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Genomic prediction reveals
unexplored variation in grain
protein and lysine content across
a vast winter wheat genebank
collection

Marcel O. Berkner1, Stephan Weise2, Jochen C. Reif1*

and Albert W. Schulthess1

1Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
Gatersleben, Seeland, Germany, 2Genebank Department, Leibniz Institute of Plant Genetics and Crop
Plant Research (IPK) Gatersleben, Seeland, Germany
Globally, wheat (Triticum aestivum L.) is a major source of proteins in human

nutrition despite its unbalanced amino acid composition. The low lysine content

in the protein fraction of wheat can lead to protein-energy-malnutrition

prominently in developing countries. A promising strategy to overcome this

problem is to breed varieties which combine high protein content with high

lysine content. Nevertheless, this requires the incorporation of yet undefined

donor genotypes into pre-breeding programs. Genebank collections are

suspected to harbor the needed genetic diversity. In the 1970s, a large-scale

screening of protein traits was conducted for the wheat genebank collection in

Gatersleben; however, this data has been poorly mined so far. In the present

study, a large historical dataset on protein content and lysine content of 4,971

accessions was curated, strictly corrected for outliers as well as for unreplicated

data and consolidated as the corresponding adjusted entry means. Four genomic

prediction approaches were compared based on the ability to accurately predict

the traits of interest. High-quality phenotypic data of 558 accessions was

leveraged by engaging the best performing prediction model, namely EG-

BLUP. Finally, this publication incorporates predicted phenotypes of 7,651

accessions of the winter wheat collection. Five accessions were proposed as

donor genotypes due to the combination of outstanding high protein content as

well as lysine content. Further investigation of the passport data suggested an

association of the adjusted lysine content with the elevation of the collecting site.

This publicly available information can facilitate future pre-breeding activities.
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1 Introduction

Worldwide, 410 Mt of consumable plant-based proteins are

provided by agriculture, with soybean (Glycine max (L.) Merr.),

maize (Zea mays L.), and wheat (Triticum aestivum L.) contributing

the largest quantities (Leinonen et al., 2019). Unlike the first two

crops, wheat is mostly used directly in human nutrition (OECD/

FAO, 2021). Thus, it is not surprising that wheat provides on

average 19% of the proteins consumed by humans, with some

regional peaks reaching more than one third in North Africa as well

as in West and Central Asia (Erenstein et al., 2022). Remarkable

ratios were also found in some regions of South Asia: wheat

consumed as flat bread accounts for about three-fifths of the daily

protein consumption in Pakistani households (Hussain et al., 2004).

Undoubtedly, the associated dominance in the diets are partially

due to the prevalent cultivation in the respective regions but also

wheat’s widespread availability on a global market (Shewry and

Hey, 2015). Moreover, the preference for wheat can also be assigned

to the specific characteristics of the protein fraction of the wheat

grain which lead to the unique baking and processing quality of

wheat flour (Shewry, 2009). This is one of the reasons for wheat

being processed to a diversity of breads, pastries and noodles

(Shewry, 2009) and as such forms a key aspect of the cuisine in

many regions.

Despite the large quantity of consumed wheat protein, the

nutritional quality of this protein is rather inadequate due to the

unbalanced amino acid composition. In particular, shortcomings in

the lysine content are the limiting factor (Leinonen et al., 2019)

which is especially problematic since the essential amino acid lysine

cannot be produced by the human organism itself and thus, must be

obtained from the diet (Ufaz and Galili, 2008). On the one hand,

these shortcomings can be leveled out in a diverse diet which

comprises lysine-rich protein sources such as legumes, meat, fish

or dairy products (Ritchie et al., 2018; Leinonen et al., 2019). On the

other hand, a considerable number of people, especially in

developing countries, does not have the purchasing power to

diversify their diet with, for example, animal-based products

(Hussain et al., 2004; Pellett and Ghosh, 2004; Muleya et al.,

2022). An unbalanced wheat-rich diet may result in lysine

deficiency (Meybodi et al., 2019). Such a deficiency is known to

cause severe physical underdevelopment in children (Batool et al.,

2015). Moreover, an inadequate supply with high quality protein

can affect physiological processes, the immune system as well as the

cognitive development (Batool et al., 2015). Impact on elderly adults

is also widely reported and for this group, deficiency results in

severe impairment of health including symptoms such as anemia

and fatigue (Meybodi et al., 2019). Overall, the symptoms associated

with inadequate protein supply are summarized under the name

protein-energy malnutrition (Meybodi et al., 2019) and affect

millions of people in developing countries (Batool et al., 2015).

