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Introduction

Waterlogging (WL) is one of the most damaging abiotic stresses, affecting 1,700 million

hectares of land surface annually (Kaur et al., 2020). Under WL, saturation of soil pores

with excessive water results in the development of anaerobic conditions with a subsequent

reduction in root growth (Figure 1A; Pais et al., 2022). WL induces nutrient imbalances in

soil by inducing chemical reduction of some nutrients, including nitrogen (N) (Steffens

et al., 2005), thus leading to both nutrient deficiency and/or toxic buildups in soil. N is a

very important mineral nutrient and plays a critical role in plant physiology; thus, nitrogen

fertilization is adopted as one of the most essential principles for efficient crop production

systems (Shah et al., 2021). Nitrogen application boosts crop yield (Shah et al., 2017; Shah

et al., 2022); however, excessive application of N comes with several environmental issues.

WL promotes soil N losses via runoff, leaching, and denitrification with a concomitant

reduction in crop productivity, thus imposing economic and environmental implications.

Thus, it is important to understand and improve nitrogen use efficiency (NUE) in plants

under WL.

Roots uptake N from the soil in various forms, including amino acids, nitrate (NO3
−),

and ammonium (NH4
+); however, NO3

− is a major source of N in plants (Arduini et al.,

2019). WL reduces root N uptake by altering root development (RD), root system

architecture (RSA), and N availability in soil. The adoption of advanced agronomic N

management techniques, including slow-release fertilizer, biochar application, or

inoculation, plays a significant role in improving NUE under WL; however, the efficacy

of any agronomic technique greatly depends on soil type and plant species. Moreover,

recent development in genetics and breeding techniques have also shown tremendous

potential in the development of crop cultivars with higher NUE under low N availability;
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however, the development of such cultivars is very complex due to

genotype and environmental interactions. Moreover, a bottleneck

has arisen in the collection of quality phenotypic data to advance

crop breeding programs compared with genetic analysis. In this

context, adoption of high-throughput root-phenotyping (HTRP)

can provide blueprints for breeders to enhance N acquisition in

roots under WL.

Several HTRP techniques enable us to phenotype and visualize

the root performance under different growth conditions

(Figure 1B); however, contemporary aboveground canopy-based

crop phenotyping (GCCP) techniques account for N-deficiency-

induced changes in vegetation index (VI) by measuring

photosynthesis, chlorophyll contents, leaf temperature, and stay

greenness. However, such GCCP data can be easily camouflaged by

the multiple environmental factors that can directly or indirectly

influence VI traits. Contrarily, roots being the first line of contact

with N and WL, focusing on the establishment of HTRP at least at

the early growth stage would be beneficial in determining the

genetic basis of NUE in plants under WL.
Correlation between root
traits and NUE

Root system (RS) is very important in the context of N

acquisition from soil, and several root traits such as root size,

root length (RL), root density (Rd), and root distribution determine

N acquisition from soil (Figure 1C; Garnett et al., 2009). Crop

cultivars with larger RL and Rd uptake more N from soil (Ju et al.,

2015), thus reducing N losses under WL. RSA is closely related to N

uptake, and crop plants with steeper roots uptake more N from the

soil (Zhan & Lynch, 2015). The duration of WL also influences the

RS and N uptake (Malik et al., 2001); e.g., short-termWL reduced N

uptake only in the bottom layer of the soil-filled pot, while long-

term WL resulted in reduced N uptake in both the bottom and top

layers of the pot (Dresbøll and Thorup-Kristensen, 2012). Root N

uptake was more quickly recovered after short exposure to WL than

after long exposure to WL, probably due to the production of new

roots (Dresbøll and Thorup-Kristensen, 2012). However, even

though N uptake was resumed after recovery from WL, oat roots

exhibited reduced root biomass under WL, most likely due to the

separation of dead root fragments (Brisson et al., 2002), advanced

growth stage during recovery (Arduini et al., 2019), continuous N

leakage from root tissues, or other detrimental effects of WL on RS

(De San Celedonio et al., 2017). Nonetheless, a cultivar-specific

relationship between RS and NUE was observed among two

Chinese and one American variety of maize (Ju et al., 2015). The

insufficient N uptake by roots under WL could also be due to low

availability of N in soil (Nguyen et al., 2018), higher N losses,

reduced RD (Brisson et al., 2002), and impaired NO3
− uptake by

roots (Pang et al., 2007). Thus, it is not practically easy to ascertain

whether lower N availability to roots is the primary cause of reduced

root growth under WL or vice versa. Therefore, it is important to

consider factors such as cultivars, WL duration, WL method, and

plant growth stage when performing HTRP.
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Application of HTRP
under waterlogging

