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Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes

significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut

cultivars with moderate field resistance has been critical for TSWV management.

However, current TSWV resistance is often not adequate, and the availability of

sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by

crossing wild diploid species could help introgress alleles that confer TSWV

resistance into cultivated peanut. Thrips-mediated TSWV screening identified

two diploids and their allotetraploid possessing the AA, BB, and AABB genomes

Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A.

valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection

and accumulation in comparison with peanut of pure cultivated pedigree.

Transcriptomes from TSWV-infected and non-infected samples from A.

stenosperma, A. valida, and ValSten1 were assembled, and differentially

expressed genes (DEGs) following TSWV infection were assessed. There were

3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and

ValSten1, respectively. A higher proportion of genes decreased in expression

following TSWV infection for A. stenosperma and ValSten1, whereas a higher

proportion of genes increased in expression following infection in A. valida. The

number of DEGs previously annotated as defense-related in relation to abiotic

and biotic stress was highest in A. valida followed by ValSten1 and A.

stenosperma. Plant phytohormone and photosynthesis genes also were

differentially expressed in greater numbers in A. valida followed by ValSten1

and A. stenosperma, with over half of those exhibiting decreases in expression.
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1 Introduction

Tomato spotted wilt orthotospovirus (TSWV) is transmitted by

thrips in a persistent propagative manner (Ullman, 1992). TSWV

infection in peanut causes the spotted wilt disease (SWD). SWD has

been the major concern in peanut production in the southeastern

United States for the past three decades (Culbreath and Srinivasan,

2011; Srinivasan et al., 2017). Successful breeding efforts have led to

the release of numerous peanut cultivars with moderate field

resistance to TSWV (Culbreath and Srinivasan, 2011; Boukar et al.,

2016). Peanut cultivars with moderate field resistance combined with

other cultural practices have been instrumental in managing the

SWD (Culbreath and Srinivasan, 2011; Srinivasan et al., 2017).

Field resistant peanut cultivars are not immune to the virus. They

can be systemically infected with the virus and display TSWV

characteristic symptoms upon infection (Srinivasan et al., 2017).

The mechanism of field resistance to TSWV seems to be different

in peanut than in other crops such as tomato and pepper, wherein

resistance is governed by single dominant genes such as Sw5, SlCHS3,

and Tsw (Stevens et al., 1991; Moury et al., 1997; Hoffmann et al.,

2001; Lv et al., 2022; Lahre et al., 2023; Rodrıǵuez-Negrete et al.,

2023). In contrast, in peanut, five quantitative trait loci (QTLs) on

chromosome A01 and one QTL on chromosome A09 have been

found to be associated with TSWV resistance (Tseng et al., 2016;

Zhao et al., 2018; Agarwal et al., 2019). The QTLs on A01 alone were

responsible for 36% phenotypic variation associated with TSWV

resistance, and A09 QTL contribution to TSWV resistance also was

significant but not estimated (Tseng et al., 2016; Agarwal et al., 2019).

Unlike tomato and pepper wherein the selection pressure induced by

TSWV has led to resistance-breaking variants, no such resistance-

breaking variants have been documented in peanut thus far (Sundaraj

et al., 2014; Lai et al., 2021a). Therefore, it is likely that TSWV

resistance in peanut is governed by multiple genes. Nevertheless,

TSWV incidence in moderately field resistant cultivars is not robust

and often dependent upon external factors such as vector and virus

pressure. Peanut cultivars developed thus far with TSWV resistance

are mostly from one peanut accession PI 203396 (Clevenger et al.,

2018). The sources of TSWV resistance are extremely narrow, and

reiterates the critical need to breed for robust TSWV resistance from

other durable sources.

The Arachis genus is native to South America and contains 83

described species (Valls and Simpson, 2005; Valls et al., 2013;

Santana and Valls, 2015; Valls and Simpson, 2017; Seijo et al.,

2021). Many diploid accessions of A. cardenasii (Krapov. and W.C.

Greg.), A. correntina ((Burkart) Krapov. and W.C. Greg.), A. diogoi

(Hoehne), A. villosa (Bentham), and A. stenosperma (Krapov and

W.C. Greg.) have exhibited resistance to TSWV (Lyerly et al., 2002).

For instance, A. diogoi (GKP 10602) was identified as resistant to

TSWV among 46 wild Arachis accessions (Milla et al., 2005; Lai,

2015; Stalker, 2017). Several QTLs linked to TSWV resistance have

been mapped in wild diploid genotypes. Five markers for TSWV

resistance were found from two AA genome wild species, A.

kuhlmannii (Krapov. and W.C. Greg.) (VRGeSv 7639) and A.

diogoi (GKP 10602) (Moretzsohn et al., 2013). In addition to

TSWV, wild species also have been documented to confer

resistance to its vector –thrips. Twelve diploid species were
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considered as potential sources for resistance to the thrips

Frankliniella fusca (Hinds) (Stalker and Campbell, 1983; Lyerly

et al., 2002), and antibiosis-based resistance to thrips was also found

in A. diogoi and its hybrid (A. hypogaea × A. diogoi) (Lai, 2015;

Srinivasan et al., 2018).

The cultivated allotetraploid peanut Arachis hypogaea (L.)

(4n=40 chromosomes; AABB-type genome) was generated from

the natural hybridization of two wild diploid species: A. duranensis

(Krapov. and W.C. Greg.) (2n=20 chromosomes; AA-type genome)

and A. ipaensis (Krapov. and W.C. Greg.) (2n=20 chromosomes;

BB-type genome) (Husted, 1930). Additionally, genetic deletions

and exchanges within and between the subgenomes of the

progenitors have been found to be advantageous in domestication

(Bertioli et al., 2016). Cultivated peanut is a self-pollinating crop

with very low genetic variability (Moretzsohn et al., 2013).