Some strategies have already been proposed to increase the

lysine content of staple foods. For example, artificial fortification of

wheat flour with ground legumes, pseudo cereals or synthesized

amino acids (Hussain et al., 2004) has been shown to be effective,

but may have adverse effects on the processing quality or taste of

end products (Meybodi et al., 2019). Another promising strategy
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could be to breed wheat varieties which combine an overall high

protein content with an enrichment of lysine in the grain. In

general, the potential of developing cereal crops with such

characteristics has been demonstrated in maize. Naturally

occurring maize mutants, such as opaque2 and floury2, have been

reported with a significantly elevated lysine content (Morton et al.,

2016). In a case study, Muleya and collaborators (2022) concluded

that the use of varieties with such a mutation reduces the risk of

lysine deficiency by 21% for the poorest quintile of households in

Malawi. To the best of our knowledge, an analog wheat variety has

however not been developed so far. Lysine content has generally not

been of interest in commercial wheat breeding programs and

therefore, the potential of a breeding-based approach might be

particularly high for such an orphan trait. Moreover, the naturally

occurring lysine content of wheat grains is mainly influenced by the

genotype and depends only to a small extent on environmental

factors (Lawrence, 1976). Both arguments advocate for a breeding-

based approach such as outlined: Firstly, the variation in lysine

content of a large quantity of genotypes needs to be analyzed which

is very laborious in the field and laboratory. The first step is followed

by the identification of donor genotypes with a high lysine content

in the protein fraction. Lastly, the favorable genetics of donor

genotypes would be considered in pre-breeding activities and

selectively transferred into the elite gene pool of modern breeding

programs. While the latter step is mostly rather foreseeable, the first

two are the bottlenecks for increasing the lysine content because

they are time-consuming, demand resources and the result largely

depends on the variation available for analysis.

Genebank collections for wheat are known to harbor large

genetic diversity (Sansaloni et al., 2020; Schulthess et al., 2022)

and phenotypic variation (Philipp et al., 2018; Schulthess et al.,

2022). Diversity is however trait-specific and thus, identification of

potential donor genotypes with a high content of lysine and protein

rely on phenotypic investigation. Earlier attempts to screen

genebank collections of wheat for both traits date back to the

early 1970s. Vogel and collaborators evaluated 12,613 wheat

accessions from the World Wheat Collection of the United States

Department of Agriculture (USDA) (Vogel et al., 1973). In the same

decade, both traits were measured for 9,706 Triticum accessions at

the predecessor institution of the Federal ex situ Genebank of

Agricultural and Horticultural Crops which is today hosted at the

Leibniz Institute of Plant Genetics and Crop Plant Research in

Gatersleben (IPK Genebank) (Lehmann et al., 1978). The aim of the

aforementioned study was to screen the entire collection once and

to identify accessions with a strong deviation from the population

mean. The deviating accessions were re-evaluated in another year in

order to account for an overestimation due to environmental effects.

Until the mid-1980s, further successions were successively

investigated in a structured manner (Müntz and Lehmann, 1987).

Despite the sheer amount of work reflected by the work from

Lehmann and collaborators (1978), this data has not been mined in

depth according to today’s standards and possibilities. Since then,

developments in biostatistics and genomics urge the need for a re-

evaluation of this historical dataset. This includes the connection of

phenotypic data to genotypic data derived by next generation

sequencing, which becomes more and more available for large
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parts of the cereal collections at the IPK Genebank (Schulthess et al.,

2022). Combining and analyzing data will undoubtedly become

more important for the work of genebank curators in the future.

Since the evaluation in the 1970s, the IPK Genebank has increased

in size. With more than 27 thousand genebank accessions of

Triticum species (Oppermann, 2023), the IPK Genebank

preserves nowadays the 9th largest collection of plant genetic

resources of wheat and its crop wild relatives (FAO, 2010).

Genomic prediction could be used to characterize these new non-

phenotyped parts of the collection as well as those parts without

reliable phenotypic data. The power of targeted genomic prediction

has recently been shown by many studies in the context of

genebanks (Yu et al., 2016; Gonzalez et al., 2021; Berkner et al.,

2022; Schulthess et al., 2022). Finally, informing the interested

public on the newly generated information according to the FAIR

(Findable, Accessible, Interoperable and Reusable) (Wilkinson

et al., 2016) principles will further activate genebanks. This

strategy could enable breeders to specifically select suitable donor

genotypes and eventually, it may contribute to a future with less

malnutrition in developing countries.

The main aim of this study was to activate historical records of

the nutritional quality of wheat accessions stored at the IPK

Genebank for their use in plant breeding and research. In more

detail, we targeted (1) to curate the raw historical records for protein

and lysine content which were generated between 1970 and 1986,

(2) to analyze the data across years in order to generate outlier-

corrected best linear unbiased estimates (BLUEs) for genebank

accessions, (3) to apply a most suited model for genomic

prediction in order to predict phenotypes for the majority of

genebank accessions and (4) to suggest a set of well characterized

suitable donor genotypes to breeders and the interested public.
2 Materials and methods

2.1 Curation of historical records

Historical data on protein and lysine content were compiled

and curated. Some of the data originally recorded on punched tapes

was unlocked; other data was recorded manually from paper files.

