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Portuguese forests shows a
regular profile of resin acids
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Pinus pinaster forestry occupies >20% of the forest ecosystem area in the

continental territory of Portugal with a high impact on the national economy.

This species’ major derived non-wood product is oleoresin, the raw material for

rosin production. Rosin comprises mainly a blend of resin acids and has broad

industrial and pharmaceutical applications. Oleoresin production in Portugal has

been progressively reduced due to low-cost producers in other countries;

currently, it reaches only 2% of the existing P. pinaster trees. To support this

value chain, the chemical fingerprint of rosin derived from the national forest

requires focused analysis. In the present study, we collected oleoresin within

seven geographically distinct pure P. pinaster forests in two consecutive

collection years. A high-resolution nuclear magnetic resonance (NMR) method

was used to quantify the diversity of resin acids in the corresponding rosin

samples. Overall, the acquired data highlighted that the profile of resin acids in

P. pinaster rosin produced in Portugal is highly regular, regardless of the forest

location, having as the major constituents abietic acid and dehydroabietic acid.

The diversity of resin acids is possibly influenced, to a minor extent, by some

edaphoclimatic factors.

KEYWORDS

abietic acid, dehydroabietic acid, Pinus pinaster oleoresin, rosin, nuclear magnetic
resonance method, resin acids
1 Introduction

In Portugal, forest occupies up to 36% (3.2 million ha) of the national territory, and it is

the main land use, representing one of the most important bioeconomy value chains.

Currently, the Portuguese pine forest ecosystem covers nearly 1 million ha and is

dominated by maritime pine (Pinus pinaster Aiton) and stone pine (Pinus pinea L.),

representing 22% and 6% of the total forest area, respectively (ICNF, 2015). P. pinaster is
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the most relevant silvicultural coniferous tree in Portugal, primarily

exploited for the production of by-products of wood, paper, and

oleoresin (often defined simply as resin) (Reboredo, 2014; Sousa

et al., 2018; Neis et al., 2019). However, this species has shown a

decrease in occupied forest areas deeply affected by fires and pests

(ICNF, 2015; Mantas et al., 2022). Until 1980, Portugal was an

important producer and exporter of oleoresin with production

yields above 100,000 tons/year. However, since then, a progressive

decline in the Portuguese resin tapping activity has occurred due to

competition from petroleum-based counterparts and production at

lower costs in other producing countries, e.g., China and Brazil

(López-Álvarez et al., 2023). Between 2018 and 2019, only 2% of the

P. pinaster and 1% of the P. pinea trees were explored, producing ca.

6,310 tons/year of resin (ICNF, 2015; CentroPinus, 2020). The rise

in the cost of fossil resources globally is anticipated to stimulate

oleoresin exploitation, e.g., designing new chemicals and materials

(López-Álvarez et al., 2023).

Rosin, which is obtained by steam distillation of oleoresin, as the

non-distilled fraction, composing ~95% of its weight, constitutes a

sustainable industrial raw material for the production of, e.g.,

varnishes, chewing gum, emulsifiers, polymers, and coatings

(Silvestre and Gandini, 2008; Sacripante et al., 2015; Neis et al.,

2019). It is also recognized as a source of bioactive molecules

(Celedon and Bohlmann, 2019) with proposed applications in

pharmaceuticals, biocides, insect repellents, and antioxidants (Sousa

et al., 2018), all constituting promising exploitation alternatives to

leverage the Portuguese resin market. Rosin is essentially a blend of

resin acids (RAc): diterpenes, which harbor 20 carbons distributed
Frontiers in Plant Science 02
along a six-carbon tricyclic ring, a single carboxylic acid group, and

up to three double bonds, which can differ in relative position in the

molecule (Neis et al., 2019; Sarria-Villa et al., 2021). Most resin acids

composing P. pinaster rosin have abietane (acids: abietic, AA;

neoabietic, NEA; dehydroabietic, DHA; palustric, PAL; levopimaric,

LEV) or pimarane skeletons (acids: pimaric, PA; isopimaric, IPA;

sandaracopimaric, SAN) (Figure 1). The ratio of resin acids greatly

determines the physicochemical properties of oleoresin/rosin, e.g.,

odor and color, which impact downstream applications, hence the

resin value chain. Furthermore, due to the higher susceptibility to

chemical alteration, abietanes have a greater potential for

biotechnological uses (e.g., production of bioactive compounds)

(Silvestre and Gandini, 2008; Kugler et al., 2019).

