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AC-UNet: an improved
UNet-based method for
stem and leaf segmentation
in Betula luminifera

Xiaomei Yi1†, Jiaoping Wang1†, Peng Wu1*, Guoying Wang1,
Lufeng Mo1, Xiongwei Lou1, Hao Liang1, Huahong Huang1,
Erpei Lin1, Brian Tapiwanashe Maponde1 and Chaihui Lv2

1College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China,
2Hangzhou Ganzhi Technology Co Ltd., Hangzhou, China
Plant phenotypic traits play an important role in understanding plant growth

dynamics and complex genetic traits. In phenotyping, the segmentation of plant

organs, such as leaves and stems, helps in automatically monitoring growth and

improving screening efficiency for large-scale genetic breeding. In this paper, we

propose an AC-UNet stem and leaf segmentation algorithm based on an

improved UNet. This algorithm aims to address the issues of feature edge

information loss and sample breakage in the segmentation of plant organs,

specifically in Betula luminifera. The method replaces the backbone feature

extraction network of UNet with VGG16 to reduce the redundancy of network

information. It adds a multi-scale mechanism in the splicing part, an optimized

hollow space pyramid pooling module, and a cross-attention mechanism in the

expanding network part at the output end to obtain deeper feature information.

Additionally, Dice_Boundary is introduced as a loss function in the back-end of

the algorithm to circumvent the sample distribution imbalance problem. The

PSPNet model achieves mIoU of 58.76%, mPA of 73.24%, and Precision of

66.90%, the DeepLabV3 model achieves mIoU of 82.13%, mPA of 91.47%, and

Precision of 87.73%, on the data set. The traditional UNet model achieves mIoU

of 84.45%, mPA of 91.11%, and Precision of 90.63%, and the Swin-UNet model

achieves . The mIoU is 79.02%, mPA is 85.99%, and Precision is 88.73%. The AC-

UNet proposed in this article achieved excellent performance on the Swin-UNet

dataset, with mIoU, mPA, and Precision of 87.50%, 92.71%, and 93.69%

respectively, which are better than the selected PSPNet, DeepLabV3,

traditional UNet, and Swin-UNet. Commonly used semantic segmentation

algorithms. Experiments show that the algorithm in this paper can not only

achieve efficient segmentation of the stem and leaves of Betula luminifera but

also outperforms the existing state-of-the-art algorithms in terms of both speed.

This can provide more accurate auxiliary support for the subsequent acquisition

of plant phenotypic traits.

KEYWORDS

Betula luminifera, stem and leaf division, UNET, hollow space pyramidal pooling,
crossed attention
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1 Introduction

Plant phenotyping is an emerging science that links genetics with

plant physiology, ecology, and agriculture (Li et al., 2020). Plant

phenotypes, at the latent level, allow for the extraction of important

traits such as plant size, shape, and growth dynamics (Zhou et al.,

2018). At a deeper level, they can reflect physical, physiological, and

biochemical traits that characterize the structure and function of

plant cells, tissues, organs, plants, and populations. Plant stem and

leaf segmentation are important for obtaining plant phenotypic traits

at different growth cycles. The key to plant phenotypic analysis is the

effective and correct segmentation of plant organs. Since 1990,

research related to plant organ segmentation, especially for diseased

leaf identification, has been emerging. The phenotyping of 2D images

is usually based on traditional image processing, machine learning,

and pattern recognition algorithms, such as threshold-based

segmentation (Fu et al., 2019), edge detection (Wang et al., 2018b),

region growing (Scharr et al., 2016), clustering (Abinaya and Roomi,

2016), and their combined extensions to each other (Kalyoncu and

Toygar, 2015; Pape and Klukas, 2015a; Pape and Klukas, 2015b).

Although the above methods can also achieve image classification

and segmentation, the results are slightly less satisfactory. In recent

years, with the application of deep learning in phenotypic data

parsing, a new perspective has been taken to solve some of the data

parsing bottlenecks encountered in phenomics research. In

particular, deep learning has made a major breakthrough in the

field of semantic segmentation. Deep learning, based on

convolutional neural networks (CNN), has reached an advanced

level in image classification and segmentation. Sadeghi-Tehran P

et al. (Sadeghi-Tehran et al., 2019) segmented images into

hyperparameters by using simple linear iterative clustering to

obtain canopy-related features. These features were then fed into a

CNN classification model to achieve semantic segmentation of wheat

ears. Tamvakis P N et al. (Tamvakis et al., 2022) used deep learning

methods (supervised and unsupervised learning-based approaches)

to semantically segment images of grape leaves. They developed an

automatic leaf phenotype analysis object detection system by

segmentation that generates information about the structure and

function of the leaves. Frank Gyan Okyere et al. (Okyere et al., 2023)

developed a neural network-based segmentation tool to achieve high-

throughput phenotypic analysis of cylinder beans and wheat.

Conventional segmentation methods are more commonly

implemented for the segmentation of crop stems, leaves, and fruits,

and less frequently for forestry applications.

Betula luminifera is an economically valuable forest tree widely

distributed in China. It is commonly found in the southern region

of the Qinling Mountains and Huaihe River, at elevations ranging

from 600 to 1700 meters above sea level. The wood of Betula

luminifera is excellent, with a yellowish or reddish-brown color, fine

texture, and hardness, making it highly valuable with diverse

applications.To address the efficient acquisition of plant

phenotypic traits, this study utilized self-collected images of

Betula luminifera. It employed a modified version of the

traditional UNet (Ronneberger et al., 2015), replacing the coding

part with the VGG16 backbone feature extraction network

(Simonyan and Zisserman, 2014; Deng et al., 2009). Additionally,
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the study introduced the ASPP module (Chen et al., 2018); (Chen

et al., 2018); (Chen et al., 2017) with further improvements (He

et al., 2016) (Wang et al., 2018a) and incorporated the cross-

attention mechanism (CCA) (Huang et al., 2018). For the loss

function, the compound loss Dice_Boundary (Kervadec et al.,

2019); (Ma et al., 2021) was employed. The resulting model,

called AC-UNet, aimed to re-fine the segmentation of Betula

luminifera’s stems and leaves. The study conducted experiments

using Betula luminifera seedlings from the Pingshan Experimental

Base of Zhejiang Agriculture and Forestry University in

northwestern Zhejiang Province as test subjects. The experimental

results were compared with those of PSPNet (Zhao et al., 2017),

DeepLabV3 (Chen et al., 2018), UNet, and Swin-UNet (Cao et al.,

2021),The findings demonstrated that the proposed model

outperformed other segmentation algorithms in terms of

performance. Specifically, it exhibited more detailed feature

extraction along the edges of the plant stems and leaves, leading

to an overall better plant restoration.