All records were checked for accuracy and linked to the currently

used accession numbers. This data originates from a large screening

of the Triticum collection of the IPK Genebank. Between 1970 and

1986, 4,971 accessions were cultivated in 11 almost consecutive

years (Figure S1), seeds were harvested and analyzed in the

laboratory for protein content and lysine content. Detailed

description of the procedure has been given by Lehmann and

collaborators (1978). BLUEs for thousand grain weight (TGW)

were used as published by Philipp and collaborators (2019).
2.2 Origin and curation of genomic data

This study relied on a genomic dataset which has been

generated by Schulthess and collaborators (2022). Briefly, the

authors requested 7,651 accessions from the Triticum collection
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of the IPK Genebank and developed 7,745 isolate lines from them.

From here onward, these isolates are referred to as accession

samples. All 7,745 accession samples were genotyped by following

a genotyping-by-sequencing approach. Reads were aligned to the

first version of the reference genome var. Chinese Spring (IWGSC,

2018). After alignment, markers were rejected based on

homozygosity of either the reference or alternative allele. In the

next step, information of markers was omitted based on missing

values (> 10%), a minimum homozygous allele count of < 10% and

a maximum heterozygosity of > 1%. Later, imputation was done

based on the dominant allele. Afterwards, further filtering based on

a minor allele frequency of 1% led to a final matrix with 17,118

markers which was used for downstream analysis.
2.3 Outlier correction and analysis of
phenotypic data

The raw data for protein and lysine content was trimmed to

ensure that the data could be analyzed. Per trait, accessions were

excluded from further analysis if they were represented by a single

datapoint. Phenotypic values of 561 accessions remained after this

trimming. Furthermore, all records of a year were omitted if no

overlap with records of other years could be found. Outlier

correction and calculation of BLUEs was done as described by

Philipp and collaborators (2018). Briefly, the following linear mixed

model was fitted to the data:

yij = m + ɡi + aj + ei(j) (1)

where yij is the protein content (or lysine content) measured on

seeds of the accession i which were harvested in the year j.
Accordingly, m is the general fixed population average effect,

while gi and aj represent the effects of the genotype and the year,

respectively. The term ei(j) refers to the error of the model of which

the variance is modelled as specific for each year. For the

identification of outliers and the estimation of BLUEs, the term gi
was modelled as fixed while aj was modelled as random. In contrast,

both terms were considered as random for the calculation of

heritability. Outliers were identified based on standardized

residuals and with a correction for multiple testing (Holm, 1979;

Nobre and Singer, 2011) as implemented by Philipp and

collaborators (2018).

Heritabilities (h2) of both traits were estimated as described by

Philipp and collaborators (2018),

h2 =
s 2

G

s 2
G + s 2

e
�NY

(2)

where s 2
G and s 2

e refer to the genetic variance and the average

of year-specific error variances, respectively. �NY is the average

number of years in which an accession was tested. In addition,

above explained variances components were used to compute plot-

based heritabilities as:

h2pb =
s 2

G

s 2
G + s 2

e
(3)
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Lysine content was adjusted for protein content and TGW,

because lysine content was strongly correlated with both other

traits. The adjustment approach was a derivative of the approach

applied by Vogel and collaborators (1975). Briefly, a multiple linear

regression model was fitted on the BLUEs of lysine content in

dependence on protein content and TGW. Afterwards, lysine

content was adjusted genotype-wise based on the partial

regression coefficients and the mean-centered protein content and

TGW values as follows:

Lysineadj = Lysine − bProtein(Protein − Protein)

− bTGW (TGW − TGW) (4)
2.4 Analysis of population structure

The relatedness of the 7,745 genotyped accession samples was

studied based on a principal coordinate (PCo) analysis (Gower,

1966). For this, pair-wise Rogers’ distances (Rogers, 1972) were

calculated between genomic profiles of all accession samples and

compiled into a distance matrix; the complexity of the distance

matrix was reduced by deriving PCos (Gower, 1966). First and

second PCos, which retain the highest amount of variation, were

plotted against each other to graphically portray possible patterns

resulting from population structure.
2.5 Genomic prediction models
and their evaluation

