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the lightweight segmentation
model DCSAnet
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1College of Information Technology, Jilin Agricultural University, Changchun, China, 2College of Land
Science and Technology, China Agricultural University, Beijing, China
Weeds can compete with crops for sunlight, water, space and various nutrients,

which can affect the growth of crops.In recent years, people have started to use

self-driving agricultural equipment, robots, etc. for weeding work and use of

drones for weed identification and spraying of weeds with herbicides, and the

effectiveness of these mobile weeding devices is largely limited by the superiority

of weed detection capability. To improve the weed detection capability of mobile

weed control devices, this paper proposes a lightweight weed segmentation

network model DCSAnet that can be better applied to mobile weed control

devices. The whole network model uses an encoder-decoder structure and the

DCA module as the main feature extraction module. The main body of the DCA

module is based on the reverse residual structure of MobileNetV3, effectively

combines asymmetric convolution and depthwise separable convolution, and

uses a channel shuffle strategy to increase the randomness of feature extraction.

In the decoding stage, feature fusion utilizes the high-dimensional feature map

to guide the aggregation of low-dimensional feature maps to reduce feature loss

during fusion and increase the accuracy of the model. To validate the

performance of this network model on the weed segmentation task, we

collected a soybean field weed dataset containing a large number of weeds

and crops and used this dataset to conduct an experimental study of DCSAnet.

The results showed that our proposed DCSAnet achieves anMIoU of 85.95%with

a model parameter number of 0.57 M and the highest segmentation accuracy in

comparison with other lightweight networks, which demonstrates the

effectiveness of the model for the weed segmentation task.

KEYWORDS

lightweight semantic segmentation, weed recognition, deep learning, encoder-
decoder, convolutional neural network
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1 Introduction

Soybean belongs to the legume family, its production is second

only to rice, wheat and corn, and it is one of the most important

cash crops in the world (Gebregziabher et al., 2022; Huang et al.,

2022). Soybean contains approximately 40% protein and 20% oil

and is an important source of nutritious food for humans and a

major source of feed for livestock. The healthy growth of the

soybean plant plays a very important role in the yield of soybeans

(Saito et al., 2021). Soybean plants are relatively small and

susceptible to weeds (Soltani et al., 2022), Some studies have

shown that the number of seeds contained in seed pods in a

soybean field is negatively correlated with weed density (Naseri

and Nazer Kakhki, 2022). Therefore, weed control is a key task in

soybean cultivation, as yield and quality are affected by pests,

diseases, and weeds throughout the growth cycle of soybean, with

global soybean production losses approaching 30% annually(Khan

et al., 2021).

Weed control using herbicides is currently the most common

form of weed control (Zou et al., 2021b) and is widely used in

soybean field weeding work, if herbicides are used at the right stage

of soybean growth, they can suppress the weed population and thus

increase the 100-grain weight of soybeans (Kakhki et al., 2022).

However, the excessive use of chemical herbicides not only causes

herbicides to be wasted but also leads to environmental

contamination, including soil contamination and groundwater

contamination (Dai et al., 2019). To reduce the misuse of

chemical herbicides, we use precision agriculture, which can be

defined as the technology applied to improve the efficiency of

pesticide use and to protect the environment by implementing

accurate management and distributing the exact dose of pesticide

input in the right place. Weed detection and location technology is

essential if we want to achieve this goal (Bah et al., 2019). If accurate

detection of weeds can be achieved, not only can herbicide abuse be

reduced, but appropriate herbicides can also be selected for different

types of weeds. Some studies have used deep learning algorithms to

detect weeds and display the results by drawing bounding boxes or

pixel-level classification to develop a weed recognition system with

good experimental results in effectively identifying the weeds (Tang

et al., 2020; Wu et al., 2021). In soybean fields, there are mainly

grass weeds, such as Matang and dogwood, and broadleaf weeds,

such as ashwagandha, spicebush, iron amaranth, reverse amaranth,

and concave-headed amaranth, which are very different from one

another; if different herbicides are used for different families of

weeds, better weed control results will be achieved (dos Santos

Ferreira et al., 2017).

