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The deployment of omics technologies has obtained an incredible boost

over the past few decades with the advances in next-generation sequencing

(NGS) technologies, innovative bioinformatics tools, and the deluge of

available biological information. The major omics technologies in the

limelight are genomics, transcriptomics, proteomics, metabolomics, and

phenomics. These biotechnological advances have modernized crop

breeding and opened new horizons for developing crop varieties with

improved traits. The genomes of several crop species are sequenced, and

a huge number of genes associated with crucial economic traits have been

identified. These identified genes not only provide insights into the

understanding of regulatory mechanisms of crop traits but also decipher

practical grounds to assist in the molecular breeding of crops. This review

discusses the potential of omics technologies for the acquisition of biological

information and mining of the genes associated with important agronomic

traits in important food and fiber crops, such as wheat, rice, maize, potato,

tomato, cassava, and cotton. Different functional genomics approaches for

the validation of these important genes are also highlighted. Furthermore, a

list of genes discovered by employing omics approaches is being represented

as potential targets for genetic modifications by the latest genome

engineering methods for the development of climate-resilient crops that

would in turn provide great impetus to secure global food security.
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Introduction

The majority of efforts to increase crop productivity have

focused on conventional breeding techniques, such as

phenotyping-based selection. The advancement in genomics over

the past 20 years has further boosted the precision and efficiency of

breeding programs (Varshney et al., 2005) in many temperate crop

species (Eathington et al., 2007). