision rate is the ratio of the number of samples that

the model correctly predicts as positive cases to the number of all

samples that are predicted as positive cases. The higher the

precision rate, the more accurate the model is in predicting

positive cases. Recall is the ratio of the number of samples that

the model correctly predicts as positive cases to the number of all

samples that are positive cases. The higher the recall, the better the

ability of the model to correctly identify the cases that are positive.

The F1-score combines the metrics of accuracy and recall and is a

comprehensive evaluation metric. the higher the F1-score, the

better the classification accuracy and ability to identify actual

positive examples of the model. The expressions are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1� Score = 2 ∗
Precision ∗Recall
Precision + Recall

(5)
2.8 Model training

The computer equipment used in this study consisted of the

Intel(R) Xeon(R) Gold 5218 CPU with 2.3 GHz, the NVIDIA

GeForce RTX 3090 GPU with 24 GB of video memory, and the

128 GB of RAM. The experiment was conducted using PyTorch

1.13.1 framework, CUDA version 12.0, and cuDNN version 7.6.5.

The accuracy and loss values were saved after each epoch during the

training process, which allows for visual inspection of the

convergence for model. It is worth noting that conclusions only

drawn from the converged state hold reference value. The

experimental parameters are set as illustrated in Table 2 (Leo,

2023). The cross-entropy loss function, as described by Yang

et al. (2023), is a commonly used loss function in classification

tasks. It quantifies the disparity between the predicted outcomes of a

model and the true labels. The cross-entropy loss function evaluates

the dissimilarity between the probability distribution predicted by

the model and the actual distribution. As a result, it serves as a

crucial metric for assessing the classification performance of the

model. During the training process, the objective is to optimize the

model parameters by minimizing the loss function. This
TABLE 1 Example of a confusion matrix.

Confusion matrix
Ture label

Positive Negative

Predicted label
Positive TP FP

Negative FN TN
TP, True Positive; TN, True Negative; FP, False Positive; and FN, False Negative.
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optimization aims to enhance the prediction accuracy of the model.

By utilizing the cross-entropy loss function as the optimization

objective, the model can make more accurate predictions and obtain

optimal model parameters.

For all four models, the initial learning rate is set to 0.0001, the

momentum parameter is set to 0.9, and stochastic gradient descent

(SGD) is chosen as the optimizer. The learning rate determines how

quickly the weight values are updated. If the learning rate is set too

high, it may result in overshooting the optimal value, while an

excessively low learning rate can slow down the convergence rate.

Manually adjusting the learning rate requires constant fine-tuning.

Hence, the introduction of momentum parameters assists SGD in

achieving faster learning rates. Additionally, to further optimize the

learning rate at regular intervals, the StepLR method is applied with

defined step size and gamma parameters of 7 and 0.1, respectively.

This helps to modify the learning rate at fixed intervals (Paszke

et al., 2017).
3 Results

3.1 Model performance for maize leaf
disease classification

Considering the future deployment of the model on mobile

devices, it is important to evaluate the limited computing power and

other constraints inherent in such devices. Therefore, this study

incorporated additional evaluation metrics such as the memory

footprint of the model, the time required to predict a single instance

on a mobile device, and the average prediction time per instance.

For the four deep learning models, i.e., MobilenetV2, Vgg16,

Efficientnet-B3, and Resnet50, we evaluated various performance

metrics, including “Accuracy”, “Precision”, “Recall”, and “F1-

Score”. We also analyzed the mean prediction time for each deep

learning model before and after segmentation. These evaluation
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metrics allow for a comprehensive assessment of the model’s

performance in a mobile device environment.

For the dataset with the pre-segmentation process (Table 3), the

Resnet50 model exhibited the best classification performance with

an F1-score of 98.53%, an Accuracy of 98.16%, a Precision of

98.53%, and a Recall of 98.53%. However, it should be noted that

this model had a larger model size of 45.0 MB. On the one hand,

although the classification results were slightly lower than those of

Resnet50, the size of the MobilenetV2 model was greatly reduced to

4.44 MB, which was about one-tenth of that of Resnet50. On the

other hand, it required less computational power and ran smoothly

on mobile devices. Therefore, in terms of overall classification

performance, the MobilenetV2 model (F1-score = 97.82%,

Accuracy = 97.53%, Precision = 97.82%, Recall = 97.82%) was

more suitable for deployment on mobile devices.