Many researchers have used traditional machine learning

methods for weed identification work. Traditional machine

learning-based algorithms use feature descriptors to extract object

features from sensory data and use machine learning-based

classifiers for classification, detection, or segmentation. Machine

algorithms includes supervised learning algorithms, such as the

k-nearest neighbor algorithm and logistic regression; and

unsupervised learning algorithms, such as clustering and principal

component analysis (PCA) (Kapach et al., 2012). Detection of weed

work using machine learning algorithms (Random Forest (RF),
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Support Vector Machines (SVM) and k-nearest neighbor (KNN))

on drone images collected from chilli fields in Australia can yield

high accuracy rates, with weed detection accuracies of 96%, 94%,

and 63% for RF, SVM, and KNN, respectively (Islam et al., 2021),

respectively. In weed detection in tobacco fields,an SVM classifier

based on texture, shape and color with classification accuracy up to

96% and achieved a detection speed of 6 FPS (Tufail et al., 2021).

However, traditional machine learning methods are unable to

extract features autonomously, but require manually designed

extracted features (including color information, location

information, texture information, etc.), which limits the

popularization and application of traditional machine learning in

the field of weed recognition (Espejo-Garcia et al., 2020).

In recent years, deep learning-based detection methods have

become the dominant approach in the field of weed identification

(Espejo-Garcia et al., 2020; Liu and Bruch, 2020; Wu et al., 2021;

Subeesh et al., 2022; Weng et al., 2022; (Peng et al., 2022). Deep

learning does not require the human setting of what features are

available and how to extract them. It automatically learns from the

provided data to obtain the desired features (Fuentes-Pacheco et al.,

2019), which can be used in a wide range of applications in

agriculture. In weed recognition work, there are problems such as

different weed sizes and shapes, weeds and crops obscuring one

another, and too-dense recognition targets. To better cope with these

problems, many studies have used semantic segmentation

algorithms in deep learning for weed recognition. A semantic

segmentation algorithm based on deep learning can achieve the

segmentation of objects with irregular contours and densely

distributed objects due to its feature of classifying objects pixel by

pixel to identify weeds (Quan et al., 2021). Currently, many semantic

segmentation models have been applied to weed recognition tasks;

some commonly used ones include SegNet (Badrinarayanan et al.,

2017), U-Net (Ronneberger et al., 2015), and DeepLab (Chen et al.,

2014; Chen et al., 2017; Sandler et al., 2018) series models. K Zou

et al. (Zou et al., 2021a) proposed a simplified U-Net model using

weights pretrained on a classical dataset and fine-tuning the training

method in two stages, which achieved a cross-merge ratio (IoU) of

92.91%. Z Wu et al. (Wu et al., 2021) conducted segmentation

experiments on the degree of wilting of abnormal leaves of

hydroponic lettuce using multiple DeepLabV3+ networks that

used different feature extraction backbones. Comparing the results,

they showed that the highest accuracy of the results was achieved

when using ResNet101 as the backbone with an mIoU of 0.8326%,

and the fastest recognition speed was achieved when using ResNet50

as the backbone. The recognition speed was only 154.0 ms per image.

All of the above algorithmic models have good performance in terms

of accuracy; however, they usually have high computational cost and

long inference time due to their large number of network parameters

or the need for large floating-point operations per second, or both.

Currently, mobile and embedded devices are widely used with

limited storage space and processor performance; thus, the

number of parameters and computations prevent further

application of these network models to mobile end devices (Tang

et al., 2020; Lan et al., 2021; Weng et al., 2022).