In the present study, four different genomic prediction models,

namely G-BLUP, EG-BLUP, Bayes A, and Bayesian Lasso, were

compared based on their performance. The G-BLUP model

(VanRaden, 2008) predicts phenotypic values based on additive

genetic effects. These effects are explained by the relationship

among the genotypes. The prediction model for n genotypes has

the following matrix notation (Henderson, 1985):

y = 1nm + g + e (5)

where the phenotypic values (BLUEs), given by the vector y, are
a function of the general mean (m) and the n-dimensional vectors g
and e, which account for the genotypic values and the model’s

residuals, respectively. The n-dimensional vector of ones (1n)
assigns m to each element of y. The vectors g and e follow

multivariate normal distributions g  
e

 N(0,Gs 2
g ) and e  

e

 N(0, I
s 2

e ) which depend on the genomic-estimated additive relationship

matrix G and the genetic variance (s 2
g ) or I and the residual

variance (s 2
e ), respectively. The n� n matrix G was calculated

based on the first method described in VanRaden (2008) while I is
an n-dimensional identity matrix.

EG-BLUP accounts for additive-by-additive epistasis (Jiang and

Reif, 2015) and can be seen as an extension to the G-BLUP model as

follows:
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y = 1nm + g + g1 + e (6)

In equation (6), the terms y, 1n, m, g , and e are as defined in

equation (5). The n-dimensional vector g1 accounts for the

additive-by-additive effect among genotypes. This effect follows a

multivariate normal distribution g1  
e

 N(0,Hs 2
g1 ), where H =

G#G, with # being the Hadamard product operator (Jiang and

Reif, 2015).

BayesA (Meuwissen et al., 2001) was used as the base Bayesian

model for genomic prediction. In this prediction approach, priors of

the regression parameters are assumed to follow a scaled-t

distribution. Genomic prediction with the Bayesian Lasso was

applied according to Park and Casella (2008). In this approach,

the regression parameters have a double-exponential prior.

The four genomic prediction models were compared based on

their ability to accurately predict phenotypes. In this comparison,

the unit of quality was the prediction ability, which was defined as

the correlation between the BLUEs and the predicted phenotypes.

The comparison was established by means of five-fold cross-

validation. All accession samples with known BLUEs were

assigned to one of five equally sized groups. Four of these groups

were incorporated in the prediction model as training set in order to

predict the phenotypes in the remaining group, known as test set.

The prediction was repeated in such a manner that each group has

once been the test set and four times part of the training set.

Thereafter, predicted phenotypes of all test sets were combined and

the Pearson correlation coefficient with the respective BLUEs was

calculated. This whole process was independently repeated 100

times. For an unbiased comparison, all models were tested based on

the same training and test set. The best performing prediction

model was used to predict the phenotypes of all accession samples

with genomic data. In the latter case, all accession samples having

available phenotypic data were used as training set.

All computational calculations, analysis as well as the creation

of figures was implemented in the R environment (R v. 4.0.2).

Solving the linear mixed model for data curation, BLUEs

computation and the estimation of variance components from

phenotypic data was done by engaging ASReml-R 4 v. 4.1.0.110

(Butler et al., 2018). Genomic prediction models were implemented

with the R package BGLR v. 1.0.8 (Pérez and De Los Campos, 2014).
3 Results

3.1 Curated data with high quality

The data curation resulted in a comprehensive dataset for

protein content and lysine content which comprised 11 years of

experimental trials. In total, the resulting raw dataset included 5,952

records for protein content and 5,940 records for lysine content

from a total of 4,971 accessions. Across years, the raw data did not

only display differences in the traits’ distributions; but moreover,

the number of recorded data points differed strongly with a clear

dominance for the year 1970 in which 3,442 records were taken per

trait (Figure S1). In contrast, only six measurements were reported
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for 1983; these were excluded due to the absent overlap with any

other year. Despite the large amount of data, the dataset was rather

incomplete with an unbalanced structure and most accessions

tested only in one year (Table S1): Of all 4,971 accessions, 4,410

accessions were grown and characterized once without any

replication. These records were excluded from further analysis to

ensure that reliable BLUEs can be obtained for the remaining

accessions. After this step, remaining accessions were evaluated in

up to seven years, with an average number of 2.41 and 2.39 for

protein and lysine content, respectively.

The quality of the data can be reviewed based on heritability for

the two traits (Table 1). For protein content, the heritability before

outlier correction reached 0.77 and could only be slightly improved

due to the correction. The quality of the data for lysine content

improved by 23.14% due to the removal of 17 outlier data points,

leading to an increase in heritability from 0.47 to 0.58. The
Frontiers in Plant Science 05
estimated plot-based heritabilities behaved accordingly, as also

evidenced by the negligible amount of rejected data points.
3.2 Estimated average phenotypic
performance of accessions and
associations of the traits

The analysis resulted in BLUEs of 558 accessions for both traits,

namely protein content and lysine content. On average, accessions

had a protein content of 17.61% and a lysine content of 4.17‰.