Increasing the exploitation of Portuguese rosin is challenging

due to the multifactorial nature of the problem, including

deterioration of forest areas due to fires and pests and erratic

forest management practices implemented by a majority of small

private owners (~90%, owing in average <0.5 ha) (Reboredo, 2014;

CentroPinus, 2020). In addition, the impact of forest location on

rosin chemistry constitutes an unresolved question; studies focusing

on rosin collected across the national forest are lacking. In the

present study, a nuclear magnetic resonance (NMR)-based protocol

was used for a swift quantitative analysis of the major resin acids in

pine rosin. Data integration builds a bird’s-eye view of the rosin

chemistry derived from Portuguese P. pinaster forests covering

most of the ecoregions of the Iberian Peninsula. Finally,

the correlation of rosin chemistry with key edaphoclimatic

parameters was verified and discussed in detail.
FIGURE 1

The chemical structures of the diterpenic resin acids from Pinus pinaster (and Pinus pinea) rosin identified in the present work.
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2 Materials and methods

2.1 Chemicals

Chloroform (p.a., >99.98%) was purchased from Fisher Chemical

(Waltham, MA, USA). Hexadecane (p.a., >99%), 2.0 M of

(trimethylsilyl)diazomethane in hexane, N,O-bis(trimethylsilyl)

trifluoroacetamide (p.a., >99%) containing 1% (v/v) of

trimethylchlorosilane (BSTFA : TMCS, 99:1), pyridine (p.a., >99%),

and 1,4-dioxane (p.a., >98%) were supplied by Sigma-Aldrich

(Darmstadt, Germany). Deuterated dimethyl sulfoxide (DMSO-d6;

p.a., >99.99%) was obtained from Merck (Darmstadt, Germany).

Resin acid standards, namely, AA (p.a., ≥85%), DHA (p.a., >95%),

and IPA (p.a., ≥98%) were purchased from Acros Organics (Verona,

Italy), Fluorochem (Hadfield, UK), and Sigma-Aldrich, respectively.

All chemicals were of high purity and used without purification.
2.2 Pinus pinaster resin sampling

Seven sampling P. pinaster pure forests in Portugal were

selected (P1 to P7), covering most of the P. pinaster forestry that

is widely distributed across the country (mainly in the North and

Central regions (Reboredo, 2014)) and spread in the three different

Iberian ecoregions where P. pinaster grows as depicted in Figure 2

(Table 1, Supplementary Table 1). Oleoresin collection in each

sampling site was carried out three times during the tapping season

in Portugal, from July to November 2018: during the summer (two
Frontiers in Plant Science 03
sampling campaigns, July 23 to August 23 and September 18–27)

and the autumn (one sampling campaign, October 8 to November

11). New resin samples were collected at some of the sampling sites

in September 2019 (P3, P5, P6, and P7): during the summer (one

sampling campaign, September 7 to 21) (Supplementary Table 1).

At each sampling site, a minimum of 20- to 50- ha pine forest was

selected. The central hectare was georeferenced and divided into

approximately 50 equal squares. The trees in each square were

marked with spray paint, and the central pine tree was selected for

oleoresin sampling. At P6, due to the smaller forest area, the

sampling area had a diameter of 120 m, and 12 trees were

sampled per quadrant, plus two trees randomly. To extract

oleoresin, a wound of 12 cm maximum width was performed

with a chisel for bark chipping at a height of ca. 130 cm above

the ground, followed in all cases by the application of a stimulating

paste containing sulfuric acid. The oleoresin was already being

extracted from all the selected trees. Accordingly, the oleoresin

samples were collected from the containers (metal or plastic)

previously installed. The resin was energetically mixed inside the

container with a metal spatula, and ca. 10 g was sampled using a

plastic syringe (Figure 2). The 50 individual oleoresin samples per

pine forest were pooled to generate a composite sample

representative of the larger population (500 g). In total, 350 trees

were sampled per sampling date. Two additional oleoresin samples

were collected from P. pinea trees (P8) in 2018 during the summer

and in 2019 during the winter (Supplementary Table 1), which were

used as outliers, whenever significant. The samples were placed

inside a falcon tube and immediately conserved (dark, 4°C),
FIGURE 2

Geographical location of the sampling stands on Pinus pinaster Portuguese national forestry, according to Iberian ecoregions (P1–P7). Photographic
details on the containers installed for oleoresin tapping (location, P1 and P4) and the sampling method used (P6), are depicted, as described in the
“Materials and methods”. Location P8 is a Pinus pinea forest. See Table 1 and Supplementary Table 1 for further details. Illustration generated using
QGIS Development Team (version 3.16), QGIS Geographic Information System, Open Source Geospatial Foundation Project (http://qgis.osgeo.org).
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ensuring maximum preservation until further processing and

analysis; all samples were processed simultaneously.
2.3 Distillation procedure: from resin
to rosin