To overcome the abovementioned drawbacks and to better

apply detection algorithm models to mobile devices, many
frontiersin.org
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lightweight segmentation algorithms have been proposed in recent

years and applied in the field of agriculture. Lan et al. (Lan et al.,

2021) added two lightweight feature extraction backbones,

MobileNetV2 (Sandler et al., 2018) and BiSeNetV2 (Yu et al.,

2021), to the U-Net model and showed that the network

parameters, model size, and computational effort of both were

substantially reduced, with the three metrics of MobileNetV2 U-

Net being reduced by 89.12%, 86.16% and 92.6%, the inference

speed being increased by 2.77 times, and the recognition accuracy

being 78.77%, which meets the accuracy and parametric size

requirements for mobile networks. Zhou et al. (Zhou et al., 2020)

developed an Android application called KiwiDetector for field kiwi

detection using a single shot multibox detector (SSD) with two

lightweight backbones, MobileNetV2 and InceptionV3 (Szegedy

et al., 2016), with model sizes of 17.5 M and 24.1 M, respectively,

and recognition accuracies of 90.8% and 72.8%, respectively. The

results show that deep learning algorithms using lightweight

networks can be embedded easily in mobile devices and can

achieve high detection accuracy.

In this study, to further investigate the lightweight problem of the

soybean field weed recognition model, reduce the memory

requirement of mobile devices such as UAVs and improve the

detection accuracy, an improved lightweight model DCSAnet is

proposed and applied to the soybean field weed recognition task.

We conducted an experimental study of segmentation using

DCSAnet and other classical segmentation models on a self-

acquired soybean field image dataset. The goal of this experiment is

to classify the target pixels into soybean, graminoid weeds, broadleaf

weeds and background, and select the most suitable lightweight

segmentation model by comparing the segmentation results.
2 Materials and methods

2.1 Data acquisition and preprocessing

2.1.1 Image acquisition
The soybean weed dataset used in this experiment was

collected from a soybean ex-perimental field at Jilin Agricultural

University in Changchun, Jilin Province, China, be-tween 9:00

and 15:00 on June 10 and 16,2021. The device used was a Huawei

mate30 cell phone, with a shoot-ing angle perpendicular to the
Frontiers in Plant Science 03
ground, a distance of 60 cm from the ground, a resolution of

3000×4000 pixels, and JPG format images. A total of 119 larger

original images were acquired, the data image mainly contains

soybean crops, graminoid weeds such as Digitaria san-guinalis

(L.) Scop and Setaria viridis (L.) Beauv and broadleaf weeds

such as Chenopodi-um glaucum L,Acalypha australis L,and

Amaranthus retroflexus L, as well as back-ground consisting of

soil, stones, and dead plants. The distribution of weeds and crops

in the dataset used in this experiment is complex, containing a

large number of weeds and crops shading each other, which

makes identification difficult.

2.1.2 Image preprocessing
The length and width of the image is higher than 2000 pixels,

because of the images are large, direct recognition would increase

the burden on the network model; therefore, the first 520 images of

512×512 pixels were obtained by random cropping, then, some

unclear images were eliminated, resulting in 482 images. Examples

of some soybean field weed images are shown in Figure 1.

We used the labeling tool LabelMe to label different categories

of pixels in the image (Russell et al., 2008), and classified the image

pixels into four categories including soybean, graminoid weeds,

broadleaf weed, and background,Labeling results are shown in

Figure 2. To enhance the robustness and generalization of the

model, we expanded the dataset by using random rotation, flipping,

adding Gaussian noise, and increasing contrast. The expanded

dataset has 2410 images, which are randomly divided into

training, validation, and test sets in the ratio of 6:3:1.
2.2 Model structure

Our proposed model DCSAnet aims to improve the integrated

capability of weed identification for mobile devices in agricultural

production,such as UAVs and unmanned weeding equipment. This

requires a trade-off between detection accuracy and the number of

model parameters; the model structure is shown in Figure 3. To

reduce the number of model parameters and improve the detection

speed, we design a backbone network with only 12 layers for feature

extraction in the coding layer and generate three feature maps of

different sizes. The coding stage consists of a 3×3 convolution with a

step size of 2 and three stages. The 3×3 convolution can initially
FIGURE 1

Examples of images of selected datasets.
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extract the features and reduce the feature map from the original

size to reduce the number of parameters in process of feature

extraction, and then the subsequent three stages complete the

feature extraction work. The first two stagesboth consisting of a

DCA-B and a DCA-A, which can realize downsampling and

preliminary feature extraction, and these two stages generate

shallow feature maps feat1 and feat2 with more spatial information.

