AUTHOR=Yi Xiaomei , Wang Jiaoping , Wu Peng , Wang Guoying , Mo Lufeng , Lou Xiongwei , Liang Hao , Huang Huahong , Lin Erpei , Maponde Brian Tapiwanashe , Lv Chaihui TITLE=AC-UNet: an improved UNet-based method for stem and leaf segmentation in Betula luminifera JOURNAL=Frontiers in Plant Science VOLUME=Volume 14 - 2023 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1268098 DOI=10.3389/fpls.2023.1268098 ISSN=1664-462X ABSTRACT=Plant phenotypic traits play an important role in understanding plant growth dynamics and complex genetic traits. In phenotyping, the segmentation of plant organs, such as leaves and stems, helps in automatically monitoring growth and improving screening efficiency for large-scale genetic breeding. In this paper, we propose an AC-UNet stem and leaf segmentation algorithm based on an improved UNet. This algorithm aims to address the issues of feature edge information loss and sample breakage in the segmentation of plant organs, specifically in Betula luminifera. The method replaces the backbone feature extraction network of UNet with VGG16 to reduce the redundancy of network information. It adds a multi-scale mechanism in the splicing part, an optimized hollow space pyramid pooling module, and a cross-attention mechanism in the expanding network part at the output end to obtain deeper feature information. Additionally, Dice_Boundary is introduced as a loss function in the back-end of the algorithm to circumvent the sample distribution imbalance problem. The PSPNet model achieves mIoU, mPA of , and Precision of , the DeepLabV3 model achieves mIoU of , mPA of , and Precision of , on the data set. The traditional UNet model achieves mIoU of , mPA of , and Precision of , and the Swin-UNet model achieves . The mIoU is, mPA is, and Precision is. The AC-UNet proposed in this article achieved excellent performance on the Swin-UNet dataset, with mIoU, mPA, and Precision of 87.50%, 92.71%, and 93.69% respectively, which are better than the selected PSPNet, DeepLabV3, traditional UNet, and Swin-UNet. Commonly used semantic segmentation algorithms. Experiments show that the algorithm in this paper can not only achieve efficient segmentation of the stem and leaves of Betula luminifera but also outperforms the existing state-ofthe-art algorithms in terms of both speed. This can provide more accurate auxiliary support for the subsequent acquisition of plant phenotypic traits.