The contribution of this paper consists of the following two

main parts:

1. Constructing a Betula luminifera dataset with Betula

luminifera seedlings as the experimental object, based on three

lineages, namely Taihuyuan in Hangzhou, Napo in Guangxi, and

Anhua in Hunan.

2. A semantic segmentation method is proposed based on an

improved UNet piggy-backing on ASPP and CCA. The model uses

VGG16 as the backbone network to extract deep semantic

features, piggybacks on ASPP modules with appropriate

hole expansion rates set, fuses the CCA mechanism with

Dice_Boundary loss, and captures long-range global feature

information by reducing the number of network parameters and

network depth to obtain multiscale semantic information and

improve segmentation accuracy.

The construction of the data set meets the data needs of the

scientific research community and ecologists for Betula glabra

research, and provides a powerful tool for ecosystem monitoring

and plant genetics research. The improved UNet semantic

segmentation technology comes from the challenges encountered

in light bark research. With a deep understanding of the complexity

of seedlings and the limitations of traditional segmentation

methods, detailed experiments have demonstrated the significant

performance of this algorithm in processing Betula glabra data sets.

We believe that this method is not only applicable to Betula glabra

but also has the potential to Its wide range of applications include

medical image segmentation, cartography, and botanical research.
2 Materials and methods

2.1 Experimental dataset

A forestry dataset was constructed based on image segmentation

of Betula luminifera seedlings to obtain a large amount of accurate

data about Betula luminifera. These images are used to segment plant

organs such as leaves and stems, providing an effective aid for plant

monitoring and plant phenotype analysis.
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Seedling cultivation and data collection were carried out at the

Pingshan Experimental Base of Zhejiang Agriculture and Forestry

University. The study area is located in Lin’an District, Hangzhou

City, Zhejiang Province, at Zhejiang Agriculture and Forestry

University, Jincheng Street, with geographical coordinates ranging

from 118°51’ to 119°52’ E and 29°56’ to 30°23’ N. The area has a

subtropical monsoon climate with four distinct seasons, abundant

light, and rainfall, making it suitable for the cultivation of Betula

luminifera seedlings. The three seedlings selected for this study were

sourced from provinces south of their natural distribution in the

Qinling and Huaihe River basins (Zhejiang, Guangxi, and Hunan)

and covered a wide range of seedling morphology to verify the

applicability of the method to different types of plants. The

seedlings for data collection were selected from the uniformly

cultivated Betula luminifera at the Pingshan Experimental Base of

Zhejiang Agriculture and Forestry University. There were a total of

300 plants. The cultivation took about 30 days. The height of the

plants ranged from 10 to 35 cm, and the seedlings grew upright. To

facilitate data collection, each seedling was individually

transplanted into a uniform calibre plastic pot for numbering.

The cultivation greenhouse was maintained at a temperature of

23°C during the day with natural light, 20°C at night, and a uniform

humidity setting of 70%.

In this study, black velvet cloth was used as the shooting

background during collection to reduce the impact of background

objects and light source scattering and provide a stable environment

for plant shooting. The iPhone 13 Pro Max mobile phone is used as

a plant shooting device to obtain high-quality plant images. The

same shooting device is always used during collection, which

stabilizes the image quality and helps capture the microscopic

details of the seedlings. Image collection will be carried out at

different times in November 2022 and December 2022 to ensure

that the collected data sets are in a stable growth state at the same

stage. During filming, the lens was held flush with the target of the

photographed plant, and the distance from the plant sample to the

lens was kept at d = 90 cm (Figure 1). The plants were placed on a

tray at the bottom of the platform, and they were rotated in turn at

90-degree clockwise angles. Multiple angles were taken for the front,

back, left, and right sides of each plant, with the light source placed

at the viewpoint directly opposite the sample, pointing towards the
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photographed sample. A total of 1200 valid images were taken

during this data collection process. After screening and culling

(removing images with high longitudinal overlap and sparse

foliage), 490 images were obtained, forming the original

image dataset.

The plant stems and leaves in the original image dataset were

accurately labeled using the Labelme image annotation software, as

shown in Figure 2. The labeled images contain three semantic

categories: the background part, stem, and leaf. The pixel values

assigned to these categories are as follows: the background part is 0,

the stem is 1, and the leaf is 2. The dataset consists of a total of 490

RGB labeled images, which were randomly divided into a training

set and a validation set in a ratio of 9:1. This resulted in 442 training

samples being inputted into the UNet model for training, while the

remaining 48 im-ages were used for validation.
2.2 OTSU

The maximum variance between classes method, commonly

known as the Otsu method, is a self-fitting method for automatically

finding thresholds for the bimodal case. It was proposed by the

Japanese scholar Nobuyuki Otsu in 1979 and is currently recognized

as a relatively reasonable choice for threshold segmentation, yielding

good segmentation results. As the name suggests, the method uses the

idea of maximizing the variance between the target and background

regions for segmenting images. In other words, the optimal threshold T

is chosen to maximize the variance between the target and the

background, defining the region smaller than the threshold T as D1

and the region larger than the threshold as D2. This allows the required

region to be distinguished based on the threshold definition. The

advantage of this method is its simplicity and speed of calculation. It is

not easily affected by image brightness and contrast and is widely used

in image binarization segmentation.
2.3 HSV colour threshold splitting

HSV is a color space based on the intuitive properties of color,

created by A.R. Smith in 1978 and also known as the hexagonal
FIGURE 1

Diagram of the plant shot.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1268098
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yi et al. 10.3389/fpls.2023.1268098
cone model. It is a color system that is more commonly used in

people’s lives compared to RGB. HSV is commonly found in TV

remote controls, painting palettes, and brightness adjustments in

video software. Subjectively, the HSV color system aligns more with

how people describe color. The parameters of color in this system

are: Hue, Saturation, and Value.

Hue (H) represents popular perceptions of colors like red,

green, blue, etc. However, more refined expressions can be used

such as plum red, magenta, grass green, dark green, and so on.

Saturation (S) refers to the intensity or shade of a color. It is a

concept that takes values in the range of 0-100%. For example, in

the case of red, bright red has high saturation as it represents a pure

color. If mixed with other shades of color, the saturation decreases,

such as in the case of pink.

Value (V) represents brightness or purity of color, ranging from

0 to 100%. This value is commonly used when adjusting the

brightness of a screen.