The main role of the third stage is to obtain deep feature maps

containing a large amount of semantic information. To achieve this

goal, we use more feature extraction modules in this stage and use

the channel attention mechanism to enhance the weights of

important feature channels and finally generate a feature map

feat3 with size 1/32 of the original map and containing more

semantic information, our proposed model improves the

utilization of spatial information without increasing the number

of parameters.

In the decoding stage, to better fuse feature maps at different

scales, we borrowed from U-Net’s decoding approach by using deep

feature maps for upsampling in steps and fusing feature maps at
Frontiers in Plant Science 04
different scales in the process to compensate for the loss of spatial

information in the encoding process (Ronneberger et al., 2015; Cao

et al., 2020). However, directly stitches the two feature maps along

the channel dimension ignores the correlation of relevant location

information between different feature maps, which will lead to the

lack of utilization of information between different layers. To better

use different dimensional feature maps (Yu et al., 2021), we

borrowed the idea of guided aggregation to use the high-

dimensional feature map containing more semantic information

to guide the feature construction of the low-dimensional feature

map in the fusion operation of different dimensional feature maps.

The specific implementation is to first extract the features of the

high-dimensional feature map using a 3×3 convolution with 2 steps

and a batch normalization operation, fuse them with the upper layer

feature map by an elementwise multiplication operation, and then

use the fused feature map to join the fusion operation of feature

maps of different dimensions. Our Method achieve effective

communication between feature maps, reduced missing

information in the feature map fusion process.
FIGURE 3

DCSAnet model structure diagram.
BA

FIGURE 2

(A) The original image; (B) labeled image.
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2.2.1 Depthwise channel shuffle
asymmetric module

Inspired by the linear bottlenecks in MobileNetV3 and the

channel shuffle in ShuffleNet, we combined the advantages of both

and designed the feature extraction modules DCA-A and DCA-B.

The structure of both modules is shown in Figure 4. Between them,

DCA-A is used for in-stage feature extraction, and DCA-B is used

for feature extraction and to implement the downsampling

function. The feature extraction of the modules mimics the

inverted residuals structure in MobileNetV3. The specific process

is to first use a 1×1 convolution to extend the dimensionality in the

head of each module and extend the number of channels of the

feature map to 4 times the input because the higher the number of

channels, the better the feature extraction will be.

Using convolution kernels with different scales can extract more

multiscale features, but it will increase the amount of computation.

To extract multiscale features without increasing the computation,

we next perform channel splitting of the feature maps, splitting

them into two feature maps x1 and x2 with half the number of

channels in channel order, and use asymmetric depth-separable

convolution with different convolution kernel sizes for feature

extraction. Two convolution kernels with different feeling fields

can extract features of different scales, and the channel of each

branch has only half of the original feature dimension, so there is no

increase in computational effort.

Ordinary 2D convolution uses convolution kernels of equal

length and width and computes both the channel and space of the

feature map at the same time, which increases the number of

parameters of the model and the size of the occupied memory.
Frontiers in Plant Science 05
To achieve a lightweight model, we use a depth-separable strategy

and 1D convolution kernels. The specific process is to use

asymmetric depth-separable convolution kernels of size N × 1

and 1 × N in two channels consecutively. Instead of the 2D

depth-separable convolution with N×N convolution kernels,

feature extraction is performed to further reduce the number of

parameters. After feature extraction, the two feature maps

extracting different perceptual field information are then stitched

together and downscaled by a 1×1 convolution for the purpose of

compressing and integrating dimensional features and accelerating

the overall computation speed.