Consequently, resistance to TSWV and other pathogens is

limited. On the contrary, several diploid wild species possess

more resistance to TSWV and many other pathogens than

cultivated peanut. However, transferring TSWV resistance across

ploidy levels has been limiting due to hybrid incompatibility. Recent

advancements have overcome such issues and have led to the

development of allotetraploids from diploids via artificial

hybridization (Simpson, 1991; Leal-Bertioli et al., 2015; Stalker,

2017). Such allotetraploids are increasingly being utilized in peanut

breeding (Stalker, 2017; Chu et al., 2021).

In induced tetraploid genotypes, TSWV resistance conferring

QTLs were located on chromosomes A03 and B08 in ValSten1, B05

and B10 in IpaCor, and A02, A05, and A06 in IpaCor (Levinson,

2021). More wild species related materials have been registered as

TSWV resistant genotypes, such as ValSten1-GA-NC, IpaCor2-GA-

NC, and IpaDur3-GA-NC (Chu et al., 2021). Next-generation

sequencing (NGS) and transcriptome analysis have provided

insights on virus-host interactions in TSWV susceptible and

resistant peanut cultivars (Catto et al., 2021). Defense responses in

general were overexpressed following TSWV infection, and more so

in the case of TSWV-resistant cultivar than in the susceptible cultivar

(Catto et al., 2021). The goal of this study was to develop

transcriptomes and examine differential gene expression following

TSWV inoculation in wild peanut. Candidate genotypes were selected

based on phenotypic responses caused by thrips feeding and virus

infection, whereby A. stenosperma and A. valida, and the resulting

allotetraploid [A. stenosperma × A. valida]4x (ValSten1) showed the

lowest TSWV infection indices among the investigated genotypes in

an associated study (Chen et al., 2023). Furthermore, the TSWV-

induced gene expression changes in the selected wild species and their

hybrid were compared with the expression changes of orthologs in

the cultivated peanut genotypes.
2 Materials and methods

2.1 Maintenance of Arachis species plants

Two diploid species and their allotetraploid hybrid, namely A.

stenosperma V10309 (PI666100) (Figure 1A), A. valida GK30011

(PI468154) (Figure 1B), and [A. valida GK30011 × A. stenosperma
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V10309 (PI695393)]4x (Figure 1C) were used in this study

(Additional File 1: Figure S1) (Chu et al., 2021; Gao et al., 2021;

Chen et al., 2023). A. valida is a diploid species with the BB genome;

A. stenosperma is a diploid species with the AA genome; and

induced allotetraploid ValSten1 has AABB genome. Seeds of these

genotypes were treated with two to three ml of a 0.5% solution of

Florel® Growth Regulator (Monterey Lawn and Garden, Fresno,

California, USA) and incubated in a petri dish at 28°C for 18-24h to

break seed dormancy. Seeds were sown in individual 4” pots with

commercial potting mix Promix (Premier Horticulture Inc,

Quakertown, PA, USA). The plants were kept in thrips-proof

cages (47.5 cm3) (Megaview Science, Taichung, Taiwan) at 25-

30°C, 80-90% RH, and a photoperiod of L14: D10 in the

greenhouse. Seeds of the allotetraploid cultivar Georgia Green

were pre-geminated in moistened paper towel and incubated in a

growth chamber kept at 28°C for two to three days and used for

thrips maintenance. One-to-two-week-old seedlings with one-to-

two nodes and up to 16 leaflets of each genotype were used for

TSWV transmission.
2.2 Development of Arachis
hybrid ValSten1

The hybrid ValSten1 plants were developed based on the

protocol described in Gao et al. (2021). Briefly, in the greenhouse,

A. valida plants were emasculated and pollinated with fresh pollen
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of A. stenosperma. Hybrid plants were identified by a series of pollen

traits and tests as described in Gao et al. (2021). Once the hybrid

plants were identified, whole genome duplication using small 20-cm

lateral branch sections and colchicine was undertaken. Cuttings and

resulting plants were then maintained in the greenhouse as stated in

Gao et al. (2021). Pods harvested from these plants were assessed by

cytological and phenotypic analysis. Three morphological

variations viz., flower width, branch angle, and pod wieight

variations further confirmed the induced allotetraploid status of

ValSten1 plants.
2.3 Thrips maintenance

Non-viruliferous thrips and viruliferous Frankliniella fusca

thrips were maintained in separate growth chambers. Non-

viruliferous thrips were maintained on leaflets of non-infected

plants (cv. Georgia Green) within Petri dishes stuffed with a wet

cotton round. Colonies were maintained by successive releases of

ten adult female thrips, allowed to oviposit for 48h on a peanut

leaflet dusted with a trace of pine pollen, and placed in growth

chambers at 28-30°C and a photoperiod of L14: D10. Fresh leaflets

and water were added to the Petri plates three times a week until

emergence of the F1 generation. TSWV viruliferous thrips colony

was maintained similarly on TSWV-infected leaflets collected from

the field in a separate growth chamber as described previously

(Shrestha et al., 2013). During the off-season, viruliferous thrips
FIGURE 1

TSWV- induced symptoms on diploid Arachis species and their hybrid: (A) A. stenosperma V10309 (B) A. valida GK30011, and (C) the allotetraploid
hybrid ValSten1 Left photograph represents a non-infected leaf, middle photograph represents a TSWV- infected leaf, and right photograph
represents the whole plant after two weeks of thrips- mediated inoculation including infected and non-infected plants.
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were maintained on TSWV-infected leaflets generated by

mechanical inoculation in the greenhouse (Marasigan et al., 2015;

Shrestha et al., 2015).