However, some accessions were found with a very positive deviation

from the average (Figure 1): 12 accessions exhibited a lysine content

of more than 5.0‰. Protein content and lysine content were highly

correlated (r = 0.63, p < 0.01). Out of the 558 accessions, only 319

accessions additionally had BLUEs for TGW. TGW was negatively
TABLE 1 Description of the dataset for protein content and lysine content before and after outlier correction.

Trait Outlier correction mN s 2
g s 2

e h2 h2
pb

Protein content before 2.410 3.894 2.808 0.77 0.58

after 2.407 4.017 2.679 0.78 0.60

Lysine content before 2.394 0.087 0.235 0.47 0.27

after 2.385 0.096 0.168 0.58 0.36
Depicted are the average number of datapoints per accession (mN ), the genetic variance (s 2
g ), the average of year-specific error variances (s 2

e ) as well as the heritability (h
2) and the plot-based

heritability (h2pb). Accessions with a single datapoint per trait were disregarded here.
FIGURE 1

Correlations among the best linear unbiased estimates of four grain traits, namely protein content (%), lysine content (‰), thousand grain weight
(TGW) (g), and adjusted lysine content (‰). The upper triangle of the correlogram depicts the Pearson correlation coefficients with the associated p-
value. Positive correlations are shown in red; while, negative correlations are indicated in blue. The lower triangle of the correlogram displays the
best linear unbiased estimates of the four traits plotted against each other. Regression lines are shown in red.
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correlated with both, protein content and lysine content (Figure 1).

With this information, the adjusted lysine content of these 319

accessions was calculated. The adjustment completely broke the

correlations of lysine content with TGW and protein content but

retained the strong correlation with lysine content per se.
3.3 Comparison of different genomic
prediction approaches

Both genotypic data and phenotypic data, which were available

for 337 accession samples, were used for further genomic analysis

and prediction of protein and lysine content. The number of

genotyped accession samples with phenotypic information was

only slightly lower for adjusted lysine content. In addition, no
Frontiers in Plant Science 06
clear relationship pattern was observed between the distribution of

the 337 accession samples along the PCos of the genomic distances

and the phenotypic variation. Thus, no subpopulations were found

with substantially higher or worse performing accessions compared

to the population average. All in all, the available training set with

reliable phenotypes corresponds to a representative sample of the

whole winter wheat collection (Figure 2). Therefore, despite its

limited size and provided high cross-validated prediction abilities,

reliable predictions should be expected for both, phenotyped and

non-phenotyped accessions.

Four different genome-wide prediction approaches were

implemented and compared based on the correlation between

BLUEs and predicted phenotypes. EG-BLUP outperformed G-

BLUP and both Bayesian methods for the prediction of protein

content, lysine content, and adjusted lysine content (Figure 3). In
FIGURE 2

Molecular diversity of the IPK winter wheat collection covered by accession samples with best linear unbiased estimates of protein (%) and lysine (‰)
content. Distributions of the 337 phenotypic values are depicted via colorcoding and shown separately per trait. Biplots are based on the first and
second principal coordinates (PCo) from the Rogers’ distances between 7,745 accession samples characterized with genotyping-by-sequencing.
Gray dots represent genotyped accession samples lacking best linear unbiased estimates.
FIGURE 3

Distribution of genomic prediction abilities estimated in 100 five-fold cross-validation runs for protein, lysine, and adjusted lysine content. Four
genomic prediction models were considered: G-BLUP, EG-BLUP, Bayes A, and Bayesian Lasso. Boxes enclose 50% of the central data, including
median (horizontal black bold line) and mean (black diamonds), while whiskers are ± 1.5 × interquartile range and dots represent extreme values.
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terms of average cross-validated prediction abilities, EG-BLUP was

5.05% superior than the best of the three other alternative

approaches for the prediction of adjusted lysine content. In

addition, two different approaches were compared for the

prediction of adjusted lysine content (Figure S2). The separate

prediction of lysine content, protein content and TGW in order

to calculate the derived trait based on these predictions was

marginally less accurate than using the derived trait for the

genomic prediction.
3.4 Predicted phenotypes of 7,745
accession samples

Protein content, lysine content, and adjusted lysine content

were predicted for 7,745 accession samples by applying EG-BLUP -

the most-accurate prediction model in cross-validations. For all

accession samples, predicted protein content, lysine content, and

adjusted lysine content averaged 16.85%, 4.08‰, and 4.13‰,

respectively, with associated standard deviations of 0.74%, 0.11‰,

and 0.09‰, correspondingly (Figure 4). Some accessions had

outstanding values for the three traits with highest predicted

values of protein content, lysine content, and adjusted lysine

content amounting to 20.92%, 4.8‰, and 4.64‰, respectively.