In the feature extraction module DCA-A, we perform a

channel-by-channel elementwise addition of the input feature

map and the reduced-dimensional feature map to achieve residual

connectivity, which can serve the purpose of preventing network

degradation (Zhuang et al., 2021). To prevent the problem that

different branches can only train on a fixed half of the channels due

to channel splitting, we use a channel shuffling operation to disrupt

the order of the channels after residual connection to achieve

information interaction between different branches and realize a

complete feature extraction process.

In the DCA-B module, we use an asymmetric depth-separable

convolution with a step stride of 2 to halve the size of the resulting

feature map after feature extraction; make maximum pooling to halve

the size of the input feature map before residual concatenation; and

then use Concat to stitch the input feature map with the resultant

feature map by channel direction to halve the size of the feature map

and double the number of channels. Then, the channel shuffling

operation disrupts the order of channels to achieve downsampling.
A B

FIGURE 4

The structure diagram of DCA-A module and DCA-B module, (A) shows the structure of DCA-A module and (B) shows the structure of DCA-B module.
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2.2.2 Depthwise separable convolution and
asymmetric convolution

The convolution operation can automatically extract features

from the input feature map through the weight learning function.

The traditional convolution has a convolution kernel of equal

length and width and the same depth as the input feature map.

The computational process is to use C2 convolution kernels of size

(N � N � C1) to slide through the input feature map (H �W �
C1) along the height and width directions to generate an output

feature map of size (H �W � C2). The computational volume of

the standard convolution is as follows:

H �W � N � N � C1 � C2

In the deep separable convolution, the convolution operation is

divided into deep and pointwise convolutions of (1 × 1) size

(Howard et al., 2017). Deep convolution is performed using C1

2D convolution kernels of size (N � N � 1), each of which operates

on one channel of the input feature map separately. The final results

are stacked together to generate a feature map of size (H �W � C1)

. Then, point-by-point convolution is performed by C2 (1� 1� C1)

convolution kernels to generate an output feature map of size (H �
W � C2). The computational volume of the depth-separable

convolution is as follows:

H �W � N � N � C1 +H �W � C1 � C2

The computational effort of the deep separable convolution

compared to the normal convolution is as follows:

H �W � N � N � C1 +H �W � C1 � C2

H �W � N � N � C1 � C2
=

1
C2

+
1
N2

Asymmetric convolution replaces the standard convolution by

using two consecutive convolutions: (N × 1) and (1 × N) (Wang

et al., 2019; Hu and Gong, 2021), which results in a significant

reduction in computational effort by sacrificing a certain amount of

accuracy. The computational effort of asymmetric convolution

compared to ordinary convolution is as follows:
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H �W � N � 1� C1 � C2 +H �W � 1� N � C1 � C2

H �W � N � N � C1 � C2
=

2
N

2.2.3 Channel shuffling
To reduce the number of parameters for the convolution

operation, many model algorithms group the input feature maps by

channel such that smaller convolution kernels can be used for sparse

computation to reduce the number of operations; however, grouped

convolution can lead to the inability of the channels in different groups

to interact with features, which can lead to a weakened feature

extraction capability of the convolution operation. If the channel

random mixing operation is added after the grouped convolution,

the original channel order can be disrupted such that the channels

contained in the group are different for each grouping to achieve

channel feature interactions for the whole channel (Ma et al., 2018;

Zhang et al., 2018; Zhuang et al., 2021). The implementation process of

the channel shuffling operation is shown in Figure 5.

The specific operation of channel shuffling divides the input

feature map into g groups in the order of channel dimensions, with

n channels in each group. The total number of channels is N =

g � n, and then the transpose operation is used to become (n� g).