TSWV viruliferous and non-viruliferous nature of thrips

colonies was periodically tested by RT-qPCR using N-gene-

specific primers as previously described with appropriate controls

(Rotenberg et al., 2009; Shrestha et al., 2012; Shrestha et al., 2017).

At each instance, a subset (~ten each) of viruliferous and non-

viruliferous thrips were evaluated for TSWV infection status. All the

viruliferous thrips evaluated tested positive and all the non-

viruliferous thrips tested negative for TSWV. These indicated that

the thrips colonies were true to their infection status or lack thereof.
2.4 Thrips-mediated inoculation of diploids
and their hybrid

F. fusca-mediated inoculation was conducted as per the

established protocol previously (Shrestha et al., 2015). The

experiment included two treatments: mock inoculation via non-

viruliferous F. fusca thrips (non-infected) and TSWV inoculation

via viruliferous thrips (TSWV-infected). Inoculated plants were

maintained in thrips-proof cages (47.5 cm3) in the growth

chamber at 27°C and ~80% humidity (Conviron, Pembina, ND,

USA). After two weeks, the first fully expanded leaf of inoculated

peanuts (ca 0.03 g) was tested by RT-qPCR following methods

described previously (Shrestha et al., 2015; Chen et al., 2023) to

assess TSWV-infection status.
2.5 Sample preparation, total RNA
extraction, and quality control

Samples from plants two-to-three weeks post-inoculation were

used. Five replications for each genotype were used. Leaflets were

collected from the first fully expanded leaf below the terminal of

each plant for RNA extraction. Total RNA was extracted by RNeasy

plant mini kit following the manufacturer’s protocol (Qiagen,

Valencia, CA, UGA). For each replicate, a leaflet sample was

obtained from an individual plant. Thus, a total of 30 RNA

samples were prepared for sequencing (three genotypes × two

infection status × five replicates) and were stored at -80°C before

shipping. Prior to library preparation, each sample’s integrity (RNA

integrity number, RIN) was measured by using Aglient 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) for

RNA quality control (QC). Two samples failed the QC test;

therefore 28 samples were used for library preparation

and sequencing.
2.6 Library preparation and sequencing

The complementary DNA (cDNA) synthesis, cDNA libraries

(messenger RNA library), and sequencing were undertaken by

Novogene Corporation Inc. (Sacramento, CA, USA), as described
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in Catto et al. (2021). Illumina sequencing libraries were

constructed using TruSeq RNA sample preparation kits. Briefly,

mRNA was selected, fragmented, and first-strand cDNA was

synthesized using random primers and reverse transcriptase.

Subsequently, Polymerase I and RNase H were used to make the

second-strand cDNA. An Illumina TruSeqLT adapter was ligated to

the DNA fragments, and PCR amplification was performed for a

minimal number of cycles with standard Illumina primers to

produce the final cDNA libraries. Twenty-eight libraries were

constructed and sequences using two lanes in the Illumina

NovaSeq 6000 platform (pair-end 150 cycle sequencing setting, >

6GB raw data per sample).
2.7 Raw read processing for
transcript abundance

In advance of the A. valida, A. stenosperma, and ValSten1

transcriptome assemblies (Additional File 1: Figure S2), FastQC

v0.11.9 and multiQC v1.11 were used to check the quality of raw

reads before and after trimming (Andrews, 2010; Ewels et al., 2016).

Trimmomatic v0.39 software was used with the default setting to

remove adapters (Bolger et al., 2014). Also, Sortmerna v4.3.3 software

was used with the SILVA database to remove rRNA contamination

(Kopylova et al., 2012; Yilmaz et al., 2014; Glöckner et al., 2017). The

rRNA decontaminated trimmed reads were converted from

interleaved to paired files using BBMap v38.93 software for

configuring files and for transcriptome assembly (Bushnell, 2014).
2.8 Transcriptome assembly pipeline and
quality control

The rRNA decontaminated and trimmed reads from A. valida, A.

stenosperma, and ValSten1 were used to generate respective de novo

assemblies using Trinity v2.10.0 software with the default parameters

(Grabherr et al., 2011). The sra2genes v4 software was used to clean

up the assemblies using prior evidence from closely related species to

address the possibility of over assembly of the transcriptome.

Sra2genes is a complete pipeline to reconstruct genes from RNA

data sources, and it includes several tools such as Cluster Database as

High Identity of Tolerance (CD-HIT) v4.8.1, Exonerate v2.4.0, Blast+

2.10.1, and A Genomic Mapping and Alignment Program for mRNA

and expressed sequence tag (EST) Sequences – Genomic Short-read

Nucleotide Alignment Program (GMAP-GSNAP) (Slater and Birney,

2005; Fu et al., 2012; Wu et al., 2016). CD-HIT v4.8.1 was used for the

removal of potentially chimeric or misassembled transcripts from the

input reads. Exonerate v2.4.0 was involved in the removal of all

duplicated sequences. Blast+ 2.10.1 was used to separate the

transcripts as various isoforms. GMAP-GSNAP was used to align

the reads to the assemblies. Benchmarking Universal Single Copy

Orthologs (BUSCO) v4.0.6 was used to determine assembly

completeness before and after cleaning of the de novo assemblies

against the Fabales odb10 lineage (n=5,366) (Simão et al., 2015;

Seppey et al., 2019; Manni et al., 2021).
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2.9 Mapping of reads and
differential expression

Trimmed reads were mapped to the respective de novo

assemblies (see Data Availability for NCBI assessions) using

Bowtie2 v2.4.1 with default mapping parameters (Langmead

et al., 2009; Langmead and Salzberg, 2012; Langmead et al., 2019).