Referring to the color range table in Table 1, the region of

interest (ROI) in the image is selected. Generally, before carrying

out this step, denoising is required. However, in this paper, since it

is based on the mask map of the prediction results and there is no

noise effect, denoising is performed directly on the extracted

leaf part.
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2.4 Improved UNet-based plant image
segmentation algorithm

2.4.1 Network architecture
The UNet network (Ronneberger et al., 2015) was proposed in

2015, and at the time of its mention, its main application was

semantic segmentation of medical images. The emergence of UNet

has greatly reduced the amount of data required for training deep

learning neural networks, which originally required thousands of

annotated data to be trained, and it pioneered the application of

neural networks to image segmentation. This network is still widely

used despite the birth of many segmentation networks. The

structure of the traditional UNet model is shown in Figure 3. The

highlight of this structure is that the whole network presents a U-

shaped structure, hence the name UNet. The UNet network is very

simple, with the first half acting as feature extraction and the second

half as upsampling. This structure is also called an encoder-decoder

structure in some literature. The downsampling part refers to the

basic structure of a convolutional neural network, with two

convolutional units composed of 3x3 convolutions, each followed

by a ReLU and a 2x2 maximum pooling, while doubling the number

of feature channels to capture context for feature extraction and

learning. In the upsampling section, two convolutional units
FIGURE 2

Schematic diagram of image annotation.
TABLE 1 HSV colour space colour range.

black gray white red orange yellow green cyan blue purple

Hmin 0 0 0 0 156 11 26 35 78 100 125

Hmax 180 180 180 10 180 25 34 77 99 124 155

Smin 0 0 0 43 43 43 43 43 43 43

Smax 255 43 30 255 255 255 255 255 255 255

Vmin 0 46 221 46 46 46 46 46 46 46

Vmax 46 220 255 255 255 255 255 255 255 255
fron
tiersin.org

https://doi.org/10.3389/fpls.2023.1268098
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yi et al. 10.3389/fpls.2023.1268098
composed of 3x3 convolutions, immediately followed by 2x2

convolutions, halve the number of feature channels that were

originally doubled and concatenate them with the corresponding

cropped feature maps in the encoding section. The missing values at

the boundaries after each previous convolution step are filled in.

Finally, each 64-component feature vector is mapped to the desired

number of classes using a 1x1 convolutional unit.

The UNet model achieves superior segmentation results on

various datasets. The feature information of plants itself is relatively

stable, and there are no special or novel feature information.

Therefore, both high-level semantic features and low-level

semantic features are extremely important. As one of the current

excellent semantic segmentation networks, the UNet network also

has some shortcomings. Firstly, as each pixel point needs to take a

patch, it makes the patches of two neighboring pixel points too

similar, resulting in a significant amount of redundancy. This

redundancy not only leads to a poor segmentation situation but

also reduces the training speed of the network. Secondly, it is

challenging to achieve both localization accuracy and access to

contextual information simultaneously. The larger the patch size,

the more maximum pooling layers are required, which in turn

reduces the localization accuracy. Additionally, as the number of

pooling layers increases, more information is lost.

Then, directly inputting the shallow network information into

the decoder part will cause a low rate of obtaining semantic

information of stem-and-leaf edges, resulting in poor

segmentation accuracy. To improve the training performance and

address the aforementioned deficiencies, this paper introduces the

following improvements to the traditional UNet model architecture:
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(1) Using VGG16 as the main stem feature extraction part of

UNet (Ronneberger et al., 2015), which significantly reduces the

amount of parameter computation of the model, decreases memory

occupation, and improves the computational speed.

(2) Introducing an improved ASPP module (Chen et al., 2018)

in the middle of the encoder and de-coder, which expands the

sensory field without losing semantic information and enhances the

network’s feature extraction capability.

(3) Introducing CCA (Huang et al., 2018) in the decoding part

to reduce GPU memory usage and im-prove model

segmentation accuracy.

(4) Replacing the loss function with Dice_Boundary composite

loss (Kervadec et al., 2019); (Ma et al., 2021) to ad-dress the

imbalance of pixel distribution between categories. The improved

model structure is shown in Figure 4.

2.4.2 Optimised feature extraction module
The external environment presents various interferences in the

Betula luminifera im-age acquisition process. Additionally, the

UNet network itself employs a specific number of convolution

kernels in the encoding process to extract image features. This

multi-step convolutional operation leads to excessive redundancy in

the feature map of the segmentation model, resulting in poor

semantic interpretation of Betula luminifera images and reduced

network training speed. To reduce parameter redundancy within

the UNet network, enhance network depth for improved

classification accuracy, and extract more abstract higher-order

features from the image, VGG16 is utilized as the backbone

feature network of UNet. The use of pre-trained mature models
FIGURE 3

Traditional UNet network architecture diagram.
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significantly enhances the training speed of the UNet network while

ensuring accuracy. Compared with other networks, VGG16 can

employ multiple 3x3 convolutional kernels instead of large-scale

convolutional kernels, thus reducing the number of parameters

during network operation. In this algorithm, the three fully

connected layers of VGG16 are omitted due to their excessive

consumption of computational resources. Moreover, VGG16 and

VGG19 have demonstrated better segmentation effects in practical

applications. Compared with VGG19, VGG16 has three fewer

convolutional layers, making it a shallower network. Given that

the network’s quality is ensured, this paper selects the network with

fewer parameters. The structure of VGG16 as the main feature

extraction network is depicted in Figure 5. Furthermore, this paper

adopts pre-training weights from Imagenet (Deng et al., 2009) for

transfer learning to improve the model’s generalization.

2.4.3 Fused multidimensional feature acquisition
Betula luminifera images contain multi-scale objects, such as

small leaves versus larger leaves, smooth branches versus branches

with small forks, and so on. The image is subjected to continuous

convolution and pooling or other downsampling operations in the

network to integrate the multi-scale contextual information, which

tends to result in low-resolution feature maps in the network,

making it impossible to reconstruct the image details.In order to

overcome the disadvantages of local information loss and lack of

correlation of distant information due to the grid effect when using

a single null convolution, the expansion rate is changed based on

the original null convolution in the ASPP module (Chen et al.,

2018). A type of null convolution that can increase the sensory field

while still maintaining sensitivity to details is proposed. The

optimized cavity convolution can effectively expand the receptive

field of the convolution kernel to incorporate larger contextual
Frontiers in Plant Science 06
information without increasing the number of parameters and

computational effort.

In the semantic segmentation algorithm, the two-dimensional

hole convolution is achieved by inserting 0 between each pixel of the

convolution kernel. For a convolution kernel with a size of k×k, the

size after the hole convolution is kd×kd, where kd = k + (k‒1) × (r‒

1). Figure 6 shows the size of the convolution kernel receptive fields

at different expansion rates, and the dilated convolution receptive

fields with expansion rates of 1, 2, and 4 are 3×3, 5×5, and

9×9, respectively.