The result is then spread back to N dimensionsto disrupt the

channels and avoid the situation that the group convolution

cannot learn the full channel features.
2.3 Model training

The server environment used for this experiment is Windows 10,

Python version 3.8.13, PyTorch version 1.7.1, and CUDA version

11.3. The experiment is run on a GPUwith an NVIDIA Quadro RTX

8000 dedicated graphics card and 48 GB of graphics memory.

In the dataset used in this experiment, the pixel share of soybean

leaves is higher than the share of other species of weeds, which can

lead to positive and negative sample imbalance problems. To better

reduce the impact of category imbalance on the results, this
FIGURE 5

Implementation process of channel shuffling operation.
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experiment uses a cross-entropy loss function to measure the loss

between classes, which is calculated as follows:

Cross _ entropy = −
1
Noi o

M

c=1
yic log (pic)

where M is the number of categories; y_ic is the sign function,

equal to 1 if the true category of sample i is equal to c and 0

otherwise; and p_ic is the predicted probability that the observed

sample i belongs to category c.

When performing network training, the size of the learning rate

will have an impact on the convergence speed and final accuracy of the

model (Chai et al., 2020; Zhuang et al., 2021); a smaller learning rate

will lead to slow convergence, while a larger learning rate will lead to

difficult convergence of the final result. To adjust the learning rate

adaptively, we used the Adam optimizer to adjust the learning rate so

that the learning rate can follow the frequency change of the

parameters. The Adam initial learning rate of the optimizer is 0.001,

the batch size is 4, and the number of iterations of the model is 400.
2.4 Evaluation indicators

To achieve a lightweight soybean field weed segmentation

model, the goal of this experiment is to balance the detection

accuracy and model size to achieve a high detection accuracy

with a small number of model parameters; therefore, the mean

intersection-to-merge ratio (MIoU), the number of model

parameters (Params), and the number of billion floating point

operations per second (GFLOPS) are used to evaluate the model

accuracy and size.

MIoU =
1

k + 1o
k

i=0

TP
TP + FN + FP

where TP is pixel detection as positive and true label as positive, FN

is pixel detection as negative but true label as positive, FP is pixel

detection as positive but true label as negative, and TN is pixel detection

as inverse and true label as inverse, k is the number of categories.
3 Results and discussion

3.1 Ablation experiments

In this section, we conduct ablation experiments on the

encoding part and the decoding part of the DCSAnet model

separately verifying the validity of each part of our model.
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3.1.1 Encoding section
Our encoding part mainly borrows ideas from MobileNetv3;

therefore, we use the U-Net model with the backbone of

MobileNetv3 as the original model and compare it with the

model using different improvement points. To verify the effect of

using different sizes of asymmetric convolution in our feature

extraction module DCA-A on the experimental results, we

compare the experimental results when the feature extraction

module uses asymmetric convolution with convolution kernel

sizes of 5×1, 7×1, and 9×1 and the results without the channel

blending operation. Our results are shown in Table 1.

MobileNet3-U-Net, used as a benchmark comparison, obtained

83.89% MIoU with a model size of 2.434 M. In contrast, our DCSA

achieved 84.63%, 84.86% and 84.79% MIoU with asymmetric

convolutional kernel sizes of 5×1, 7×1 and 9×1, respectively, and

the number of parameters decreased considerably. Subsequently, we

also compare the experimental results of the DCSA model with an

asymmetric convolutional kernel size of 7 × 1 after removing the

channel shuffle operation. The MIoU decreases by 0.15% after

removing the channel shuffle, which shows that the optimal

experimental results can be obtained using an asymmetric

convolutional kernel of size 7 × 1 and channel shuffle.

3.1.2 Decoding section
In the decoding section, we compare the effects of using

different feature map fusion methods on the experimental results.

We use the output feature map of an encoder with a convolutional

kernel size of 7 × 1 as the input to the decoding operation and use

different decoding strategies. The results are shown in Table 2.