Interestingly, we found few accessions that had high values for

both protein content and adjusted lysine content.

For all three traits, the size of the training set was rather small

compared with the test set. For example, information of only 329

accession samples was used in order to predict the adjusted lysine

content for 7,416 accession samples (Figure 4). Interestingly, the

mean and median were both lower in the test set compared with the
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training set. This deviation was most dominant for the predicted

protein content where the means were 17.31% and 16.82% in

training set and test set, respectively.
3.5 Definition of promising donor
genotypes

The newly explored information can be used to select

germplasm for pre-breeding programs with yet unexploited

genetic diversity. To motivate future germplasm usage, favorable

accessions were preliminary selected based on culling levels for

predicted protein content and predicted adjusted lysine content in

parallel. For both traits, the more stringent threshold was set to

99.9% of the normal distribution and five accessions could

preliminary be selected (Figure 5). The respective accessions had

not only favorable predicted phenotypes; moreover, these

accessions were also recorded with particularly high BLUEs for

both traits. Thus, the prediction can be seen as a confirmation of the

genetic superiority of these accessions. Additional 19 accessions

were identified with a more relaxed threshold for the culling levels

selection (z = 0.99) (Table S2).
3.6 Association of lysine with altitude

The five accessions which were preliminary selected based on

the stringent culling levels selection originated from Nepal and

Afghanistan (Table S2). A characteristic of these accessions is the

high altitude of their collecting sites. The altitudes of the collecting

sites ranged between 1,925 m and 2,975 m above sea level, as
FIGURE 4

Predicted phenotypes of 7,745 wheat accession samples for protein (%), lysine (‰), and adjusted lysine (‰) content. For each trait, distributions of
the prediction are shown separately for those accessions with best linear unbiased estimates (BLUEs, left) and those for which only genotypic data
was present (right). Boxes enclose 50% of the central data, including median (horizontal black bold line) and mean (black diamonds), while whiskers
are ± 1.5 × interquartile range and dots represent extreme values.
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indicated by the genebank catalog (Oppermann, 2023) and the

description of the collecting expedition (Witcombe, 1975). The

altitude of the collecting site is only known for 927 accession

samples which are 12.12% of the examined winter wheat

collection. The correlation between the altitude and the predicted

traits was analyzed despite the incomplete data. Predicted protein

and lysine contents were positively correlated with the altitude of

the collecting site; the correlation coefficient amounted to 0.23 and

0.50, respectively (p < 0.01). The predicted adjusted lysine content

was also positively correlated with the altitude of the collecting site

(r = 0.45, p < 0.01) (Figure S3).
4 Discussion

The analysis of the present historical data was affected by their

non-orthogonal structure. Most of the data trace back to the year

1970, with the vast majority of the accessions tested without

replication. Lehmann and collaborators (1978) planned to screen

all accessions once with the aim of identifying accessions with a

strong positive deviation from the mean of the total collection. In

order to reduce cost and workload, a repetition of the analysis was

conducted only for accessions with high protein content (> 18.5%)

and lysin content (> 4.5‰). This strategy has two major

disadvantages: First, the potential of some accessions may have

been underestimated in a single testing year which would then have

resulted in an erroneous rejection of this accession. Second, the total

phenotypic variation cannot be estimated correctly without reliable
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data from the underperforming accessions. However, precise

estimates of variation are a prerequisite for optimized allocation

of resources in breeding. On the one hand, this bias in the database

for prediction should lower the quality of the prediction especially

for the underperforming accessions (Zhao et al., 2012). On the other

hand, this should be less relevant in our case because the selection

decision in the first stage was based on data collected in one year

coupled with the moderate plot-based heritabilities (Table 1). To

account for the described shortcomings, we excluded accessions

which were represented by only a single datapoint, as unreplicated

data would provoke large uncertainty of the phenotypic data.

The exclusion of accessions with unreplicated data had strong

consequences for the generated BLUEs. Trimming of the dataset

reduced the number of accessions in the dataset to 11% and due to

the multiple-stage testing strategy, resulted in higher mean values of

protein content (15.92% to 17.66%) and lysine content (3.72‰ to

4.10‰). During the time of data collection, the multiple-stage

evaluation resulted in optimized selection gain. From today’s

perspective, the shortcomings in the dataset however highlight the

need to systematically plan screenings in a way which already

consider the proper statistical evaluation. Especially with limited

resources, repeated phenotyping of a well-chosen subset of

accessions should be favored since missing phenotypic

information can be determined by genomic predictions that rely

on cheap genotyping of whole genebank collections (Yu et al.,

2016). Given the selection strategy elaborated above, it was

important to investigate whether selection decisions stood in the

way of a representative training population. Inspection of the PCos
FIGURE 5

Culling levels selection based on genomic predicted protein (%) and adjusted lysine (‰) content. Shown are the predicted phenotypes of 7,745
wheat accession samples. Selection was performed with two intensities: a stringent threshold was defined by 0.999 of the normal distribution
(dotted line) while a more relaxed selection threshold resulted from 0.99 of the normal distribution (dashed line). Orange and purple dots represent
accessions samples which were selected based on the stringent and relaxed threshold, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1270298
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Berkner et al. 10.3389/fpls.2023.1270298
and distribution of phenotypic values suggests that we found this to

be the case to a limited extent (Figure 2).
4.1 Strong associations between seed traits