The oleoresin samples were submitted to a steam-distillation

process at 130°C, below the oleoresin degradation temperature

(Sarria-Villa et al., 2021). This process renders an insoluble residue,

rosin (the volatile fraction consists of turpentine). The still-hot rosin

was filtered with a 1-mm pore size mesh and conserved in the dark,

inside closed containers at room temperature.
2.4 Cryogenic grinding process

A RESTCH cryomill equipped with a 5-mL grinding jar with

two aluminum grinding balls (5 mm) was used. To homogenize the

rosin samples, they were cryogenically milled at −196°C (liquid

nitrogen), as follows: 3 min of precooling followed by three milling

cycles, each comprising 3 min of milling at 30 Hz plus 0.5 min of

intermediate cooling at 5 Hz. The compositional RAc profile of each

sample was immediately analyzed (see below).
2.5 Nuclear magnetic resonance analyses

To reveal the diversity of resin acids found in the rosin, the

cryomilled samples were immediately solubilized in DMSO-d6 and

analyzed without any further treatment or extraction using NMR

with an Avance III 800 CRYO (Bruker Biospin, Rheinstetten,
Frontiers in Plant Science 04
Germany). All samples were analyzed in triplicate. All NMR

spectra (1H, 1H–1H correlated spectroscopy (COSY), 1H–13C

heteronuclear single quantum coherence (HSQC), and 1H–13C

heteronuclear multiple bond correlation (HMBC)) were acquired

in DMSO-d6 using 5-mm-diameter NMR tubes at 25° C, as follows:

15 mg of cryomilled rosin directly solubilized in 400 µL of DMSO-

d6 with 10 µL of 1,4-dioxane as internal standard. MestReNova,

version 11.04-18998 (Mestrelab Research, S.L., Santiago de

Compostela, Spain), was used to process the raw data acquired in

the Bruker spectrometer. For quantitative 1H NMR, 30° radio

frequency pulses of 8.1 µs, relaxation delay of 1 s, acquisition

time of 2.04 s, and spectral resolution of 0.245 Hz were used. For

experimental validation, pure standards of AA, DHA, and IPA were

analyzed in parallel (5 mg/400 µL of DMSO-d6).
2.6 Gas chromatography– mass
spectrometry analyses

The gas chromatography–mass spectrometry (GC-MS) method

selected for resin acid analysis was previously described for bark

samples (Bento et al., 2022). Briefly, commercially available

standards of AA, DHA, and IPA (alone or mixed) were

solubilized in 1 mL of chloroform, and hexadecane was added as

the internal standard. The following were added to the solution and

vortexed: 50 µL of pyridine and 100 µL BSTFA : TMCS (99:1).

Derivatization was allowed to occur for 1 h at 70°C. The derivatives

were then analyzed by GC-MS (Agilent (Santa Clara, CA, USA):

7820 A GC and 5977B quadrupole MS; HP-5MS column) operated

as follows: 60°C, 6°C/min until 300° C; 300° C during 10 min. Data

were acquired using MSD ChemStation (Agilent); compounds were

identified based on electron ionization–mass spectrometry (EI-MS)
TABLE 1 Specific coordinates of the sampling sites on Pinus pinaster Portuguese forestry (provenance codes P1–P7; P8 is a Pinus pinea forest).

Species P.
code(1)

Province Municipality Location Latitude Longitude Elevation
(m)

Sea
distance
(km)

Mean
DBH(2)

(cm)

Sampling
repeats(3)

P.
pinaster

P1
Viana do
Castelo

Paredes de Coura Agualonga
41°51′
51.5″N 8°36′09.4″W 415 29.894 104 3

P2 Vila Real
Vila Pouca de

Aguiar
Tresminas

41°28′
34.2″N 7°31′22.8″W 773 139.968 76 3

P3 Santarém Ourém Caxarias
39°42′
35.9″N 8°30′53.4″W 166 59.593 99 4

P4
Castelo
Branco

Covilhã Tortosendo
40°14′
08.3″N 7°33′13.1″W 696 147.391 100 3

P5
Castelo
Branco

Oleiros
Sarnadas S.