First, we used the strategy of gradually upsampling the highest-

dimensional feature map in U-Net and gradually fusing other

feature maps in the process; the results are shown in DCSA-0. At

this point, the MIoU is 84.86%. Next, we compared the

experimental results after using feat3 or feat2 to perform guided

aggregation on feat1 before fusing with up2, to form DCSA- feat2-1

and DCSA- feat3-1, respectively. The results were improved by

0.42% and 0.36%, respectively, showing that using only a high-

dimensional feature map to a low-dimensional feature map for

guided aggregation has limited improvement on the experimental

results. Next, we compared the experimental results of REDCSA-

feat2-1 and REDCSA- feat3-1 by adding feat1 before performing

guided aggregation as residuals to the fusion of feat1 with up2 after

bootstrap aggregation, at which point the results were improved by

0.76% and 0.9%, respectively, where using feat3 to feat1 for guided

aggregation and adding residuals can obtain the best results. For
TABLE 1 Experimental results under different improvement points in Encoding stage.

Model kernel size Channel Shuffle FLOPs (G) Param (M) MIoU (%)

MobileNet3-Unet —— —— 16.67 2.434 83.89

DCSA 5×1 √ 16.97 0.530 84.63

DCSA 7×1 √ 17.00 0.534 84.86

DCSA 7×1 —— 17.00 0.454 84.71

DCSA 9×1 √ 17.12 0.467 84.79
f

√ shows that the models in the horizontal columns contain Channel Shuffle structures.
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this result, we believe that although the guided aggregation

operation can reduce the feature fusion effect in the fusion stage,

it may also bring about the loss of feature information, while the

best feature fusion effect can be achieved after using the

residual connection.
3.2 Comparison of DCSAnet with other
methods

To verify the effectiveness of DCSAnet on the soybean weed

detection task, we compared it with several lightweight classical

semantic segmentation models of similar parametric size, including

the original U-Net model with VGG (Simonyan and Zisserman,

2014) as the backbone, the U-Net model with MobileNetV3

replaced by the backbone network, the backbone network with

the recently proposed ViT transformer’s segmentation model

MobileNetViT (Mehta and Rastegari, 2021), CGNet (Wu et al.,

2020), and LEDNet (Wang et al., 2019). All models are consistent

with the experimental environment and experimental parameters.

First, the loss curves of the different models are shown in

Figure 6. The training losses in the figure show that the training

results of all models eventually converge, which shows that all

models can be used for field weed detection work. The test set losses

in the figure show that MobileNet3-U-Net and DCSANet fluctuate

the least in this process and both reach the smallest losses among

these models, but DCSANet has a faster initial drop and converges

faster, thus reaching the training requirements faster.

Then, we analyzed the accuracy and model size of different

models. As shown in Table 3, the FLOPS of our model is 18.06 G,

and the MIoU is 85.95%; that is, we improved the MIoU by 2.06%

with only a 1.59 G increase in the gigabit floating point per second

of the model and kept the size of the model basically the same,

which can be adapted to mobile devices. Optimal results in terms of

memory and computation size of the mobile device are achieved in

comparison with other classical algorithms and the newly proposed

lightweight transformer segmentation model. Thus, it can be seen

that our newly proposed DCSANet model is well suited for field

weed detection work.In Figure 7, we show the segmentation result

plots of different models for the soybean field weed dataset. From

the result plots, we can see that different models mainly differ when

segmenting the boundaries of different pixels or when recognizing

the overlapping of pixel categories. Both CGNet and LEDNet have
Frontiers in Plant Science 08
the condition that the adjacent category pixels cannot be classified