Gene count estimates were derived from the mapped reads using

RNA-Seq by Expectation Maximization (RSEM) v1.3.3 for A.

stenosperma (Additional File 2: Table S1), A. valida (Additional

File 2: Table S2), and ValSten1 (Additional File 2: Table S3) (Li and

Dewey, 2011). Custom R script was used to determine the

fragments per kilobase million (FPKM) across all samples on R

v4.1.0 using the following R libraries: dplyr, tidyverse, and stringr

(Additional File 1: Figures S3–S5) (R Core Team, 2021). DESeq2

was used to measure differentially expressed genes by comparing

the gene counts from non-infected samples with virus-infected

samples, where genes that had a |log2 fold change (LFC)| ≥ 4 and

a false discovery rate (FDR) < 0.05 were classified as being

significantly differentially expressed (Love et al., 2014).
2.10 Functional annotation

The de novo assemblies for A. stenosperma (Additional File 3:

Table S4), A. valida (Additional File 3: Table S5), and ValSten1

(Additional File 3: Table S6) were compared against an Arachis

filtered subset of the NCBI database for non-redundant proteins

(NR) and RefSeq genes using OmicsBox (Götz et al., 2008;

Camacho et al., 2009). The OmicsBox tool also performed

Blast2GO and Gene Ontology (GO) mapping to assign functional

annotations to genes within each assembly (Conesa et al., 2005;

Götz et al., 2008; Mi et al., 2019). Additional annotations were

performed using InterProScan and the Kyoto Encyclopaedia of

Genes and Genomes (KEGG) (Kanehisa and Goto, 2000; Jones

et al., 2014; Kanehisa et al., 2016). The GO terms were processed

with topGO (https://www.bioconductor.org/packages/release/bioc/

html/topGO.html) and visualized using rrvgo (https://

bioconductor.org/packages/release/bioc/html/rrvgo.html) and the

reduced + visualize Gene Ontology (REVIGO) web tool (Supek

et al., 2011). GO terms down to level 3 were analysed.
2.11 Clustering of differentially expressed
genes into orthogroups

DEGs from two wild peanut species: A. stenosperma and A.

valida, their respective hybrid ValSten1, and previously published

DEGs from two domestic peanut cultivars: A. hypogaea (SunOleic

97R) and A. hypogaea (Tifguard) (Catto et al., 2021) were used to

determine DEG clusters using the online tool OrthoVenn2 (Xu

et al., 2019). The parameters for DEG ortholog clustering in

OrthoVenn2 were run with the cut-off value of 1e-5. Overlapping

regions were tested for significance using GeneOverlap (https://

bioconductor.org/packages/release/bioc/vignettes/GeneOverlap/

inst/doc/GeneOverlap.pdf).
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2.12 Validation of RNA sequence
using RT-qPCR

Quantitative reverse transcription-polymerase chain reaction

(RT-qPCR) was utilized to validate Arachis species transcripts

following TSWV infection. Three sequences from each genotype

with a |LFC| ≥4 and a false discovery rate (FDR) < 0.05 were

randomly selected. The sequences were extracted with the tool

seqtk. RT-qPCR was performed on plant samples obtained from

four biological repeats from the remaining samples. Primers for

targeted DEGs were designed by NCBI primer design (https://

www.ncbi.nlm.nih.gov/tools/primer-blast/). Primer sequences are

listed in Additional File 1: Table S7.

The cDNA was synthesized by a Go-Script reverse transcription

system (Promega Corporation, Madison, WI) following the

manufacturer’s protocol and then diluted 20-fold for quantitative

polymerase chain reaction (qPCR). The reaction mix for qPCR

included 2x GoTaq qPCR Master Mix, 1 ml of sequence-specific
primers (final concentration of 250 mM), 2 ml cDNA of sample, and

nuclease-free water for a final reaction volume of 20 ml. The reaction
was run at 95°C for 2 min, followed by 40 cycles at 95°C for 15s,

58°C for 20s, and 72°C for 30s. The reaction was extended with a

melting curve in a QuantStudio 3 System (applied biosystems by

Thermo Fisher Scientific, Waltham, MA) to rule out non-specific

binding. Two technical replicates for targeted transcripts and the

reference gene (alcohol dehydrogenase class III) (Lai et al., 2021b),

and water control were included in each RT-qPCR run. The log2fold

change of each target transcript in infected plants against mock-

inoculated plants was calculated after normalization to the reference

gene. The log2 transformed (ratio of infected samples/ratio of non-

infected samples) expression of target genes (transcripts) were

correlated with Pearson’s correlation using the function “cor” in

software R.
3 Results

3.1 Transcriptome assembly and
sequencing statisitics

Total raw reads obtained from infected plants and non-infected

plants of A. valida GK30011 (PI468154), A. stenosperma V10309

(PI666100), and ValSten1 were assembled de novo using Trinity

platform. Total raw reads generated from the three genotypes were

222, 234, and 253 million pair reads, respectively, which after

trimming amounted to 218, 231, and 250 million pair reads,

respectively. The percentage of reads mapped to the de novo

assembled transcriptome for A. stenosperma, A. valida, and

ValSten1 genotypes were 86%, 87%, and 80%, respectively

(Additional File 1: Table S8). These reads were assembled into

141,144 (A. valida), 106,374 (A. stenosperma), and 137,039

(ValSten1) contigs. The assembly of A. stenosperma contained

4,571 (85%) complete BUSCOs, which included 2,571 (48%)

single-copy and 2,000 (37%) duplicated orthologs. Similarly, A.

valida contained 4,724 (88%) complete BUSCOs, which included

2,545 (47%) single-copy and 2,179 (41%) duplicated orthologs. For
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ValSten1, there were 4,670 (87%) complete BUSCOs, which

included 2,209 (41%) single-copy and 2,461 (46%) duplicated

orthologs. One infected sample of A. stenosperma showed low

RIN (RNA integrity number) and one non-infected sample of A.

valida that showed uneven baseline at QC were not processed from

the initial 30 libraries.
3.2 Quantitation of differential expression
analysis profile

The reads obtained from infected and non-infected samples

from the three genotypes were normalized and clustered using

FPKM and principal component analysis (PCA) for comparison.