Simão
39°56′
30.9″N 7°44′58.4″W 584 132.551 115 4

P6 Leiria Alcobaça Pataias
39°38′
15.0″N 9°02′39.1″W 128 3.676 114 4

P7 Setúbal Sines Sines
37°59′
02.5″N 8°48′22.8″W 53 5.849 104 4

P. pinea P8 Setúbal Alcochete Alcochete
38°43′
47.5″N 8°51′14.6″W 17 0.0318 – 2
fro
(1) P. code stands for provenance code, identifying a set of samples according to sampling location. (2) Mean DHB stands for the mean diameter breast height (cm) of the sampled trees. (3)
Sampling repeats indicate the number of sampling replicates performed at each location. The dates of the independent sampling campaigns are depicted in ESI Supplementary Table 1. QGis
software was used to extract data for each location and Figure 2.
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fragmentation patterns and included in the Wiley-NIST reference

library. An external quantification method was used, and all

standards (alone or mixed) were analyzed in triplicate.
2.7 Statistical analyses

Principal component analysis (PCA) of 1H NMR spectra of the

rosin was performed using a statistical analysis based on RStudio

version 1.4.1106 with the Rnmr1D package (Jacob et al., 2017; Jacob,

2018). All spectra (samples analyzed immediately after cryomilling)

were first aligned, baseline correction was applied, and the segments

[(5.0;4.9), (3.7;3.1), and (2.6;2.35) ppm], which are regions associated

with solvents, were deleted. Statistical analyses were applied to test the

hypothesis that there are significant differences in the mean

concentrations of the resin acids quantified by NMR in the rosin

samples associated with different sampling locations. The normality

of group means and the homoscedasticity of variances among means

were confirmed using the Shapiro–Wilk test and Bartlett’s test,

respectively. Non-parametric tests were performed to access

distribution differences of the RAc profiles of rosin samples

between the sampling sites (Kruskal–Wallis) and sampling

campaigns (Wilcoxon). The statistical analysis was based on

RStudio version 1.4.1106 with the Coin package (Kuhn, 2008).

Differences were considered significant at the p < 0.05 level. The

relative influence of edaphoclimatic parameters (e.g., % of sand in the

soil, elevation, annual precipitation, and annual temperature range)

on the resin acid profiles was tested using RStudio version 1.4.1106

with the Vegan package (Dixon, 2003).

The edaphoclimatic parameters used for the canonical

correspondence analysis (CCA) were found in publicly available

datasets. The climatic data for each location were obtained from the

WorldClim v2 set of global bioclimatic variables (Fick and Hijmans,

2017), comprising an average of 30-year climatic data series

(defined as matrix A, Supplementary Table 2) (WorldClim, 2020).

The soil data for the different locations were retrieved from the

INFOSOLO database (https://projects.iniav.pt/infosolo/) (defined

as matrix B, Supplementary Table 3) (INIAV, 2016; Ramos et al.,

2017). The climatic parameters measured in the month prior to the

sampling were obtained from the IPMA database (https://

www.ipma.pt/pt/index.html, defined as matrix C, Supplementary

Table 4) (IPMA, 2020). Matrix A contains 19 climatic parameters,

matrix B contains five edaphic parameters, and matrix C includes

six parameters. To reduce the matrices’ complexity, the parameter

dependence was tested using PCA. Analysis was performed using

RStudio version 1.4.1106 with the Vegan package (Dixon, 2003).
3 Results

3.1 NMR spectroscopy reveals comparable
spectral profiles for all P. pinaster rosin
composite samples

Representative P. pinaster trees were sampled from seven

different forests (P1 to P7) in the continental territory of Portugal
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(Table 1). All the sampled trees had no apparent phytosanitary

lesions and showed a mean oleoresin (resin) productivity of 2 to 3

kg/tree/year, with some trees reaching up to 4 to 5 kg/tree/year. The

tree diameter breast height (DBH; measured at approximately

115 cm above ground level) ranged from 76 to 115 cm (Table 1).