properly in the result plots, while MobileNetViT-Unet and VGG-

Unet have the condition that the edge contours are not clear. In

contrast, our proposed DCSANet can achieve both accurate

detection of edge contours and reduce the cases of different types

of pixels being misidentified, which indicates that our proposed

model enhances the recognition accuracy of interclasses with the

addition of multiscale asymmetric convolution and improves the

recognition of contours at boundaries due to the enhancement of its

decoding part. In summary, the DCSANet model can be well

adapted to the work of weed detection in the field while keeping

the model lightweight.
4 Discussion

Many semantic segmentation algorithms have been proposed in

recent years, in which algorithms with larger parameters can make

good use of spatial information and make the segmentation

boundaries clearer, but are not applicable to be deployed on

mobile devices such as UAVs, While lightweight algorithms can

meet the requirements of model deployment well, but the

recognition error rate is high when weeds overlap with crops,to

address this problem, we propose a novel lightweight segmentation

model DCSANet,which uses an encoder-decoder structure and a

DCA module with asymmetric convolution and channel shuffling

on the inverted residuals structure of the MobileNetv3 model as the

feature extraction backbone of the encoder part. The encoding

section is divided into three layers, the goal of the first two stages is

to extract feature maps containing a large amount of spatial

information. To retain as much original spatial information as

possible, we use only two feature extraction modules in both stages,

in the third layers, we use 2 DCA-B and 6 DCA-A modules in this

stage; the feature map in this stage has been downsampled several

times. Therefore, the feature map has deeper feature dimensions

and contains a large amount of semantic informationIn each stage

of decoding, we designed a feature fusion module and borrowed the

idea of guided aggregation to use high-dimensional feature maps to

guide the reconstruction of low-dimensional feature maps to obtain

better decoding results and to meet the accuracy requirements in

field weed segmentation work, improved segmentation accuracy at

target contour junctions and in areas of dense weed distribution.

We collected a soybean field weed dataset and experimentally

validated our proposed DCSANet for segmentation, and the results

showed that our MIou improved 2.06% over the benchmark model

MobileNetv3-U-Net. The model volume was only 0.57 M, and the

computational volume was only 18.06 G, which indicates that our

model can readily meet the memory and computational volume

requirements and achieves the best results in comparison with other

classical lightweight segmentation models and recently proposed novel

segmentation models, which suggests a new approach for field weed

identification work. We will continue to explore how to better reduce

the model size and improve the detection accuracy in the future to

better contribute to further applications of smart agriculture.
TABLE 2 Experimental results under different improvement points in
decoding stage.

Model FLOPs (G) Param (M) MIoU (%)

DCSA-0 17.00 0.45 84.86

DCSA- feat2-1 18.26 0.60 85.28

DCSA- feat3-1 18.17 0.55 85.22

REDCSA- feat2-1 17.98 0.62 85.62

REDCSA- feat3-1 18.06 0.57 85.95
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5 Conclusions

In order to solve the problem of lightweighting the weed

identification model in soybean fields so that it meets the work

requirements of lightweight equipment, in this paper, we have

mainly carried out the following work:
(1) A dataset of weed images from soybean fields was collected

and preprocessed to simulate different real-world

conditions.

(2) We propose a new lightweight segmentation model

DCSAnet,the model volume was only 0.57 M, and the
B

A

FIGURE 6

Loss variation plots (A) loss plots for the training set; (B) loss plots for the test set.
TABLE 3 Comparison of segmentation results of different models.

Model FLOPs (G) Param (M) MIoU (%)

VGG-Unet 451.73 24.89 84.80

MobileNetv3-Unet 16.67 0.593 83.19

MobilenetViT-Unet 38.49 1.288 85.37

CGNet 7.11 0.492 77.66

LEDNet 12.64 2.315 82.68

DCSANet 18.06 0.57 85.95
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Fron
computational volume was only 18.06 G, which indicates

that our model can readily meet the memory and

computational volume requirements needs of Weed

detection work.

(3) A MIoU of 85.95% was achieved on a self-collected soybean

field weed dataset using DCSAnet,and achieves the best

results in comparison with other classical lightweight

segmentation models and recently proposed novel

segmentation models,
In this paper, we have investigated the detection work of weeds

in soybean fields and proposed a weed segmentation model, and in

the future we will investigate the detection work of weeds in fields of

other crops to increase the applicability area of the model to better

contribute to further applications of smart agriculture.
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