The PCA clustered TSWV infected samples of the three genotypes

separately from the non-infected ones (Figure 2). However, one

sample (asten_paired_V3B) in A. stenosperma was removed due to

the unexpected clustering in PCA, although it did not have a

reduced FPKM value (Additional File 1: Figure S6). Additional

checks on infection status were performed by mapping reads, using

RSEM and Bowtie2, from A. stenosperma and A. valida to the

ValSten1 de novo assembly and clustering the samples via PCA

(Additional File 1: Figure S7). Differentially expressed genes

(DEGs) observed for A. stenosperma, A. valida, and ValSten1 in

response to TSWV were 3,196 (596 overexpressed and

2,627 underexpressed; Figure 3A), 8,380 (6,332 overexpressed and

2,048 underexpressed; Figure 3B), and 1,312 (633 overexpressed

and 679 underexpressed; Figure 3C), respectively. TSWV-infected

samples of A. valida had more DEGs (8,380) compared with A.

stenosperma (3,196) and ValSten1 (1,312). A higher percentage of

DEGs for A. stenosperma were underexpressed, whereas more
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overexpressed genes were identified in A. valida. Similar numbers

of underexpressed and overexpressed genes were found

within ValSten1.
3.3 Functional annotation of genes

DEGs observed in the wild species in response to TSWV

infection were functionally annotated. The de novo assemblies

included 107,043 transcripts, 149,877 transcripts, and 138,389

transcripts (non-significant and significant genes) of A. valida, A.

stenosperma, and ValSten1, respectively.

Gene ontology (GO) provided context for the functionality of

genes and comprised three level 1 categories: biological process (BP),

cellular component (CC), and molecular function (MF). GO terms

within the BP category provided biological relevance by attributing

biological objectives to gene products. Significantly enriched GO

terms were determined by the Revigo tool (Supek et al., 2011) by

comparing the GO terms distribution from DEGs to that of the

entire transcriptome, also referred to as the background genes. DEG

specific GO terms that were overrepresented were considered

significantly enriched (p < 0.05) with respect to the background.

In A. stenosperma, 127 BP GO terms were significantly enriched

among DEGs across all GO term levels (Additional File 1: Figures

S8A, B; Additional File 4: Tables S9, S10), with 14 terms being

classified as levels 2 & 3 (Figures 4A, B). In A. valida, 256 BP GO

terms were significantly enriched among DEGs across all GO term

levels (Additional File 1: Figures S8C, D; Additional File 4: Tables

S11, S12), with 19 terms being classified as levels 2 & 3 (Figures 4C,

D). In ValSten1, 135 BP GO terms were significantly enriched

among DEGs across all GO term levels (Additional File 1: Figures
B

C

A

FIGURE 2

Principal component analysis based on the gene expression levels in two diploid Arachis species and their hybrid. (A) A. stenosperma V10309, (B) A.
valida GK30011, and (C) ValSten1 clustered together according to being either non-inoculated (M, in red color) or TSWV-infected (V, in blue color). .
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S8E, F; Additional File 4: Tables S13, S14), with 9 terms being

classified as levels 2 & 3 (Figures 4E, F).
3.4 Comparison of DEGs
between genotypes

To determine the transcriptional changes in each genotype related

to TSWV infection, the number of orthologous clusters between A.

stenosperma, A. valida, ValSten1, A. hypogaea (SunOleci 97R), and A.

hypogaea (Tifguard) (Catto et al., 2021) were compared using the

OrthoVenn2 web platform (Figure 5). Orthologous clustering analysis

resulted in 3,965 clusters of DEGs that were commonly shared by at

least two genotypes (Additional File 5: Table S15) and 15 single-copy

DEG clusters from all five genotypes (Additional File 5: Table S16). In

total, 71 DEG clusters were found to contain DEGs shared between all

five genotypes, with cluster53, cluster179, and cluster185 relating to

the putative disease resistance protein RGA3 (Song et al., 2003; Van

Der Vossen et al., 2003) (UniProt ID: Q7XA40) and defense response

(GO:0006952; Additional File 5: Table S15). There were 17 DEG

clusters that comprised four of the genotypes, but not in the

susceptible A. hypogaea (SunOleic 97R), with cluster674 relating to

the TMV resistance protein N (UniProt ID: Q40392) (Whitham et al.,

1994; Dinesh-Kumar and Baker, 2000; Dinesh-Kumar et al., 2000;

Caplan et al., 2008) and signal transduction (GO:0007165; Additional

File 5: Table S15). The highest overexpressed gene, with a LFC of 29.6,

was found in A. stenosperma and was annotated as linoleate 9S-

lipoxygenase (ArasteEVm001500t4). Manual assessment determined

that such a large LFC was caused by lack of mapped reads (no

detectable expression) in the mock inoculated/non-infected samples.