Initial reports showed that the profiles of resin acids, i.e.,

diversity and amount, are affected by the tree growth rate, age,

and even site of sample collection (Beltran et al., 2017; Salomé-

Abarca et al., 2018; Rubini et al., 2022). In this study, the oleoresin

samples for each location were pooled, as usually applied for

harvesting samples for industry, rendering location representative

samples (Supplementary Table 1). All composite oleoresin samples

were subjected to steam distillation to obtain the corresponding

composite rosin samples, similar to oleoresin industrial processing.

GC-MS was first used for the analysis of resin diterpenic acids in

1957 and has been considered a standard technique since then (Joye

and Lawrence, 1967). However, it presents several challenges for

RAc analysis, in part due to their structural similarity that hinders

separation (Rezzi et al., 2002; Graça et al., 2017; Salomé-Abarca

et al., 2018). Aiming for RAc quantification in rosin GC-MS was

initially tested. Pure standard compounds AA, DHA, and IPA

(commercially available) were used to construct calibration

curves for a defined concentration range. Mixtures of the

standard compounds in known concentrations were quantified

(Supplementary Figures 1A–C). The results show that under the

conditions used herein, the GC-MS quantification was inaccurate

whenever the compounds were analyzed as a mixture

(Supplementary Figure 1D, Supplementary Table 5). The

deviation was particularly obvious for the AA and DHA, both

compounds having an abietane skeleton. A possible explanation is

that these compounds underwent thermal degradation or

isomerization at the elevated temperature used for the GC

analysis, as previously suggested (Graça et al., 2017; Li et al.,

2019). Based on this result, NMR spectroscopy was chosen as the

quantification method since it has previously been reported to allow

a precise assignment and quantification of the different resin acids

(Graça et al., 2017; Ioannidis et al., 2019; Bento et al., 2022).

To test the NMR method adequacy, a rosin sample was

randomly selected (first collection date in 2018 from the location

of P3) of which the 1H spectrum (Figure 3A) and the full-range

HSQC spectrum (Figure 3B) are shown, highlighting the regions

corresponding to aliphatics (Figure 3C) and aromatics (Figure 3D).

The observed 1H and 13C chemical shifts were assigned using a

combination of two-dimensional correlation NMR experiments

(1H–1H: COSY; 1H–13C: HSQC and HMBC) and previous NMR

data on resin acids (Sugimoto et al., 2006; Graça et al., 2017;

Ioannidis et al., 2019; Bento et al., 2022). Additional spectra were

collected for standards of AA, DHA, and IPA, which further

secured the assignments performed (data not shown). On the

basis of the HSQC spectrum, the 1H chemical shifts of each resin

acid could be accurately assigned: AA, DHA, NEA, PAL, IPA, and

PA acids (Figure 1, Supplementary Table 6).

Based on this result, all rosin samples were analyzed by NMR as

described above (triplicates). The acquired 1H NMR spectra (all

presented in high spectral resolution) revealed that the chemical

diversity of all the P. pinaster rosin samples is qualitatively similar
frontiersin.org
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(Figure 3E), as also depicted in the 2D correlation NMR

experiments (representative spectral example in Supplementary

Figures 2-4; first collection date in 2018 from P4 location). The

exception was the P8 samples, corresponding to P. pinea rosin, since

the corresponding 1H NMR spectra did not detect NEA (present in

all P. pinaster samples) and detected AA at a very low signal

intensity compared to the remaining P. pinaster rosin samples

(Supplementary Figures 5-7).

PCA reveals that P3, P5, and P7 rosin composite samples have

higher dispersion patterns between replicas (Figure 3F). The P8

rosin is the most distinct sample. PCA loadings using correlation

analysis did not detect any specific NMR spectral signal that would

explain any degree of dissimilarity between the rosin samples

(Supplementary Figure 8). The NMR fingerprints of P. pinaster

rosin samples made visible their high similarity at a qualitative level.