For the dataset after segmentation (Table 4), the classification

accuracies of the Resnet50 model (F1-score = 98.22%, accuracy =

98.02%) and the MobilenetV2 model (F1-score = 98.22%, accuracy

= 98.02%) were essentially the same, with only a 0.02% difference in

accuracy. Compared with the disease classification models

constructed based on the pre-segmented dataset, the Resnet50

and Vgg16 models constructed based on the post-segmented

dataset showed a slight decrease in accuracy, while the

Efficientnet-B3 and MobilenetV2 models showed a slight increase

in accuracy.
3.2 Confusion matrices before and
after segmentation

Figures 6, 7 describes the confusion matrices for the pre- and

post-classification test sets of the MobilenetV2, Vgg16, Efficientnet-

B3 and Resnet50 deep learning models for the three diseases. For

the pre-segmentation dataset, the Resnet50 model performed better

than the other models in classifying the mixed disease speckle

dataset with respect to the pre-segmented dataset, while

MobilenetV2 ranked second and Vgg16 performed poorly.

Notably, the Vgg16 results performed inconsistently in identifying

maize small spot disease, with an accuracy of only 95.00%. Among

the misclassifications, 2.80% of the small spot test samples were

misclassified as the curvularia leaf spot, and 1.87% of the small spot

and 2.48% of the curvularia leaf spot test samples were misclassified

as the mixed spot. In addition, 2.79% of the mixed spot test samples

were misclassified as the curvularia leaf spot. The reason for this

discrepancy may be the similarity in early characteristics of the

small spot and the curvularia leaf spot, thus confusing the
TABLE 3 Comparison of pre-segmentation model results.

Models F1-Score Accuracy Precision Recall Run time Model size

MobilenetV2 97.82% 97.53% 97.82% 97.82% 1.24s 4.44 MB

Vgg16 96.92% 96.87% 97.83% 96.57% 3.33s 256.00 MB

Efficientnet-B3 97.78% 97.69% 97.47% 98.14% 1.84s 20.90 MB

Resnet50 98.53% 98.16% 98.53% 98.53% 2.10s 45.00 MB
TABLE 2 Experimental parameter settings.

Parameter name Parameter value

Learning rate 0.0001

Optimizer SGD

Momentum parameter 0.90

Batch size 16

Epoch 500
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classifiers. In addition, the curvularia leaf spot had the highest

classification accuracy, with the classifier correctly identifying

97.58% of the mixed spot test samples, demonstrating excellent

performance. In addition, the classifier’s classification accuracy for

the mixed spots has been consistent, correctly classifying 96.87%

of the test samples.
3.3 Prediction time before and
after segmentation

This study further compared the temporal curves of the single

prediction before and after segmentation of 50 images with the

same disease in the validation set using four deep learning models

(MobilenetV2, Vgg16, Efficientnet-B3, and Resnet50) (Figure 8).

During the prediction process of these deep learning models, we

observed a clear pattern of temporal changes. Initially, when the

deep learning models started making predictions, they took more

time due to the high computational complexity of the models, the

time-consuming training process, and the initial lack of model

adaptation to the data. However, after enough training, these

models gradually acquired more accurate feature representations
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and more efficient parameter combinations, which significantly

reduced the prediction time. The time required after

segmentation was slightly reduced compared to that before

segmentation. The image segmentation operation can simplify the

complexity of the input image, which is conducive to better

recognition and understanding of image features by the neural

network. By removing some unnecessary information, the efficiency

of the model during training and inference can be improved, thus

decreasing training time and resource consumption. By segmenting

the background, the neural network only focused on the region

containing the object without having to deal with the whole region.

The reduction in computation can speed up the model inference.

Especially, in the real world, where most of the objects are

concentrated in the center of the image, it is also possible to

reduce the processing area and thus obtain more accurate results.

Overall, the Resnet50 model achieved excellent performance in

classifying the mixed pot dataset in the test samples of the

segmented dataset, followed by MobilenetV2. However, Vgg16

performed poorly in this regard. It is worth noting that

the accuracy of the Vgg16 and Resnet50 models decreased after

segmentation, while the accuracy of MobilenetV2 and Efficientnet-

B3 increased. Taken together, the MobilenetV2 model performed
FIGURE 6

Confusion matrices before segmentation for each model.
TABLE 4 Comparison of post-segmentation model results.

