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Editorial on the Research Topic

Environmental and endogenous signals: crop yield and quality regulation
Grain is the harvestable part of cereal crops, and the synthesis and accumulation of

grain storage substances during the filling process is an important factor that determines

cereal crop yield and quality. The process of source-sink-translocation in plants plays an

essential role in determining grain filling. Studies have shown that grain filling is affected by

changes in the expression of genes related to photosynthetic capacity, such as those

associated with source-sink translocation (Brazel and Ó'Maoiléidigh, 2019; Sanchez-

Bragado et al., 2020; Zhang et al., 2022). Additionally, nutritional transport systems such

as transporters of nutrient elements (Shannon, 1972; Sosso et al., 2015; Bezrutczyk et al.,

2018; Wang et al., 2018; Shen et al., 2022; Wang et al., 2022; Yang B. et al., 2022; Sun et al.,

2023), plasmodesmata, and sieve plates are essential to grain filling determination (Zhang

et al., 2010; You et al., 2021). Lastly, enzymes that synthesize storage starch (Hannah and

James, 2008; Huang et al., 2021; Wang et al., 2021) and lipids (Yang Y. et al., 2022; Luo

et al., 2023) and genes that encode storage proteins (Yang et al., 2023; Zhao et al., 2023) in

seeds work together to determine grain yield and quality of the cereal crops. During these

processes, various endogenous developmental and exogenous environmental cues

including phytohormones such as abscisic acid (ABA) (Wang and Zhang, 2020; Wang

et al., 2020), brassinosteroids (BR) (Wu et al., 2008; Song et al., 2023), and auxin

(Balcerowicz, 2021; Zhao et al., 2022), signaling metabolites such as trehalose-6-

phosphate (T6P) (Smeekens, 2015; Meitzel et al., 2021), and sucrose (Chen et al., 2019;

Jiang et al., 2021), as well as environmental stressors (biotic and abiotic stresses) are rapidly

integrated and translated into a variety of signals that regulate critical genes involved in

grain development and filling. To develop high-yielding and high-quality cereal varieties, it

is necessary to have a thorough understanding of the inherent regulatory mechanisms and

genetic basis of grain filling and development.

Abiotic stress including cold temperature stress is one of the most important

environmental factors affecting crop yield and quality. In a review article addressing this

Research Topic, Hernández et al. presented an overview of the physiological and

biochemical responses of sorghum to cold stress, by examining the molecular
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mechanisms through which sorghum copes with chilling stress via

multiple pathways that are regulated by phytohormones,

transcription factors, and microRNAs. The review explores how

chilling stress impacts the photosynthetic efficiency of sorghum and

consequently, its storage starch accumulation. PPDK, an enzyme

essential to the photosynthetic pathway in C4 crops, becomes

unstable, and ribulose-1,5-bisphosphate carboxylase/oxygenase

(Rubisco) is inhibited under cold temperature stress. The

consequence is a reduction in photosynthetic efficiency and a

decrease in starch accumulation in grains, which in turn results in

poor grain quality and yield.

About half of the population of the world is fed by rice, one of the

most important food crops worldwide. As living standards improve

around the world, the demand for high-quality rice is increasing. A

variety of characteristics related to grain quality such as milling traits,

physical appearance, cooking and taste properties, as well as nutritional

quality and yield are often the focus of genetic research on rice. A high-

resolution QTL mapping study was conducted by Jin et al. to

investigate the milling quality and appearance quality of an F2

population derived from a cross between Koshihikari and Nona

Bokra. Approximately 15 QTLs were identified for seven quality

traits of rice grains comprising whole grain percentage, head rice

percentage, head rice area percentage, transparency, chalky rice

percentage, chalkiness area percentage, and chalkiness degree. Most

of these QTL are novel to rice grain quality research. Several genes

involved in starch synthesis and storage protein biosynthesis pathways

were identified within these QTL regions. In a separate independent

QTL mapping study, Mao et al. identified 13 QTLs associated with

grain traits and yield in rice, such as grain length, grain width, and

thousand-grain weights using a chromosomal segment substitution

line of rice. In these QTL mapping studies, the pyramiding effect of

some of the identified major QTLs was also estimated, providing novel

and valuable genetic markers to improve rice grain quality and yield.

As the main storage component of cereal grains, starch plays an

important role in determining grain yield and quality. Among the

research articles published on this Research Topic, two deal with the

regulation of starch accumulation in cereal grains. In one of the two

articles, a protein, GF14f, an isoform of 14-3-3 proteins, was reported to

negatively regulates carbon remobilization and starch accumulation in

ratoon rice, thus reducing yield and causing grain chalkiness (Lin et al.).

Inhibition of GF14f gene expression enhances the efficiency of

translocation and assimilation of dry matter into grains and increases

the gene expressions of key starch synthetic enzymes, AGPase, soluble

starch synthase and starch branching enzymes during grain filling. By

analyzing multiple transcriptomes of different tissues of sorghum at

different periods, Xiao et al. dissect key genes associated with sorghum

starch biosynthesis and potential regulatory transcription factors. This

second research article explores the molecular mechanism by which

NAC transcription factors participate in and regulate starch

biosynthesis in sorghum.
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Globally, heavy metal pollution has become one of the most

important environmental concerns that causes fatal damage to cereal

quality. In a genome-wide association study of 312 maize inbred lines

under lead stress, Hou et al. identified four SNPs and candidate genes

related to root bushiness. A combination of association analysis of

candidate genes within significant SNP loci with transcriptomic data

under lead stress reveals two variants in ZmbZIP107 that have

significant association with root bushiness in governing lead-

tolerance in maize. The role of ZmbZIP107 in controlling lead

tolerance was validated in transgenic rice lines. In addition to

providing a genetic basis for lead tolerance, their results contributed

a novel gene for the development of lead-tolerant varieties of maize.

Overall, this Research Topic has been the subject of only five peer-

reviewed original research articles and one review article, most of

which deal with the regulation of cereal grain traits by environmental

or genetic factors. These articles presented an overview of recent

progress in the regulation of grain yield and quality traits and provided

a useful reference for improving cereal yield and quality. Finally, we

would like to express our gratitude to the authors, reviewers, and

editors of this Research Topic. It is only through their efforts and

dedication that this Research Topic was made possible.
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