Therefore, to further differentiate their chemical profiles, the NMR

quantification of each resin acid was undertaken.
Frontiers in Plant Science 06
3.2 The resin acid profiles of P. pinaster
rosin composite samples differ at each
forest location when different sampling
dates are compared

The 1H NMR spectra were used to quantify the resin acids in the

rosin composite samples (triplicates). Non-overlapping, undoubtedly

defined signals of the olefinic, aromatic, and aliphatic protons, were

selected for integration, as follows: AA (H-22 at 0.75 ppm), NEA (H-

13 at 6.16 ppm), DHA (H-14 at 6.84 ppm), IPA (H-11 at 5.79 ppm),

and PA (H-13 at 5.12 ppm) (Supplementary Figure 9). The

quantification of PAL was inferred by subtracting from the

integration of the signal at 5.33 ppm (H-14), which is assigned to

both AA and PAL, and the integration of the signal assigned

specifically to AA (H-22 at 0.75 ppm). To calculate the amount of

each resin acid (mg/g of rosin), the integration values inferred for

each resin acid were normalized using the signal integration of the
A B

D

E F

C

FIGURE 3

NMR spectral characterization of a rosin sample from Pinus pinaster. One sample was randomly selected (first collection date, 2018 from the
location of P3). (A) The 1H NMR and the (B) HSQC spectrum: full range and regions corresponding to (C) aliphatics and (D) aromatics. Some
correlations (unlabeled) are uncertain or unidentified. (E) 1H NMR spectra collected from all the rosin samples (spectra were aligned based on the
DMSO peak) and the (F) resultant principal component analysis (PCA) (Rnmr1D package). The PCA loadings based on correlation analysis are shown
in Supplementary Figure 8. NMR, nuclear magnetic resonance; HSQC, heteronuclear single quantum coherence.
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internal standard. Figure 4A summarizes the obtained results.

Figure 4B depicts the box plots of the six quantified resin acids in

all rosin samples per sampling location, denoting the samples’

similarity, except those from P. pinea that contain DHA as the

major RAc. The observed chemical profiles of P. pinaster rosin have a

prevalent resin acid AA, closely followed by DHA and IPA.

PCA of the variability of the resin acid profiles explained ~56%

and ~23% of the total variance by the PC1 and PC2, respectively

(Figure 4C). All P. pinaster rosin composite samples are dissociated

from the P. pinea rosin, consistent with the PCA of the NMR data

(Figure 3F). The resin acids explaining the observed differentiation

are NEA and PA in PC1 and DHA in PC2. Pairwise Wilcoxon tests

further show that only P. pinea samples were statistically different.

The observed uniformity in the RAc profiles of all P. pinaster

rosin composite samples is due to the high dataset variability where

the dates of the sampling campaigns are not differentiated. Figure 5

depicts the box plots of the P. pinaster RAc profiles per sampling

location and sampling date (season and year). Comparing the RAc

profiles per location along time led to the identification of variations

(pairwise Wilcoxon test, p < 0.05). It is therefore reasonable to

hypothesize that some of the noticed differences might be correlated

to climatic factors or other associated edaphic parameters.
3.3 The resin acid profiles of P. pinaster
rosin composite samples show weak
correlation with edaphic and climatic
parameters

A CCA was performed to scrutinize possible correlations between

edaphoclimatic parameters and the observed diversity of resin acids in

the P. pinaster rosin composite samples. First, the influence of an

average of 30-year climatic data series and soil data was tested. By PCA,

the parameters’ dependence was tested (Supplementary Table 7), and

the complexity of matrices A and B was reduced, resulting in matrix D,

which comprises four edaphoclimatic parameters (Supplementary

Table 8) that retain >85% of the original data variance. The resultant

CCA ordinations explain 11% of the variance of the RAc profiles

(Figure 6A); the strongest correlation observed was the percentage of

sand in the soil and the average annual temperature, which explains

6.4% and 5.5%, respectively.

Since the profile of resin acids in the rosin composite samples at

a defined location showed some temporal variation (Figure 5), the

available climatic parameters measured in the month prior to the

sampling (IPMA, 2020)— matrix C—were used. PCA reduction

generated matrix E, which comprises only three parameters

(Supplementary Table 9), explaining 89% of the data variance.