Labeling the variations among genotypes and species that

uphold improved root traits and integrating them into breeding

programs for the development of N-efficient cultivars is a very

demanding method. However, studying RSA is very challenging due

to the complexity of accurately and precisely phenotyping RS under

WL. Several HTRP techniques are being used to understand the

relationship between RS and NUE under WL (Figure 1B); however,

under field conditions, root phenotyping is still handled using a

medium- to low-throughput platform (Araus et al., 2022). Different

WL methods can also influence root phenotyping (Figure 1D).

Under controlled conditions, growing plants in hydroponics or gel-

based media provides an easy approach to monitoring root

morphology; however, this is applicable only in early growth

conditions (Langan et al., 2022). Sand culture is another HTRP

technique to study RS for improved NUE and performance of root

traits using scanners (Paez-Garcia et al., 2015). The pH level of soil

and soilless cultures needs to be well monitored, as systems with pH

instability and low buffer capacity affect N uptake and RD (Lager

et al., 2010). Noninvasive measurements of RS for improved NUE

under WL can also be examined using image technology, enabling

2D root growth accompanied by real-time gene expression relating

to NUE in roots (Rellán-Álvarez et al., 2015). Other noninvasive

techniques, including magnetic resonance imaging (MRI) and X-

ray computed tomography (CT) (see glossary in Figure 1B), assist in

visualizing the physiological properties of roots (Mairhofer et al.,

2013; Metzner et al., 2015). Nonetheless, technical complexities and

high operation costs make these techniques less useful for large-

scale phenotyping. The noninvasive microelectrode ion flux

measurements (MIFE) technique was used to perform cell-based

phenotyping for revealing QTL associated with hypoxia tolerance in

barley (Gill et al., 2017) and understanding the N uptake by

measuring the kinetics of NO3
− and NH4

+
fluxes (Garnett

et al., 2003).

At field conditions, several techniques have been applied for

performing root phenotyping, such as shovelomics and soil coring

(SC). Shovelomics also known as root crown phenotyping, consists

of the manual digging and excavation of roots and up to 30 cm of

rhizosphere (Wasson et al., 2020). SC also works as shovel omics

does to some extent; however, SC consists of the extraction of cores

from deeper soil using a corer, with a betting examination of RS

(Wasson et al., 2014). For a better view of RS, SC is supplemented

with a portable fluorescence imaging system known as BlueBox,

which provides automatic root counting using image analysis

software (Wasson et al., 2016). Geophysical platforms such as

electrical resistance tomography and electromagnetic inductance

are used to infer root growth under changes in soil water (Srayeddin

& Doussan, 2009; Whalley et al., 2017). Moreover, ground-

penetrating radar performs mapping of subsurface soil using

radio wave pulses and detects RS under field conditions (Liu

et al., 2017; Atkinson et al., 2019).

These HTRP techniques can be ineffective, laborious, and subject

to soil conditions (soil types, WL duration, N in soil). Moreover, root
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extraction under WL is also very difficult due to the breakage of

root fragments during extraction; thus, alternate approaches

supplement HTRP, including phenotyping of aboveground traits.