This gene was found to be in cluster4, containing genes from all

genotypes, and was functionally annotated as linoleate 9S-

lipoxygenase (P38414) (Hilbers et al., 1994) and oxylipin

biosynthetic process (GO:0031408; Additional File 5: Table S15).
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With respect to A. stenosperma, A. valida, and ValSten1,

orthologous DEG clustering analysis resulted in 1,507 DEG

clusters that were commonly shared by at least two genotypes: A.

stenosperma⋂ A. valida (779), A. stenosperma⋂ ValSten1 (79), A.

valida ⋂ ValSten1 (412), or A. stenosperma ⋂ A. valida ⋂
ValSten1 (237) (Additional File 1: Figure S9). Additionally, 1,574

DEG clusters were found to be specific to A. stenosperma (269), A.

valida (1,230), and ValSten1 (75) (Additional File 1: Figure S9).

Sixty nine of the 237 orthologous clusters shared by the three wild

peanut genotypes were reported as containing single-copy DEGs

(Additional File 5: Table S17). All pairwise comparisons of DEG

clusters from A. stenosperma⋃ A. valida (2,404), A. stenosperma⋃
ValSten1 (1,439), A. valida ⋃ ValSten1 (2,357) showed more

overlap than expected by chance (Fisher’s exact test) p=1.1e-50,

p=3.5e-12, and p=7.4e-47, respectively.

The phytovirus response DEGs from A. stenosperma (3,196), A.

valida (8,380), and ValSten1 (1,312) were grouped into three major

categories: defense, phytohormone, and photosynthesis related

genes (Table 1). The categories were chosen based on the study

with resistant and susceptible cultivated peanuts (Catto et al., 2021).

Within the defense related DEGs, the percentage (No. of

overexpressed DEGs out of total DEGs within category) in A.

stenosperma, A. valida, and ValSten1 were 34% (25/73), 64%

(490/763), and 55% (69/126), respectively (Table 1). A similar

pattern was observed in the case of phytohormone related DEGs.

Upregulation of phytohormone related DEGs of the eight examined

categories was higher in A. valida. The percentages (No. of

overexpressed DEGs out of total DEGs within category) in A.

stenosperma, A. valida, and ValSten1 were 9% (1/11), 51% (100/

198), and 36% (16/44), respectively (Table 1). Regarding

photosynthesis related DEGs, the percentages (No. of

overexpressed DEGs out of total DEGs within category) in A.

stenosperma, A. valida, and ValSten1 were 10% (3/29), 46% (249/

536), and 38% (28/73), respectively.
B CA

FIGURE 3

Volcano plots detailing the differential expression profiles of TSWV-infected versus non-infected samples of two diploid Arachis species and their hybrid.
Genes with a |LFC| >4 and a false discovery rate (FDR) < 0.05 are highlighted in red were considered to be differentially expressed: (A) 3,196 DEGs from
A. stenosprema V10309 (PI666100), (B) 8,380 DEGs from A. valida GK30011 (P1468154), and (C) 1,312 DEGs from ValSten1 (P1695393).
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3.5 Validation of RNA-sequencing

Three DEGs from each genotype were randomly selected and

their expression values were validated using RT-qPCR (Additional

File 1: Table S7). A positive correlation was found between the

expression from both RNASeq and RT-qPCR across all three

genotypes (cor=0.87, t=4.6, df=7, p=0.002; Additional File 1:

Figure S10).
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4 Discussion

Peanut production could be severely impacted by

orthotospoviruses such as TSWV (Culbreath et al., 2003;

Culbreath and Srinivasan, 2011). Resistance against the pathogen

and/or the vector is often the ideal management option. The

cultivated peanut has a narrow genetic base due to relatively

recent polyploidization and self-pollination (Pandey et al., 2012).
B

C D

E F

A

FIGURE 4

Gene Ontology (GO) level 2 & 3 terms ratios across two diploid Arachis species and their hybrid. (A) Ratio of all significant GO terms assigned to
differentially expressed genes (DEGs) present in A. stenosperma. (B) Tree map of significant levels 2 & 3 GO terms of DEGs compared to the background
in A. stenosperma. (C) Ratio of all significant GO terms assigned to differentially expressed genes (DEGs) present in A. valida (D) Tree map of significant
levels 2 & 3 GO terms of DEGs compared to the background in A. valida. (E) Ratio of all significant GO terms assigned to differentially expressed genes
(DEGs) present in ValSten1 (F) Tree map of significant levels 2 & 3 GO terms of DEGs compared to the background in ValSten1.
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Therefore, peanut genetics is prohibitive to crop improvement and/

or enhancing pathogen resistance. While wild species can confer

increased resistance against pathogens such as orthotospoviruses,

introgressing that resistance into cultivated peanut is challenging

mainly due to ploidy level differences (wild species are typically

diploids) (Pandey et al., 2012; Bertioli et al., 2016). Several wild

species have been recognized for innate resistance against

orthotospoviruses, particularly TSWV (Moretzsohn et al., 2013;

Lai, 2015; Stalker, 2017). Ability to induce allotetraploid hybrids

from wild species with the same genetic makeup as the cultivated

peanut, A. hypogaea (AABB genome), has allowed for transferring

useful genes and increasing the genetic diversity of tetraploid

peanut (Gao et al., 2021). As a part of continuing effort,

numerous wild species and their hybrids were evaluated at the

University of Georgia (Chen et al., 2023). The evaluations indicated

that wild diploids such as A. stenosperma and A. valida and their

allotetraploid hybrid, ValSten1, had reduced TSWV infection and

accumulation than other diploids and the cultivated tetraploid

evaluated following thrips-mediated inoculation (Chen et al.,

2023). The severity of TSWV-induced symptoms also was

reduced on A. stenosperma and A. valida and their allotetraploid

hybrid than on the cultivated tetraploid (Chen et al., 2023).