The results showed a strong positive correlation between the

BLUEs for protein and lysine content (Figure 1). An association of

these traits has already been reported based on a large screening of

the USDA World Wheat Collection (Vogel et al., 1975). The

authors reported an even stronger correlation of 0.804 and 0.871

for the years 1972 and 1973, respectively. Furthermore, these

authors reported a slightly negative correlation of TGW with

protein content (r = -0.278) and lysine content (r = -0.266),

respectively, in the year 1972. Thus, these correlations are in the

same order of magnitude as the correlations found in the present

study. In conclusion, these correlations indicate that accessions with

a higher protein content do also have a higher overall lysine content.

This is hardly surprising, because lysine is part of many groups of

proteins even though not in equal abundance. Furthermore, lighter

grains were identified to have an overall higher protein and lysine

content. Arguably, this is due to the heterogeneous distribution of

both components in the wheat grain. The storage proteins in the

endosperm have a significantly lower lysine content than the

embryo and bran (Vogel et al., 1976). In line with this, the

relative lysine content of wheat grains decreases during the grain

filling and maturation of the seed, thus, when the endosperm

increases in size (Molino et al., 1988). Arguably, the fraction of

the endosperm on the whole grain is larger in accessions with a high

TGW. This suggests that the proportion of tissues with low lysine

content increases in heavier grains. On the other hand, Vogel and

collaborators (1976) also found a strong correlation of 0.91 between

the lysine content of the endosperm and of the whole grain and

concluded that the whole grain trait values are sufficiently reliable

for selection. The data set analyzed in the present study was

generated based on whole grain samples (Lehmann et al., 1978),

which thus represent a mixture of embryo, bran, and endosperm.

Unfortunately, modern milling processes white flour which

contains exclusively endosperm tissue (Yu and Tian, 2018).

Therefore, accessions with beneficial characteristics could

hypothetically rely on an elevation of the lysine content in seed

tissues rarely used in human nutrition. In this regard, the

distribution of amino acids should be further investigated in the

future, especially in outperforming accessions. In the present study,

the intention was to identify genotypes that have a high proportion

of lysine in the protein fraction independently of the seed size; thus,

the adjustment of lysine content was important to account for the

described associations.
4.2 EG-BLUP with high potential for
genomic prediction

The comparison of genomic prediction models has shown that

EG-BLUP outperforms the other models in terms of prediction

ability (Figure 3). This is consistent with the findings of previous
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genomic prediction studies in wheat. EG-BLUP resulted in more

accurate predictions compared with G-BLUP for the prediction of

TGW, plant height, and yellow rust resistance (Berkner et al., 2022).

The particular advantage of this model is its ability to account for

additive effect but also for additive-by-additive epistasis (Jiang and

Reif, 2015). These results highlight therefore the importance of

additive-by-additive epistasis and are thus in line with previous

finding in wheat (Jiang et al., 2017; Raffo et al., 2022). The

superiority across many different traits, demonstrates the

robustness of the EG-BLUP model when confronted with

different genetic architectures.

According to our cross-validated comparison, genomic

prediction of derived traits such as adjusted lysine content can be

performed accurately (Figure S2), but requires however some

careful attention. In the present case, the implemented

adjustment method relied on the availability of phenotypic values

for three traits per accession. This restriction reduces the size of the

training set and thus, the information which can be used for

genomic prediction in a multiple-trait context (Schulthess et al.,

2016). Moreover, the adjustment method relies on associations

between lysine content and the two associated traits. These

associations are, however, only valid for the examined set of

genotypes and can differ between subsets of accessions such as for

region-specific subpopulations. Even though the prediction of the

derived trait based on the adjusted lysine content itself was most

accurate (Figure S2), it might be more appropriate to predict the

basis traits separately if subsampling is planned later, if the traits are

biased by subpopulations, or if the availability of data is very

unbalanced across different traits.
4.3 Enrichment of the genebank
catalog facilitates new strategies
for breeding programs

The study presents three types of data, namely, curated raw

data, BLUEs, and predicted phenotypes for interested stakeholders

in breeding and research. Without any doubt, the estimated

(BLUEs) and genomic predicted phenotypic performance can be

used for targeted selection of accessions. Although all the above-

mentioned data has now become publicly available, we wanted to

examine specifically accessions with high protein content and

adjusted lysine content. With high selection intensities (culling

levels of z = 0.999), we selected five promising accessions: While

one of the preliminary selected accessions came from Afghanistan,

four accessions originate in the Arun valley in Nepal (Oppermann,

2023). The latter ones derived from a collecting expedition in 1971.

Considering that the collecting sites of all four accessions were

located in neighboring villages (Witcombe, 1975), they arguably

share one common mechanism of upregulated synthesis and

storage of protein and lysine. At reduced selection intensity with

a culling level of z = 0.99, 19 additional accession were identified

and 14 of these originate from the very same expedition to Nepal.

Witcombe and Rao (1976) evaluated the accessions of that

collecting journey based on 39 traits and clustered plant material

based on phenotypic characteristics but ignoring the geographic
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proximity of the collecting sites. Interestingly, 14 accessions from

the preliminary selected 18 accessions with Nepalese origin derived

from the same phenotypic cluster. Witcombe and Rao (1976)

identified the high altitude as one factor which leads to the

common characteristics of this cluster.
4.4 Potential rationales for lysine’s
association with high altitudes

Adjusted lysine content was associated with the altitude of the

collecting sites of accessions. On the one hand, it could be argued that

the clustering of accessions with high adjusted lysine content

collected at high altitudes in Nepal was caused by a spontaneous

and rare mutation unrelated to selective advantages. On the other

hand, high adjusted lysine content was significantly associated (r =

0.45; p < 0.01) (Figure S3) with the altitude of the collecting site in

our study for a larger sample of 927 accessions for which altitude

information of the collecting site was available. We thus advance the

hypothesis that lysine content could play a role in the adaptation to

the altitude at which these landraces have been grown continuously

for many cropping seasons. High-altitude environments share

common features, such as low temperatures, strong exposure to

wind, drought due to lower humidity, high ultraviolet radiation, and

hypoxia (Tranquillini, 1963; Jinqiu et al., 2021). All of these

characteristics can cause abiotic stress to plants, but only the latter

two are specific to high altitudes. Therefore, high lysine content could

be relevant for the adaptation to high ultraviolet radiation or hypoxia.

The involvement of lysine in the tolerance to various abiotic

stresses, such as drought and salinity, has been summarized by

Kishor and collaborators (2020). Yadav and collaborators (2019)

investigated the impact of drought on the metabolite profile of

wheat plants in glasshouse experiments. Drought-resilient wheat

lines showed an increase in the lysine content of the vegetative

tissue as well as impacts on other amino acids such as serin and

asparagin. Additionally, Ding and collaborators (2016) reported a

more than twofold increase in lysine content under hypoxic

conditions in seedlings of rice (Oryza sativa L.). In contrast to

this finding, the high adjusted lysine content in the present study is

however not just a reaction of the wheat plant to abiotic stress. The

high adjusted lysine content reflects a permanent adaptation which

also results in higher lysine contents when these accessions are not

facing the stresses of high altitudes. The present study relies on field

trials conducted at 110 m above sea level. Moreover, the current

data reflects the lysine content of mature seeds but not of vegetative

plant tissue such as seedling. For seed tissue, we can only speculate

about a possible interplay of lysine with stresses such as ultraviolet

radiation or hypoxia.

Abiotic stress resistance of seeds is thought to be partially

mediated via proteins of the late embryogenesis abundant (LEA)

protein families (Zan et al., 2020). For instance, drought, extreme

temperatures and ultraviolet radiation are associate with the

expression of members of this protein family (Wang et al., 2008;

Zan et al., 2020). In wheat, Liu and collaborators (2019) identified

179 genes encoding such proteins in the genome of var. Chinese
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Spring. These proteins cluster into eight groups with distinct

characteristics. Dehydrins are one of these groups and their

protective characteristics relies on the K-segment which is

specifically enriched in lysine (Yang et al., 2015; Zan et al., 2020).

In line with this, Bhattacharya and collaborators (2019) found that

the amino acid composition of LEA proteins in wheat can largely

rely on lysine. In the case of one analyzed protein, lysine accounted

for more than one quarter of all amino acids. If abundance of such

proteins is causal for high lysine contents remain however

speculation and this urge the need for further investigation.

The present study has not only outlined a strategy to mine

historical data but also to leverage the data by genomic prediction.

Moreover, this study equipped breeders and researchers with data

for protein, lysine, and adjusted lysine content of in total 7,651

accession which can serve breeders to select suitable accessions for

their pre-breeding programs. This might build the starting point of

varieties which are not just high in protein but which further have a

more favorable composition of amino acids and might help to

overcome protein-energy malnutrition in future.
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