The ASPP module uses multiple parallel cavity convolution

layers with different sampling rates. The features extracted for each

sampling rate are further processed in separate branches and fused

to generate the final result. This approach allows for the extraction

of multiscale features of the object and image context while

ensuring high image resolution. Wang P (Wang et al., 2018a)

et al. found that improper settings of the original parallel cavity

convolution expansion rate could easily cause a “grid effect,” as

shown in Figure 7A.

A reasonable expansion rate setting should be as shown in

Figure 7B, which not only avoids the loss of relevant information

but also captures the target context at different scales. Let’s define

the maximum distance between the nonzero values of the

convolution kernels of the ith layer as follows:

Mi = max½Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri�(Mn = rn) (1)

According to the literature (Wang et al., 2018a), the void

convolution’s growth rate should adhere to the following theory:

If the expansion rates for N convolutions and void convolutions of

size K*K are figured to be [r1, r2,…, ri,…, rn], then the formula

satisfies M_2 k, where ri de-notes the ith void convolution’s

expansion rate and M_i denotes the ith layer’s maximum
FIGURE 4

Diagram of the improved UNet network architecture.
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expansion rate. There shouldn’t be a common factor relationship

among the growth rates of the same group (e.g., 2, 4, 8, etc.), as this

will still result in lattice effects. For example, when K = 3 and r = [1,

2, 5], no lattice effect will occur after validation; however, when K =

3 and r = [1, 2, 9], which do not meet the requirements after

validation, a lattice effect will occur.

Therefore, this paper follows the above design principles and

uses multiple parallel convolution layers with different sampling

rates. Experimentally, it resets a set of null convolutions with

expansion rates of 1, 2, 7, and 15 (M_i = 3 = k). The features

extracted from each sampling rate are processed separately and
Frontiers in Plant Science 07
fused into the final result. The adjusted ASPP module is shown

in Figure 8.

As shown above, after the fourth block, the parallel architecture

is added. The left side of the parallel part consists of a 1x1

convolution, three 3x3 convolution kernels (with void rates of 2,

7, and 15), and pooling operations. The right side represents the

image-level features, wherein the features are globally pooled on

average, convolved, and then fused. After parallelization and

subsequent convolution with 256 1x1 convolution kernels (the

convolution layer is followed by a BN layer), the resulting feature

map is upsampled to the desired feature dimension.
2.4.4 Integrating efficient attention
The influence of environmental factors such as temperature,

humidity, and light intensity leads to variations in the growth states

of each Betula luminifera plant. Consequently, there are difficulties

in acquiring features. The attention mechanism, inspired by the

human attention mechanism, focuses on important information

features. The objective of this study is to achieve high-precision

segmentation of Betula luminifera stems and leaves. By focusing on

different feature pheromones of stems and leaves to achieve a higher

precision segmentation effect, cross attention (CCA) is introduced

to enable the network to learn more interested regions, thus

avoiding the loss of too much semantic information. This

enhancement leads to improved segmentation performance of

the model.

The Non-local approach is proposed to address the problem of

long dependencies (Wang et al, 2021). In this case, the CCAmodule

(Huang et al., 2018) replaces the global attention mechanism in

Non-local with a cross-shaped attention mechanism. This

modification allows individual pixels to obtain global contextual

dependencies through the cross module, thanks to a double-loop

operation. As a result, it effectively enhances feature extraction and

achieves leading performance in segmentation-based benchmarks.

Moreover, the CCA module is GPU memory friendly, providing a

significant solution to the issue of excessive parameters in the UNet

network and the resource consumption during the model

training process.

Compared to Non-local, CCA reduces the FLOPS by 85%. The

input image undergoes feature extraction by the backbone network,

and the fused CCA not only mitigates the loss of local information

but also captures long-distance global information, thereby

improving the network’s feature extraction capability.

In summary, this paper introduces the CCA module in the

decoding part, which operates through the attention mechanism

illustrated in Figure 9.
2.4.5 Optimisation of loss functions
Unlike conventional semantic segmentation of objects, the stem

and leaf segmentation of Betula luminifera has fewer categories,

which include three parts: stem, leaf, and background. The other

two categories are more challenging to distinguish overall due to the

uncertainty in the proportion of different plant length distributions.

They are also several orders of magnitude smaller than the spatial

occupation of the background. There is a well-known drawback to
FIGURE 5

Optimised backbone feature extraction module.
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the highly unbalanced problem in that it assumes all samples and

categories are of equal importance. This assumption typically leads

to instability in training and results in decision boundaries that are

biased towards the more numerous categories.

To address the above imbalance problem and consider the

image as a whole, this paper combines Dice loss (Ma et al., 2021)

with Boundary loss (Kervadec et al., 2019) and introduces a
Frontiers in Plant Science 08
compound loss function, Dice_Boundary, for optimizing the loss

of the training model. The function is defined as follows:

lDiceBoundary = lDice + lBoundary (2)

An ensemble similarity measure function called the former Dice

loss function is utilised to lessen the inaccuracy between the

segmented and labelled images. It is typically used to determine
FIGURE 6

Field of perception for convolution at different expansion rates R.
BA

FIGURE 7

Null convolution (A) Null convolution “lattice effect”.(B) Combined hole convolution with reasonable expansion rate.
FIGURE 8

Hollow Pyramid Pooling Module.
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how similar two samples are, producing results in the [0,1] range.

Greater overlap between the expected and actual results, which

denotes improved performance, is shown by a larger score. In

contrast, a lower loss value is preferred, as shown in equation (3).

lDice=1−
2oC

c=1oN
i=1g

c
i s

c
i

oC
c=1oN

i=1
gci +oC

c=1oN
i=1s

c
i

(3)

where denotes the predicted label, denotes the true label, N is

the number of pixels in the image, and C is the number of

classifications. The latter Boundary loss function takes the form

of a contour space rather than a region metric to alleviate the

difficulties of the highly unbalanced problem. In addition, the

Boundary loss supplements the region in-formation and is usually

applied to segmentation tasks with a high imbalance, as shown in

equation (4).

Dist( ∂G, ∂ S) =
Z
∂G

jjy∂ S(p) − pjj2dp (4)

where ‘p’ denotes a point on the edge of ‘A’, and ‘q’ is the

corresponding point on ‘B’, in other words, ‘q’ represents the

intersection with ‘A’ found at point ‘p’ on ‘B’. ‘||.||’ de-notes the

paradigm.