To gain insights on interactions of A. stenosperma and A. valida

and their allotetraploid hybrid with TSWV, gene expression

patterns post thrips-mediated TSWV inoculation were examined

in this study. Following thrips-mediated TSWV inoculation, based

on de novo transcriptome assemblies, gene expression was

substantially higher in A. valida than in A. stenosperma and

ValSten1. Overall, in this study, expression of defense-related

genes and genes associated with plant physiology such as

phytohormones and photosynthesis were examined. Numerous

genes pertaining to defense against biotic stress, including

pathogens, were overexpressed in A. valida (BB genome) than in

A. stenosperma (AA genome) following TSWV infection.

A greater proportion of contigs associated with pathogen

defense such as heat shock proteins, lectins, and leucine zippers

were overexpressed in A. valida followed and A. stenosperma. A

heat shock protein was associated with virus infection in
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Arabidopsis thaliana (Roux and Bergelson, 2016). Lectins were

known to upregulate plant defenses by facilitating recognition of

phytoviruses (Fliegmann et al., 2004). Nucleotide binding-leucine

rich repeats (NB-LRR) were known to provide defense against a

range of pathogens including phytoviruses (Noman et al., 2017;

Mishra et al., 2019; Zhang et al., 2023). A greater proportion of NB-

LRR genes were overexpressed in A. valida than in A. stenosperma

and in their hybrid in this study. Similarly, NB-LRR genes were

overexpressed in a TSWV resistant tetraploid peanut cultivar than

the susceptible tetraploid cultivar following TSWV infection (Catto

et al., 2021). NB-LLR genes also were overexpressed in response to

TSWV infection in TSWV-resistant tomato lines in another study

(Lv et al., 2023). The overexpression of defense genes following

thrips-mediated TSWV inoculation in this study provides

mechanistic reasons for the observed response against TSWV in

A. valida.

A suite of other defense genes such as calcium-modulated

calmodulin, stilbene synthase, and serine carboxypeptidases also

were overexpressed substantially in the case of A. valida followed by

the hybrid, and A. stenosperma. These genes have been documented

to mediate resistance against a wide array of pathogens including

phytoviruses (Fraser et al., 2005; Yu et al., 2005; Takabatake et al.,

2007; Hong et al., 2017; Catto et al., 2021). The differential gene

expression pattern seems to be consistent, wherein defense genes’

upregulation in A. valida was almost always higher than in the hybrid

and least in the other diploid, A. stenosperma. In addition, induced

defense response related genes such as those associated with RNA

interference and salicylic acid were overexpressed in a similar pattern

in A. valida followed by the hybrid and A. stenosperma.

Besides the above-stated categories of genes, dominant genes that

confer hypersensitive response were overexpressed in A. valida than

in the other two genotypes. Hypersensitive response inducing genes

such as nucleocapsid (N) gene from tobacco (Nicotiana glutinosa L.),

which imparts resistance to several tobamoviruses including the

tobacco mosaic virus (TMV), and disease resistance (R) proteins,

were underexpressed in three resistant wild genotypes in this study.

However, the R proteins were overexpressed in two cultivated

genotypes in a previous study (Catto et al., 2021). In pepper, Tsw
FIGURE 5

Distribution of shared peanut (Arachis spp.) gene families containing expressed genes in response to TSWV infection. Venn diagram represents the
expressed common, unique, and core set of DEGs within gene families between A. stenosperma, A. valida, ValSten1 (A. valida x A. stenosperma), A.
hypogaea (SunOleic 97R), and A. hypogaea (Tifguard).
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TABLE 1 Counts of defense-, phytohormone-, and photosynthesis-related significant differentially expressed genes with a |LFC| > 4 and a false discovery rate (FDR) < 0.05 cutoff in wild Arachis species in
response to TSWV infection.

ValSten1

derexpressed Overexpressed Underexpressed

6 0 0

1 0 0

1 0 0

1 15 0

12 12 2

4 3 1

4 0 0

13 2 2

18 6 8

0 0 0

49 4 13

3 2 0

25 1 2

89 14 23

1 0 0

12 3 0

20 2 5

0 0 0

11 5 0

3 0 1

(273) (69) (57)

37 3 14

8 1 3

4 2 2

8 0 0

9 5 1
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Gene description
A. stenosperma (Sten) A. valida (Val)

Overexpressed Underexpressed Overexpressed U

Argonaute 0 0 1

MATH domain 0 0 1

Dicer 0 1 3

Heat shock protein 11 0 49

Lectin 1 2 47

Leucine zipper 1 0 10

Mitogen-activated protein kinase 0 1 13

MYB 1 2 23

P450 1 4 51

PAMP 0 0 1

Disease resistance (R) protein 1 12 11

WRKY transcription factor 0 1 22

LRR 1 4 24

Serine/threonine 7 11 129

Salicylic acid 0 0 3

Calmodulin 0 1 25

TMV resistance protein N 1 8 25

Stilbene synthase 0 0 33

Serine Carboxypeptidase 0 1 19

Alpha-Dioxygenase 0 0 0

(Total of genes related to defense) (25) (48) (490)

Auxin 0 1 7

Gibberellin 0 0 5

Cytokinin 0 0 13

Abscisic acid 0 1 5

Ethylene 0 1 29
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was the only identified R gene against TSWV (Wu et al., 2023), and

Sw5 in tomato conferred hypersensitive response against TSWV (de

Oliveira et al., 2018). Similarly, in tomato, the disease- resistant R

gene Mi conferred resistance against nematodes and potato aphids

(Rossi et al., 1998). However, HR can be uncoupled with resistance

and may vary depending on species in some cases (Balint-Kurti,

2019). Perhaps this explains the absence of hypersensitive response in

peanut following TSWV infection. Generally, R protein in plants

recognizes the effectors in pathogens and are known to trigger a

defense response. WRKY transcription factors also were involved in

triggering immunity against a range of pathogens including viruses

by recognizing pathogen associated molecular patterns (PAMPs)

(Pandey and Somssich, 2009; Lee et al., 2023). WRKY was

overexpressed in a tomato genotype with resistance to TSWV

(Catoni et al., 2009; Lv et al., 2023). Similarly, WRKY contigs were

substantially overexpressed in A. valida and slightly in the hybrid.