The resultant CCA ordination explains 8.8% of the variance of the

RAc profiles (Figure 6B); the strongest correlation observed is with

the maximum wind intensity, which explains 3.2% of the variability.
4 Discussion

Pinus pinaster oleoresin was collected from healthy resin-

producing trees spread through seven different pure forest
A

B

C

FIGURE 4

NMR-based quantification of extant resin acids detected in rosin
samples of Pinus pinaster and Pinus pinea (outlier sample). (A) The
mean abundance (mg/grosin) of the resin acids depicted according to
sample (includes mean resin acid amounts and standard deviation bars
per location). Resin acids showing statistically relevant differences (P8
location) among samples are highlighted (*Wilcoxon test, p < 0.05).
(B) The mean resin acid amounts and the respective dispersion
measures for each quantified resin acid. In the box plots, the boundary
of the box closest to zero and farthest from zero indicate the 25th and
75th percentiles, respectively; a black line within the box marks the
median. Whiskers above and below the box indicate the 10th and 90th

percentiles, respectively. (C) Principal component analysis of data in a
biplot. The biplot shows sample locations (scores) as labeled dots and
the RAc amounts (loadings) as vectors. Circles are for illustrative
purposes only. For details on samples, see Figure 2, Table 1,
Supplementary Table 1; details on resin acids are in Figure 1.
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ecosystems within the continental territory of Portugal (Figure 2).

The composite samples constitute a snapshot of the fingerprint of

each forest at the moment of collection. These samples were

subsequently distilled to obtain the corresponding rosin

composite samples.

After some preliminary tests, NMR (and not GC-MS) was

chosen as a gold standard method for the systematic analysis of

all rosin samples, gathering their spectral profiles and quantifying

the composing resin acids. The NMR data, either the spectral

fingerprints (Figure 3) or the inferred quantifications of six resin

acids (Figures 1, 4), showed the similarity of all P. pinaster samples,

which did not cluster per location. The oleoresin composition can

differ between individuals from the same population due to genetic

factors, among others (Arrabal et al., 2005; Arrabal et al., 2012;

Kopaczyk et al., 2020; Luan et al., 2021), a variability herein unseen

since strategically the oleoresin from 50 distinct P. pinaster trees was

polled prior to distillation, similar to that performed in industry.

The observed chemical profiles of P. pinaster rosin, where the

prevalent resin acid is AA, closely followed by DHA and IPA, are

consistent with those reported previously for related samples

collected within Portugal (Joye and Lawrence, 1967; Ghanmi

et al., 2009; Simões et al., 2021; Alonso-Esteban et al., 2022;

Rubini et al., 2022). Similar samples derived from the Corsica

forest are rich in DHA and LEV instead (Ottavioli et al., 2019).
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The prevalence of AA observed in the oleoresin samples is

biotechnologically relevant since several fungal strains can modify

AA structure, yielding derivatives with interesting pharmacological

activities (Özşen et al., 2017).

The PCA of P. pinaster samples shows a clear separation from

P. pinea outlier samples mostly due to NEA, PA, and DHA

abundances (Figure 4). This result is consistent with the idea that

the rosin compositional profile is considered a chemotaxonomic

indicator of pine species (Arrabal et al., 2012; Rubini et al., 2022).

This means that the sampling strategy used allowed good

discrimination between different pine species. Also, in phloem

samples, the profiles are dominated by AA and DHA in

P. pinaster and P. pinea, respectively (Simões et al., 2021).

To reduce the variability of the dataset with all collection sites

and collection dates, the sampling dates were differentiated. This

allowed us to observe that the RAc profiles suffered some alteration

over time (Figure 5), suggesting that edaphoclimatic factors can

impact oleoresin chemical composition. To test this hypothesis,

canonical correspondence analyses resorting to available

edaphoclimatic parameters from an average 30-year period or the

month prior to the sampling were applied. The used edaphoclimatic

data only explain ~11% of the observed resin acid diversity in

P. pinaster. The sand percentage in soil and the average annual

temperature (averaged analysis) and the maximum wind intensity
FIGURE 5

The mean resin acid amounts in Portuguese Pinus pinaster rosin samples and respective dispersion measures per sample along time. In the box
plots, the boundary of the box closest to zero and farthest from zero indicate the 25th and 75th percentiles, respectively; a black line within the box
marks the median. Whiskers above and below the box indicate the 10th and 90th percentiles, respectively. For further details on sampling campaigns,
see Supplementary Table 1.
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(focused analysis) were those identified as to possibly influence the

RAc profiles. These results are consistent with previous comparable

CCA studies on pine forests, where the average annual temperature

was suggested to influence the resin acid profile (Arrabal et al., 2005;

Rajčević et al., 2019). The occurrence of cavitation due to strong

winds has been suggested to influence oleoresin production

(Ioannidis et al., 2019); however, the time-constrained CCA

suggests a putative correlation of the wind intensity with the resin

acid profiles as well. This observation deserves focused examination

in the future. Additional variability apart from that described in

both ordinations can be explained by parameters that are not

represented in the generated matrices, including genotype (Rubini

et al., 2022), pests (Gaspar et al., 2020; Gonçalves et al., 2020;