Dist(∂G,∂S)≈2
Z

DS

DG(q)dq (5)

where DS denotes the distance between even contours, and D is

the distance map relative to the boundary, in other words, D

denotes the distance between any point q and the nearest point

on the contour. Equation (5) is used to derive equation (6).

Dist( ∂G, ∂ S) = 2(c(q)s(q)dq −

Z
W
∅G (q)g(q)dq) (6)

lBoundary =
Z
W
∅G (q)Sq(q)dq (7)

where S is the binary indicator function of the region S and is

the horizontal set representation of the boundary. For S = [value],

the softmax output of the network replaces [value] in equation (7)

to obtain the boundary loss of equation (6).
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3 Experimental analysis and discussion

3.1 Data preprocessing

3.1.1 Shearing
Image clipping is an operation that cuts out a specific area in an

image. Clipping can remove noise and avoid large-area image

exposure problems; highlight areas of interest, reduce

interference, and make the image more focused on the target

area; resize, adjust For a specific input size, it facilitates the

processing of the model. The images collected in this research

have problems such as overexposure of light, unprotrusive regions

of interest, images taken by mobile phones, and inconsistent image

sizes. Therefore, the cutting method is used to preprocess the

images to meet the needs of the algorithm and improve the

efficiency of image processing. quality and effect.

3.1.2 Median filtering
Images are subject to temperature and humidity, magnetic

fields, losses during signal transmission, vibration noise, etc.,

during formation or transmission, resulting in degradation of

image quality and distortion of the final imaging results. These

factors inevitably have an impact on later image analysis and

research. In the image acquisition of this study, the irradiation of

the physical light source and natural light at different times of the

day caused greater disturbance to the subsequent image processing

work. To reduce the effects of noise, noise reduction was applied

using image filtering processing.

Based on the characteristics of the collected Betula luminifera

images, a spatial domain filtering process is used. Spatial domain

filtering consists of linear and non-linear filtering. In this study, the

final approach utilizes the median filtering algorithm in non-linear

filtering to achieve noise reduction processing of the images.

Median filtering has the effect of removing impulse noise and

preserving edge details of the image.

As a typical type of non-linear smoothing filter, the basic

principle of median filtering is to replace the value of a point in a

digital image or digital sequence with the median of the values of the

points in a neighborhood of that point. This allows pixels with a

relatively large difference in gray value compared to the
FIGURE 9

CCA module.
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surrounding pixels to be replaced, effectively eliminating isolated

noise points. The median filtering formula can be expressed as:

Fi = Med Fi−m,…, Fi,…, Fi+mf g (8)

(For a one-dimensional sequence, taking p numbers for median

processing, m = (p-1)/2.)

For two-dimensional images undergoing median filtering, the

filter window is also two-dimensional. This window can take on

various shapes, including lines, squares, circles, crosses, and so

on. The formula for two-dimensional median filtering can be

expressed as:

Fi,j = Med fi,j
� �

(9)

(Med for the number of filter windows)

Mean filtering is a common linear filtering algorithm that

determines the average of the noise components, as the name

suggests. In the procedure, the average value of the adjacent pixels in

a template is used to replace the original pixel value. The target pixel

itself and the eight pixels around it that are centred on it make up the

template. Unlike mean filtering, this method preserves the image’s edge

information for further image processing while also addressing the

problems of blurring image details and loss of features (Figure 10A).

Bilateral filtering, like median filtering, is a non-linear filtering

method that combines the spatial proximity of an image and the

similarity of pixel values in a compromise process. It takes into

account both spatial domain information and grayscale similarity to

achieve edge-preserving denoising. In this study, the output of the
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median filter is almost identical to the original image. The bilateral

filter has little effect on the pixel values of the edges. However, due

to the preservation of too much high-frequency information, the

noise in the color image is not cleanly filtered, resulting in a lack of

detailed texture, as seen in the figure with the missing leaf

veins (Figure 10B).

Gaussian filtering is a linear smoothing filter that is suitable for

removing Gaussian noise and is widely used in the noise reduction

process of image processing. In layman’s terms, Gaussian filtering is

the process of weighted averaging of the entire image. Each pixel’s

value is obtained through a weighted average of its own value and the

values of other pixels in its neighborhood. While the difference

between the Gaussian filtered image and the median filtered image

may not appear significant, the image processing speed is much slower

with Gaussian filtering compared to median filtering (Figure 10C).
3.2 Experimental environment parameter
settings and evaluation indicators

The experimental device has an NVIDIA GeForce RTX 3060

GPU, a 12th Gen Intel(R) Core(TM) i5-12400 2.50 GHz processor,

and 12 GB of video memory. Windows 64-bit with CUDA 11.2 is

the operating system used in the software environment. The deep

learning framework is PyTorch, and Python is the programming

language. As the deep learning framework, PyTorch was employed.

A batch training approach was used to train the network. For
B

C

A

FIGURE 10

Comparison of filtering methods. (A) Median filtering VS Mean filtering. (B) Median filtering VS Bilateral filtering. (C) Median filtering VS Gaussian
filtering.
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training, different batches of the training and validation sets were

created. the network model’s traversal of every image in the training

set is calculated as one iteration. The network model is initialized

using pre-trained weights to initialize the backbone network. The

initial learning rate is 0.001 and is optimized by the Adam algorithm

to calculate the adaptive learning rate for each weight parameter.

In order to quantify the segmentation effect of the segmentation

method in this article on light bark images and compare the

segmentation performance of different methods, the evaluation

criteria introduced in this article mainly include category average

pixel accuracy (mPA), precision (Precision), average intersection

over union (mIoU) and F1 score. Among them, FN means that the

model incorrectly classified it as a negative example, but it is actually

a positive example; FP means that the model incorrectly classified it

as a positive example, but it is actually a negative example; TP

means that the model correctly classified it as a positive example,

but it is actually a positive example; TN means The model correctly

classified them as negative examples, but they were actually negative

examples. The detailed division is shown in Table 2.