Models F1-Score Accuracy Precision Recall Run time Model size

MobilenetV2 98.22% 98.02% 98.22% 98.22% 1.21s 4.44 MB

Vgg16 96.17% 96.37% 96.37% 95.99% 2.75s 256.00 MB

Efficientnet-B3 98.09% 97.86% 97.92% 98.26% 1.65s 20.90 MB

Resnet50 98.22% 98.02% 98.24% 98.22% 1.71s 45.00 MB
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better than the other three models in terms of the size and the single

image prediction time.
4 Discussion

To further discuss the factors contributing to the variation in

classification accuracy between models trained on pre-segmentation

and post-segmentation datasets, this study also explored the causes

through feature visualization techniques (Figure 9). We found that

the pre-segmentation images not only contained leaf and disease

spot features but also included noise features such as soil, weeds,

and stems. Compared to previous studies, it was observed that

besides the leaf features contributing to the background, the noise

features played an even more significant role (Ferentinos, 2018). In
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addition, the variations in soil background and other factors were

found among different plots, resulting in a degradation of model

performance when applied to different plots or different years (Guo

et al., 2019). The leaf region contributed more to the segmented

images, that is, the extracted classification features were mainly

from the leaf. Consequently, this reduced the impact on

performance when the model was applied to different plots or

different years (Song et al., 2022).

The Vgg16 (Raghu et al., 2020) and Resnet50 (Tan et al., 2018;

Yu et al., 2023) models are deep neural networks characterized by

many parameters and complex network structures. When dealing

with pre-segmentation images, these models tend to extract features

not only from the disease but also from the complex backgrounds.

This may lead to the models considering the complex backgrounds

as additional information for disease recognition, resulting in
BA

FIGURE 8

(A) Time required for a single prediction before segmentation for each model. (B) Time required for a single prediction after segmentation for each
model.
FIGURE 7

Confusion matrices after segmentation for each model.
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improved accuracy for disease recognition in the pre-segmentation

images compared to post-segmentation images (Chen et al., 2019).

In contrast, MobilenetV2 (Indraswari et al., 2022) and Efficientnet-

B3 (Zhang et al., 2020; Atila et al., 2021) are lightweight networks

with fewer parameters and simpler network structures. When

extracting disease features from pre-segmentation images, these

models may be limited by the complex backgrounds without

considering relevant disease features. However, in the post-

segmentation images, these models can focus on extracting

disease-specific features after removing the influence of the

complex background (Wang et al., 2021; Lao et al., 2022). As a

result, these models exhibited lower accuracy for disease

recognition in the pre-segmentation images compared to the

post-segmentation images. For contexts requiring swift outcomes,

such as on-field applications or embedded systems, lightweight

models like MobilenetV2 and Efficientnet-B3 might be more apt.

Specifically, the MobilenetV2 model, when processing post-

segmented images - especially after the removal of intricate

backgrounds - focuses on disease-specific features. This holds

invaluable real-world merit, as in many instances, interest might

be concentrated solely on the disease, discounting its surroundings.

Deep learning models typically employ feature mapping to

characterize image information, and increasing the network depth

generally improves accuracy (Liu et al., 2018). However, this also

leads to a higher number of parameters and computational

complexity. In identifying the small spot and curvularia leaf spot

diseases, these spots tend to exhibit similar pixel patterns, requiring

higher resolution representations than those extracted from CNN

feature maps alone (Waheed et al., 2020). Although increasing the

depth of the network results in more feature maps, these feature

maps become narrower as the network grows and may result in

ambiguous information about the spots. Considering that there is
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no direct computational relationship between the spots, simply

increasing the number of network layers would not necessarily

improve the accuracy, as evidenced by the low classification

accuracy of Vgg16 (Kristiani et al., 2020). In contrast, the

Resnet50 model utilizes residual connections facilitates learning

residual mappings and addresses the vanishing gradient problem,

allowing for effective feature extraction This design choice helps the

network effectively learn input features, which is the reason why

Resnet50 achieved the highest accuracy in this study

(He et al., 2016).

While Resnet50 exhibited superior accuracy, it falls short in

terms of operational speed compared to MobilenetV2 and

Efficientnet-B3. Both MobilenetV2 and Efficientnet-B3 are

lightweight networks, with the latter being deeper and more

complex than the former. To maintain efficiency while preserving

a certain level of accuracy, Efficientnet-B3 employs a composite

scaling method that uniformly scales the width, depth, and

resolution of the network. However, the increased complexity in

the design of Efficientnet-B3 also results in higher computational

requirements, potentially leading to longer execution times

compared to MobilenetV2 (Joohyung et al., 2022).