Kopaczyk et al., 2020; López-Goldar et al., 2020), and proximity of
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forest fires (Cannac et al., 2009; Romero and Ganteaume, 2021), as

suggested before. The impact of silvicultural conditions on resin

composition, e.g., the resin tapping method, cannot be overlooked

as well (Rubini et al., 2022). The climatic parameters here identified

that influence, to a minor extent, the rosin composition are

temperature and wind, possibly a consequence of their impact on

the tree metabolism (biotic factors) and resin stability

(abiotic factors).

In general, the chemical fingerprint of Portuguese rosin

(specifically its RAc content) was observed to be rather stable

regardless of location and collection time. This result shows that

the quality of Portuguese rosin is very robust, an appealing

characteristic of any industrial raw material. Moreover, their RAc

profile is dominated by abietanes, more susceptible to chemical

alteration due to the position of the conjugated double-bond

system, which is absent in pimaranes (Silvestre and Gandini,

2008; Kugler et al., 2019). Finally, AA has adhesive, film-forming,

and water-resistant properties; DHA has adhesive, corrosion

resistance, and plasticizing properties; both are regarded as good

candidates for the development of new drugs due to potential, e.g.,

anticancer, antimicrobial, and anti-inflammatory, properties. The

abietanes are prone to further chemical syntheses; therefore, the

Portuguese rosin can be seen as a starting point for the production

of various end-products for different sectors, such as materials and

pharma. Hence, it should inspire the development of innovative

products/processes capable of boosting the competitiveness of the

entire value chain, consequently leading to the implementation of

stringent forest management measures that prevent decline due to

fires and pest infestation and stimulate the planting of new

forest areas.
5 Conclusion

In this study, an NMR method was used for a swift

categorization of the diversity of resin acids extant in diverse

rosin samples. The NMR results showed that the chemical

fingerprint of Portuguese rosin (specifically their resin acid

content) is mostly independent of the forest location, as well as

the sampling period, possibly due to a weak correlation to

edaphoclimatic parameters. More than half of their resin acid

content consists of abietic acid and dehydroabietic acid. In

conclusion, the stable chemistry and high abietane content of

Portuguese P. pinaster rosin were herein validated: a regular high-

performing raw industrial material is available across the entire

continental territory of Portugal. This knowledge may therefore

contribute to stimulating industry interest in oleoresin valorization,

helping to reverse the progressive decline in the Portuguese resin

tapping activity.
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144593/2019 to ÂP, BD/06435/2021 to RE, and BD/150870/2021 to

CN], and IM is grateful to FCT for the working contract financed by

national funds under norma transitória D.L. n.° 57/2016.
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Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., and Martins, J. C.
(2017). The INFOSOLO database as a first step towards the development of a soil
information system in Portugal . Catena 158, 390–412. doi : 10.1016/
j.catena.2017.07.020

Reboredo, F. (2014). Forest Context and Policies in Portugal. Present and future
challenges (Switzerland: Springer Cham).

Rezzi, S., Bighelli, A., Castola, V., and Casanova, J. (2002). Direct identification and
quantitative determination of acidic and neutral diterpenes using 13C-NMR
spectroscopy. Application to the analysis of oleoresin of Pinus nigra. Appl. Spectrosc.
56 (3), 312–317. doi: 10.1366/0003702021954890

Romero, B., and Ganteaume, A. (2021). Effect offire frequency on the flammability of
two mediterranean pines: link with needle terpene content. Plants 10 (10), 2164.
doi: 10.3390/plants10102164

Rubini, M., Clopeau, A., Sandak, J., Dumarcay, S., Sandak, A., Gerardin, P., et al.
(2022). Characterization and classification of Pinus oleoresin samples according to
Pinus species, tapping method, and geographical origin based on chemical composition
and chemometrics. Biocatalysis Agric. Biotechnol. 42 (4), 102340. doi: 10.1016/
j.bcab.2022.102340

Sacripante, G. G., Zhou, K., and Farooque, M. (2015). Sustainable polyester resins
derived from rosins. Macromolecules 48 (19), 6876–6881. doi: 10.1021/
acs.macromol.5b01462
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