3.2.1 Mean Pixel Accuracy
Mean pixel accuracy(mPA), Calculate the proportion of pixels

per class that are correctly classified. mPA is expressed as:

Pi =
TP

TP + TF
(10)

(Note: Pi indicates pixel accuracy for each category)

mPA =
sum(Pi)

class number
(11)
3.2.2 Precision
Precision, also known as the accuracy rate, measures the

proportion of correct predictions (true cases) out of all

predictions that are positive:

Precision =
TP

TP+FP
(12)
3.2.3 Mean intersection over union
Mean Intersection over Union (mIoU) is the ratio of the

intersection between the true label value and the predicted value

to the union between the true value and the predicted value. mIoU

is expressed as follows:

mIoU =
TP

FP+FN+TP
(13)
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3.2.4 F_1 Score
The F1-Score, also known as the Balanced F1-Score, is defined

as the average sum of the precision and recall rates. The expression

for the F-Score is:

F1 = 2 ∗
Precision∗Recall
Precision+Recall

(14)

where Recall is expressed as the recall rate, which measures the

probability of a category being correctly predicted among the true

values, and the expression for Recall is:

Recall =
TP

TP + FN
(15)

FLOPs/G denotes the model complexity of the network and

Params/M denotes the total number of parameters of the entire

network model.
3.3 Backbone network performance
comparison

In response to the problem of poor segmentation performance

of stem and leaf details and edge parts in the experiment of Betula

luminifera stem and leaf segmentation, two schemes are proposed

to modify the UNet backbone network using the deep feature

extraction network VGG16 and the feature extraction network

ResNet50 with a residual network structure. Two types of UNet

networks are trained under the same conditions to segment the

stems and leaves of Betula luminifera, respectively. By comparing

the effects of the two backbone networks on the UNet algorithm in

stem and leaf segmentation, it is shown that UNet equipped with

the VGG16 backbone network has a more precise detection effect,

which is closer to the accuracy of the segmentation algorithm

proposed in this article. Please refer to UNet-3 in Table 3.

The training loss curves and validation loss curves for the two

backbone networks are displayed in Supplementary Figures 11A, B,

respectively. The 100 training rounds’ worth of loss curves are

shown in Supplementary Figure 11A. Supplementary Figure 11A

shows that the loss values of both backbone networks on the

training set first decrease fast and then roughly level out,

indicating better convergence. On the other hand, the validation

loss curve offers a better representation of the network’s

performance on brand-new, untested data.

The validation loss values for ResNet50 swing noticeably in the

later phases of training, as seen by the loss curves for the validation

set in Supplementary Figure 11B. This suggests that the network’s

ResNet50 structure has been severely overfitted. The validation loss
TABLE 2 Confusion matrix for classification results.

The Real Deal
Predicted results

Positive examples Counter examples

Positive examples True example False counterexample

Counter examples False example true counterexample)
TABLE 3 Accuracy comparison experiments for different backbone
networks.

Method VGG16 ResNet50 mIoU mPA

UNet-1 √ 85.34% 91.27%

UNet-2 √ 86.69% 92.52%

UNet-3 √ 87.50% 93.36%
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values of VGG16, however, stay smooth and essentially converge in

the late training period, demonstrating that the model has attained a

respectable training effect.
3.4 Ablation experiments

In order to verify the improvement of segmentation

performance of improved UNet, this paper conducts

segmentation performance ablation experiments on the self-made

optical Betula luminifera data set. Replace the backbone feature

extraction network of UNet itself with VGG16, add the ASPP

module between the backbone feature extraction module and the

enhanced feature extraction module, add the CCA attention module

to each feature layer of the enhanced feature extraction module, and

introduce Dice_Boundary Loss, setting Nine model experimental

comparisons are detailed as follows:

UNet-D: In the traditional UNet model, the Dice_Boundary

Loss loss function is introduced;

UNet-VD: Based on UNet-D, the backbone feature extraction

network is replaced by VGG16;

UNet-AD: Based on UNet-D, the ASPP module is added

between the backbone feature extraction module and the

enhanced feature extraction module;

UNet-CD: Based on UNet-D, the CCA attention module is

added after strengthening each feature layer of the feature

extraction module;

UNet-VAD1: Based on UNet-VD, the ASPP (1,6,12,18) module

is added between the backbone feature extraction module and the

enhanced feature extraction module;

UNet-VAD2: Based on UNet-VD, the ASPP(1,2,4,8) module is

added between the backbone feature extraction module and the

enhanced feature extraction module;

UNet-VAD3: Based on UNet-VD, the ASPP(1,2,7,15) module is

added between the backbone feature extraction module and the

enhanced feature extraction module;

UNet-VCD: Based on UNet-VD, the CCA attention module is

added after strengthening each feature layer of the feature

extraction module;

UNet-VACD: Based on UNet-VAD, the CCA attention module

is added after strengthening each feature layer of the feature

extraction module, which is the method in this article.

Table 4 details the performance gains obtained through the

combination of different modules. The input size of the training

images is 512*512. From the results of the ablation experiment, it

can be seen that comparing UNet and UNet-D, the mIoU,

mPresicion, and mPA indicators have improved. It shows that

introducing the Dice_Boundary Loss loss function into the model

has certain benefits in improving the accuracy of the model.

Comparing UNet and UNet-VD, the index values of UNet-VD

in mIoU, mPresicion, and mPA have all increased, confirming that

replacing the feature extraction network with VGG16 is the main

factor in improving the model segmentation performance.

Comparing the three models UNet-VAD1, UNet-VAD2, and

UNet-VAD3, the indicators in mIoU, mPresicion, and mPA are all

higher than UNet-D. The index of UNet-VAD3 is the best among the
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three, that is, the segmentation performance of this model is better,

indicating that the dilation rate of (1, 2, 7, 15) used in dilated

convolution is themain factor in improving segmentation performance.

Compared with UNet-D, UNet-VD, UNet-AD, and UNet-CD,

the mIoU, mPresicion, and mPA indicators have all improved. It

shows that both dilated convolution ASPP and cross-attention

mechanism CCA can improve the segmentation performance of

the model to a certain extent. Among them, UNet-AD has a higher

degree of improvement in performance indicators than the other

three models. Therefore, the addition of ASPP is an overall

improvement. The workhorse of model segmentation performance.

Comparing UNet-VCD and this article’s method UNet-VACD,

the replacement of the backbone feature network and the addition

of CCA did not significantly improve the efficiency. The

introduction of ASPP improved the segmentation accuracy of the

model to a certain extent. This comprehensive evaluation process

allows us to evaluate the performance and stability of the proposed

AC-UNet model more efficiently.
3.5 Performance comparison of different
segmentation models

The method presented in this paper is compared with several

advanced segmentation methods, namely PSPNet, DeepLabV3,

UNet and Swin-UNet, on the Betula luminifera dataset. To

ensure the rigor and fairness of the comparison experiments, all

segmentation methods employ the same experimental equipment,

uniform image size, identical parameter set-tings, and consistent

training processes. The differences in data, including mIoU, mPA,

FLOPs, and Params, between the methods are evaluated and

compared. As depicted in Table 5, the AC-UNet plant stem and

leaf segmentation model, designed in this paper, exhibited the best

segmentation performance.

Table 5 show the results of comparing AC-UNet with the

remaining four networks. The mIoU, mPA, Precision, and F1, all

four metrics of the method model in this paper are higher than the

remaining three networks, with F1 = 93.52%, indicating the
TABLE 4 Results of ablation experiments.