However, measuring aboveground traits can only infer root

growth indirectly (Reynolds et al., 2012; Tracy et al., 2020). To
Frontiers in Plant Science 03
understand root response, examination of the stable isotope

composition of N in roots under WL can improve our

understanding of the physiological basis of roots and NUE under

WL. Having said that, isotopic signatures of oxygen in stem water

were used as an indicator of water status in water-stressed roots
A B

D

E
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FIGURE 1

Application of HTRP for studying root systems and improving NUE under WL: (A) effects of WL on root growth, (B) glossary of different HTRP techniques
used for root phenotyping, (C) role of different root traits for improving NUE under WL, (D) comparison of different WL methods, and (E) application of
different image analysis software to quantify and visualize root system. Rd, root development; Rdia, root diameter; RL, root length; Rhs, root hairs; RA,
root activity; Root*, fine and coarse roots; Lp, root hydraulic conductivity; RB, root branching; MIFE, microelectrode ion flux estimation; EMI,
electromagnetic induction; GPR, ground-penetrating radar; MRI, magnetic resonance imaging; X-ray-CT, X-ray computed tomography.
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(Kale Celik et al., 2018). Thus, this approach should be used along

with other HTRP techniques.
Can image-based HTRP be used to
phenotype under WL?

Performing HTRP using imaging sensors (IS) and platforms

goes on to grow exponentially, easing the bottleneck of root

phenotypic data collection (Roitsch et al., 2019). IS such as red,

green, and blue (RGB) sensors that take images within the

wavelength range of 400–700 nm are termed visible IS, while IS

that go beyond the visible wavelength are known as spectral IS (SIS)

(Beisel et al., 2018; Bruning et al., 2020). In controlled conditions

such as glasshouses or growth chambers, IS range from low-cost

cameras to costly custom-made imaging setups (Tovar et al., 2018).

Recently, Xia et al. (2019) used hyperspectral and RGB to

phenotype WL in rape plants and found promising results.

Nonetheless, the use of low-cost cameras may result in image

noise; thus, to reduce image noise, image fragmentation must

performed (Agata et al., 2007). Imaging plants under WL face

other challenges due to the presence of extra water in a pot, which

reflects the lights of IS and is due to unwanted algal growth. On the

other hand, in field conditions, the use of unmanned ariel vehicles

(UAV) and satellite-based imaging are the most popular imaging

techniques (Li et al., 2014; Langan et al., 2022). Nonetheless, these

imaging techniques also face challenges associated with soil

heterogeneity and water drainage, so the use of machine learning

(ML) has been suggested along with these imaging techniques to

study WL in plants (Zhou et al., 2021). For 2D root images, tip

locations have been identified using a deep network-based classifier

scanned over an image to produce a location map (Pound et al.,

2017). For 3D images, deep learning has been applied to the root–

soil segmentation problem, where deep-learned features are used to

drive a support vector machine classifying root/soil pixels (Douarre

et al., 2016).

As mentioned before, RS plays a very important role in N

uptake under WL, and using growth pouches to study root

performance under WL or performing root phenotyping using

the classical 2D imaging technique (Nagel et al., 2012) does not

provide a clear understanding of the root development under WL.

Thus, the use of tomographic techniques including CT scanning,

MRI, or positron emission tomography has been successfully

reported in the study of root phenotyping (Atkinson et al., 2019;

Wasson et al., 2020). For instance, X-ray CT scanning was used to

visualize the formation of aerenchyma under WL in the roots of

barley (Kehoe et al., 2022). Therefore, the application of

tomographic techniques can assist in root phenotyping under

WL, thereby opening new opportunities for future studies.

Though several other methods have been designed for root

phenotyping by studying different root traits, including root

surface area, crown roots, root length, and root density in soil

core (Koyama et al., 2021), there is not any standard root

phenotyping method to study different aspects of RSA under WL;

therefore, the field of IS exhibits much to extend to the research

community. Having said that, several image analysis software are
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available to quantify and visualize root systems (Figure 1E). A new

initiative has been established to attempt to harness crop-

management synergies using phenotyping, robotics, and

computational technologies (http://www.phenorob.de/).
Conclusion
N fertilization has become the necessity of almost every

intensive cropping system, and under WL conditions, crops face

N deficiency. Thus, it is imperative to improve the ability of crops to

improve NUE under limited N availability. Roots play a critical role

in acquiring N from soil; thus, it is important to phenotype RS to

highlight the root traits and their relationship with NUE under WL.

Given that, the application of HTRP is intensifying due to the

technical development and measurement of RS. The utilization of IS

and noninvasive measurements of RS can facilitate improving NUE

in roots under WL. Advances in ML further benefit analyzing root

phenotyping data; however, under field conditions, high‐

throughput analysis of root phenotyping remains subtle.
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