To validate the classification performance of the method

proposed in this study, we compared the optimal result of this

paper, MobilenetV2, with SKPSNet-50 (Zeng et al., 2022), the

improved yolov5n (Ma et al., 2023), and the improved ShuffleNet

V2 (Fei et al., 2023) for crop disease classification or crop

classification. The SKPSNet-50 proposed model is more effective

in recognizing corn leaf diseases in natural scene images, which has

fewer parameters and computation compared to the heavy-duty

model, but still has a higher number of parameters compared to

some lightweight networks, and its average recognition accuracy is

92.9%, which is about 50% higher than the SKNet-6 model. By
FIGURE 9

Comparison of feature extraction visualization on images before and after segmentation for each model.
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adding CA (Coordinate Attention) attention module to the Yolov5n

lightweight model, it improves 2.8 percentage points since the

original model, and the average recognition accuracy can be up to

98.20%, which effectively improves the recognition accuracy of the

not easily recognizable maize grey spot and maize big spot diseases,

and the method is characterized by higher accuracy and smaller

size. In the classification study of fresh cut flowers by the improved

ShuffleNet V2, the classification accuracy based on the traditional

color image dataset reaches 98.89%, and the classification accuracy

based on the deep data dataset is as high as 99.92%, and the

classification speed of each flower reaches 0.020 s. Our

MobilenetV2 result has a classification accuracy of up to 98.22%

for segmented images, and the model size is only 4.44 MB with a

classification speed of 1.21 s. This method is robust to classify corn

disease images collected in natural environments and can provide

high accuracy with limited computational resources. However, its

recognition efficiency is still low since low computational loads. We

believe that there is potential for further improving its accuracy and

efficiency in the future.

Therefore, it is important to consider the trade-off between

computational efficiency and accuracy when selecting a suitable

model for specific tasks or constraints. MobilenetV2 (Indraswari

et al., 2022) strikes a successful balance between accuracy and

efficiency through its lightweight design, optimized network

structure, and utilization of scaling strategies. It achieves high

classification accuracy while imposing a low computational load,

making it particularly well-suited for computing resource-

constrained environments (Paymode and Malode, 2022). This

characteristic renders MobilenetV2 an ideal choice for scenarios

that involve limited resources, such as mobile devices and

embedded systems.

With the evolving panorama of mobile technology and IoT

devices, lightweight models demanding fewer resources, like

MobilenetV2, can find extensive applications in these devices.

Farmers employing a straightforward mobile app, capturing

pictures of maize leaves with their smartphone cameras, followed

by the app swiftly identifying and furnishing information about the

disease, along with recommended treatment measures.

Furthermore, as UAV technology garners popularity in

agriculture, our algorithms can be integrated into these UAVs for

real-time monitoring of vast agricultural expanses, ensuring quicker

identification and treatment of diseases. Fundamental constraint in

our research was the undersupply of samples characteristic of

healthy maize leaves. This shortfall has indeed affected the

comprehensive spectrum of our dataset. We emphasize the need

for future investigations to channel efforts towards collating and

incorporating a richer array of genuine healthy leaf samples. Such a

holistic approach would inevitably enhance the trustworthiness and

broader applicability of the classification frameworks. Our current

emphasis on maize-centric diseases, though insightful, has given us

a deeper appreciation for the wider scope and adaptability of our

techniques across different crops. We are eager to gauge the

performance of our deep learning paradigms in discerning

diseases across a variety of crops. This exploration serves a dual

purpose: it underscores the adaptability and resilience of our models

and magnifies their relevance in an extended agricultural panorama.
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5 Conclusions

This study presented a novel method for maize leaf disease

classification using the RGB-D post-segmentation image data. To

enhance robustness and generalization, a data preprocessing

method including accurate edge detection, cropping and data

enhancement is designed. We trained four maize disease

classification models (i.e., Resnet50, MobilenetV2, Vgg16, and

Efficientnet-B3) with the deep learning approach to identify three

main maize diseases, including the curvularia leaf spot, the small

spot, and the mixed spot diseases. The experimental results show

that the classification accuracy of the deep image dataset reaches

97.82% with limited sample size and less hardware resources, and

the classification speed of each flower can be up to 1.21 s. Compared

with other traditional lightweight classical networks, the proposed

method shows strong competitiveness and excellent classification

performance in terms of the model size, the number of parameters,

the recognition accuracy, and the image detection speed. The

MobilenetV2 model performed better than the other three models

in terms of the size and the single image prediction time. The higher

classification accuracy and a better stability can help develop better

tools for agricultural disease detection. Considering the limited

number of disease species used in this study, there may be other

factors affecting the accuracy of the model in practical applications,

it is necessary to enrich the dataset by collecting more healthy and

diseased leaves in the future to enhance the robustness of the results.

To further improve the efficiency of disease identification and

classification, more research targeting large-scale field tasks is still

needed. Overall, our findings offer the possibility of developing

relevant portable devices to improve the selection efficiency of the

next generation of disease-resistant crop resources. In the future, we

will conduct further research on the classification system of crop

diseases, including not only corn, but also soybeans, wheat,

potatoes, etc. to expand the application areas and improve the

practical application value of the classification system.
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