Method mIoU Presicion mPA

UNet 84.45% 92.02% 91.11%

UNet-D 86.03% 92.10% 91.73%

UNet-VD 86.69% 92.49% 92.52%

UNet-AD 86.71% 92.32% 92.48%

UNet-CD 86.68% 92.30% 92.45%

UNet-VAD1 86.95% 92.79% 92.54%

UNet-VAD2 87.08% 92.79% 92.71%

UNet-VAD3 87.16% 92.75% 92.84%

UNet-VCD 86.80% 92.60% 92.53%

UNet-VACD 87.50% 93.69% 93.36%
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excellent learning performance of the model. More importantly,

AC-UNet performed best in the metric of mIoU, achieving

considerable improvement over the other network models. It is

evident from Supplementary Figure 12 that Ours outperforms

PSPNet, DeepLabV3 and UNet by around 28.32%, 4.95%,3.05%

and8.48%, respectively, with segmentation values for stem

improving by 49%, 11%, 5% and 18%, respectively, and

segmentation values for leaf improving by 36%, 5%, 3% and

8%, respectively.

The DeepLabV3 and UNet classical networks’ respective

parameters for the network are 2.376M, 5.184M, and 24.891M,

respectively, with the exception of PSPNet, as shown by the four

different models. The difference in mPA was not perceived to be very

significant, despite the fact that the number of parameters changed

significantly, particularly for DeepLabV3 and classical UNet, which

have respective mPAs of 91.47% and 91.11%. In addition, Swin-UNet

has the smallest model complexity and can segment stems and leaves

in a short time. However, in addition to its speed advantage, it fails to

provide better segmentation results. It is evident from Table 5 that

DeepLabV3 and UNet have a lot more parameters that the network

used in this study—5.814 and 24.891, respectively.

This indicates that the segmentation effect is not necessarily

enhanced due to network lightweighting in the case of a small

number of parameters. The mIoU, mPA and Precision, of the

equally lightweight PSPNet are only 58.76%, 73.24% and 69.93%,

respectively, which are less effective in segmentation. It can be seen

that the lightweighting changes are not necessarily applicable to the

needs of the segmentation algorithm in this paper.

The relationship between segmentation losses and the total

number of iterations was discovered using the earlier suggested

technique for segmentation training on Betula luminifera data, as

shown in Supplementary Figure 13A, B. It can be clearly seen from

Supplementary Figure 13A that AC-UNet has a lower loss value in

the initial stage. The algorithm has excellent phenotypic fitting

ability and better generalization ability. As can be seen from

Supplementary Figure 13B. The segmentation loss becomes lower

and smaller as the number of iterations rises. For PSPNet, the loss
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suddenly decreases after 50 iterations and then tends to level off. At

around 60 repetitions, the segmentation loss for the remaining three

networks starts to stabilise. It is essential to note that the network

utilised in this paper’s technique has a tiny initial loss value,

showing that its convergence impact is far better than that of the

other networks. This shows that the network presented in this

paper’s convergence impact has a good convergence effect.

Supplementary Figure 14 is an example of model segmentation

output, where A is the original image, B is the label, and the rest C,

D, and E are the fusion prediction map of the label and the original

image, the stem prediction map and the leaf prediction map. This

example segmented output image shows images of three different

morphologies of Betula luminifera, including leaves and stems. The

image is segmented into regions where stems are marked in green

and leaves in red. However, there are faults or fuzzy boundaries in

some places, such as the junction of stems and leaves, and the edges

of leaves. The model may not be able to clearly distinguish them due

to the occlusion of the stems by the leaves of the plants. Overall, the

algorithm in this paper performs well on the example image, and

most of the stems and leaves are accurately segmented. However, it

should also be noted that for some complex areas, further

optimization is still required.

The segmentation has been portrayed using a custom dataset in

order to demonstrate how the performance of the method in this

research differs from that of other methods. The dataset’s visualisation

results are shown in Supplementary Figure 15, where (A) depicts the

original image, (B) the label, and the images that remain (C), (D), (E),

(F) and (G), respectively, correspond to PSPNet, DeepLabV3, UNet,

Swin-UNet, and the approach suggested in this paper, AC-UNet.

Supplementary Figure 15C-PSPNet shows a substantial

inaccuracy in segmentation accuracy. The image is barely

segmented out in the C column, with only vaguely distinguishable

stems and leaves. It has no reference point compared to the rest of

the methods. In Supplementary Figure 15D-DeepLabV3, the

segmentation effect is rough, and the branch and stem parts

appear disconnected. A comparison reveals that the segmentation

treatment of the detail part in this paper’s method is closer to the
TABLE 5 Comparison of evaluation indicators for different segmentation models.

Method mIoU
mIoU_stem

mPA Precision F1 FLOPs/G Params/M
mIoU_leaf

PSPNet 58.76%
26%

73.24% 66.90% 69.93% 6.031 2.376
52%

DeepLabV3 82.13%
64%

91.47% 87.73% 89.56% 52.875 5.814
83%

UNet 84.45%
70%

91.11% 90.63% 92.38% 451.706 24.891
85%

Swin-UNet 79.02%
57%

85.99% 88.73% 87.36% 91.497 41.342
80%

AC-UNet 87.50%
75%

93.36% 93.69% 93.52% 482.001 34.244
88%
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label, providing higher segmentation accuracy. Supplementary

Figure 15E-UNet and Supplementary Figure 15G-AC-UNet both

achieve better segmentation results, but ours demonstrates more

pragmatic segmentation results for mutilated leaves and better

detailing of the edges of leaves and stems. Supplementary

Figure 15F -Swin-UNet can be clearly seen with the naked eye,

and some stem and leaf segmentations appear to be mis-segmented,

segmented and stacked. In contrast, AC-UNet shows better results

in stem and leaf details, incomplete leaf segmentation, and leaf edge

segmentation. Therefore, the performance of the algorithm in this

paper is more stable and less prone to the above problems, which

makes it a more reliable algorithm choice. It can be seen from the

segmentation effect that AC-UNet has a higher-precision

segmentation benefit in the stem and leaf segmentation task. This

benefit has obvious advantages in the later measurement of

phenotype correlation coefficients, ensuring that it can be used in

specific environments. Stability and reliability.