The results in the current study clearly illustrate that several

classes of defense genes were overexpressed in A. valida (BB genome)

and its hybrid ValSten1 (AABB genome). However, the obtained

results were in contrast with previous studies, which showed wild

species such as A. stenosperma and A. cardenasii with AA genomes

harbored more defense genes’ containining QTLs than the wild

species with the BB genomes (Bertioli et al., 2016; Pandey et al.,

2017). The results from the current study indicate that the resistance

to TSWV in wild peanut may have interspecific differences and need

to be further examined in depth. Also, the current study was

conducted at one time point, i.e., three weeks post inoculation.

Time-series profiling of DEGs will be beneficial for better

understanding the changing pattern of gene expression in relation

to TSWV infection. Further, not many studies thus far have evaluated

gene expression in wild peanut species following TSWV infection,

especially following thrips-mediated inoculation. Perhaps, some of

these differences could explain the observed expression profiles of

defense genes associated with the BB genome in A. valida as opposed

to the AA genome in A. stenosperma. Despite this reoccurring pattern

of overexpression of defense related genes in A. valida and its hybrid

ValSten1, overall comparison of functional annotation in defense-

related DEGs between cultivated and wild peanut (AA, BB, and

AABB) showed that genes inmany categories were underexpressed in

wild species than in the case of cultivated peanut (Table 1). The host

phenotype alteration in the wild species and their hybrid in

comparison with the tetraploid cultivars following TSWV infection

was not as severe. This could have resulted in less physiological

perturbances in the wild diploid species and their hybrid than in the

cultivated tetraploids.

In addition to differential expression of defense related genes,

other genes such as phytohormones and photosynthesis related genes

also were differentially expressed. Altogether, more than half-a-dozen

phytohormones were downregulated in A. stenosperma and the

hybrid ValSten1. Phytohormones were slightly overexpressed in the

case of A. valida. Phytohormones can induce systemic resistance and

inhibit infection of viruses such as TSWV (Zhao et al., 2020).

Similarly, the increased flavonoid content facilitated by the

overexpression of SlCHS3 played a significant role in TSWV

resistance in tomato plants (Lv et al., 2022). In another study,

resistance against the thrips-borne virus in pepper was associated
T
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with auxin-related pathway (Zhao et al., 2022). Results in this study

showed that genes related to abscisic acid (ABA) and auxin were

underexpressed in wild peanut species. Likewise, the DEGs associated

with auxin were underexpressed following TSWV infection in

susceptible and resistant tomato lines, while DEGs related to

ethylene were overexpressed (Lv et al., 2023). In contrast, the

miRNA associated with auxin pathways were overexpressed in

pepper plants following TSWV infection (Tao et al., 2022).

Although ABA plays a role against bacteria and fungi (Alazem and

Lin, 2017), virus infection did not result in overexpression of ABA in

some incompatible interactions (Kovač et al., 2009; Baetz and

Martinoia, 2014). For example, infection by potato virus Y (PVY)

of the resistant potato cultivar did not induce ABA (Kazan and

Manners, 2009). PVY, like TSWV, is non-tissue specific.

Phytohormone gene expression results in this study are in contrast

with the tetraploid cultivars examined in another study, wherein

phytohormone related genes were overexpressed (Catto et al., 2021).

The overexpression was more prominent in the TSWV-resistant

cultivar, Tifguard, than in the susceptible cultivar (Catto et al., 2021).

Chloroplast and photosynthesis related genes also were

underexpressed overall in both diploids and their hybrid, with the

reduced expression being more prominent in A. stenosperma

followed by the hybrid ValSten1 and A. valida. The results were

congruent with the other study, in which photosynthesis related

genes were underexpressed in both TSWV resistant and susceptible

genotypes, with the underexpression being substantial in the case of

the TSWV-susceptible cultivar, SunOleic 97R (Catto et al., 2021).

Similarly, in the current study, the downregulation of photosynthesis

related genes was less substantial in the case of the A. valida followed

by the hybrid and A. stenosperma. These results reiterate that the A.

valida, and by extension the BB genome, could be more tolerant to

thrips-mediated TSWV inoculation.

TSWV resistance in wild diploid species and their hybrids could

play a pivotal role in broadening the resistance base against TSWV

and possibly other pathogens and pests. The wild diploid species and

the hybrid transcriptomes developed in this study provide significant

insights into virus-host interactions. Even though, the roles of the

differentially expressed genes remain to be functionally validated,

DEG analyses provide an overview of the mechanistic underpinning

for the observed resistance/tolerance against TSWV. The differential

gene expression analyses indicated that defense related genes were

consistently overexpressed in the diploid species with the BB genome

as opposed to the species with the AA genome. If the pattern remains

consistent, then it would be beneficial to focus on wild species such as

A. valida for enhancing TSWV resistance in cultivated peanut.

Further exploration into other molecular factors, such as

differential methylation and microRNA expression, in relation to

virus resistance in peanut might also be critical (Bertioli et al., 2016;

Arora et al., 2022; Tao et al., 2022; Huang et al., 2023).
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