Methods of this paper demonstrates better and superior

segmentation results for plant stems and leaves.
3.6 Phenotypic analysis of
Betula luminifera

Select any 15 groups of plant objects from the Betula glabra

dataset and evaluate and predict the crown area of the plants. The

calculation of the crown area in this paper is evaluated by

referencing half of the product of the plant height and crown

width. The segmentation network proposed in this paper is used

for image prediction, and the predicted image is obtained as shown

in Supplementary Figure 16A. Using HSV color threshold

segmentation, select the red threshold part in the mask image for

segmentation and extraction. Refer to Table 1 in Section 2.3 for the

values. The segmentation effect is shown in Supplementary

Figure 16C. Finally, through OTSU, the leaf part we need, which

is the foreground part in Supplementary Figure 16C, is segmented

and extracted. Lastly, the corresponding feature grayscale binary

image is obtained, as shown in Supplementary Figure 16D. Based on

the binary image, the crown area of the plant is calculated.

Take three groups of plants with different shapes from the visual

analysis for binarization, and analyze the proportion of stems and

leaves in the image (because the background occupies a large area,

we take 10 as the whole image). At the same time, due to the

segmentation effect of Swin-UNet There is a large error and overlap,

so Swin-UNet is not included in the comparison. It can be seen

from the stacked Supplementary Figure 17 (where A, B, C, and D

respectively represent PSPNet, DeepLabV3, UNet, and the method

AC-UNet in this article, and 1, 2 and 3 are label maps) that in each

subgroup of A, B, and C, except for B3 They are all significantly

different from the proportion of stems and leaves in the label map.

The distribution of the proportion of stems and leaves in each group

of category D is approximately the same as that in the label map.

We determined the proportionate relationship between the

image and the actual plant based on the height and length of the

crown cross-section of the actual, measured plant. The actual values

and the expected results were then compared and analysed. The
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data’s regression analysis reveals that the model fits the data well

because the R2 value for leaf is 0.99882, which is greater than 0.8

and near to 1. The 15 data points are all close to the regression line

in Supplementary Figure 18, illustrating a high positive correlation

between the predicted and actual values.

This calculation method eliminates the need for destructive

sampling of plants and facilitates the development of continuous

dynamic observation of the same research object while reducing the

time required for determination in terms of manpower on a large

number of samples compared to conventional methods. These

methods include the squared paper method, the paper-cut

weighing method, the leaf-area-meter determination method, and

the image-process ing method through scanning and

photographing. The design incorporation of CCA and ASPP in

the network expands the contextual horizon in the deep learning

process, allowing the network to learn more detailed information

during the training process, thereby facilitating better plant

segmentation performance. Further-more, it is more evident from

the segmentation results that the fusion of attention mechanism and

ASPP in UNet leads to further enhancement in refining plant image

details. This enhancement provides strong support for the final

realization of plant phenotypic traits acquisition
4 Discussion

Earlier vision-based segmentation research was more applied in

remote sensing images (urban, agriculture and forestry) and crops.

Hong and his collaborators (Hong et al., 2021), in view of the

limitations of convolutional neural networks (CNNs) when

sampling, incorporated an improved batch GCN (miniGCN) and

proposed an end-to-end network FuNet with a fusion strategy to

ensure network stability On the basis of reducing computational

costs, high-efficiency remote sensing image segmentation is achieved,

which opens up new ideas for solving restrictive problems in the

segmentation field. In addition, Hong et al. (Hong et al., 2023)also

introduced HighDAN, a high-resolution domain-adaptive network

architecture that can solve cross-city or region problems. The

network achieved the best segmentation performance on the

constructed multi-modal remote sensing benchmark data set

(C2Seg data set). Solve bottlenecks that hinder urban planning and

development. Some of them have made corresponding

improvements to the UNet model and achieved good results

(Genze et al., 2023; Wang et al., 2023). However, some advanced

segmentation models based on deep learning are not completely

suitable for plant stem and leaf segmentation. This is because plant

stems and leaves contain more feature information than the plant as a

whole, but occupy a smaller proportion of pixels in the image, making

segmentation difficult.

In this study, we demonstrated the advantages of AC-UNet in

stem-leaf segmentation in Betula luminifera populations and the

convenience it brings in the acquisition of plant phenotypic traits in

the later stage, which is expected to be used in the field of tree

species segmentation and plant phenotypic traits acquisition make a

certain contribution. This is of great significance for early plant

breeding and species health assessment. The mIoU value of AC-
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UNet in the segmentation of plant stems and leaves reached 87.5%,

confirming that the method overcomes the effect of extracting stem

and leaf detail information to a certain extent due to problems such

as missing edge information, faults at the junction of stems and

leaves, and uneven image samples. Almost difficult. The proposed

method still faces some limitations: increasing the data of Betula

luminifera in other different geographical areas, enhancing the

rationality and universality of the research; AC-UNet performed

well in extracting details of, conifers, shrubs, etc.) needs to be

further explored; study the lightweight of the network, and improve

its efficiency on the basis of ensuring the segmentation accuracy of

the network model; solve the problem of leaf occlusion during the

growth of plants, in order to further improve the performance of the

network model. Acquisition accuracy of type traits.
5 Conclusion and outlook

The existing semantic segmentation network cannot achieve

better segmentation of plant stems and leaves. The extraction of

plant edges, joints, and details is poor, and accurate segmentation of

organs such as stems and leaves is not possible. In order to solve

these problems, this paper proposes a new segmentation network

called AC-UNet, which addresses the segmentation challenges

specific to Betula luminifera’s stem and leaf organs. Considering

the unique characteristics of leaf edge details and stem-leaf

connections in the segmentation prediction process of Betula

luminifera’s stem and leaf organs, the AC-UNet algorithm, an

improved version of UNet, is introduced. This algorithm aims to

enhance the overall segmentation accuracy by addressing the issues

of insufficient edge information and disconnections in conventional

segmentation algorithms. Additionally, a composite loss function

called Dice_Boundary, which combines the Dice and Boundary

metrics, is introduced at the back-end of the network to tackle the

problem of imbalanced image samples.

This paper focuses on experimental observations using Betula

luminifera seedlings planted in the northwest of Zhejiang Province.

A performance comparison is conducted among different models

including PSPNet, DeepLabV3, and UNet, and based on the results,

an improved AC-UNet model is designed on the foundation of

UNet. The experimental results demonstrate that AC-UNet

significantly enhances the accuracy of stem and leaf segmentation

for Betula luminifera, achieving an mIoU value of 87.50% and

accurately extracting detailed parts of the plant. Follow-up research

will focus on planting Betula luminifera seedlings and other tree

species (broad leaves, conifers, shrubs, etc.) in different geographical

locations to support the universal applicability of this algorithm in

obtaining plant phenotypic information. Future applications will

expand from stem and leaf segmentation to tree segmentation,

botany, etc., and provide new core technology research paths.
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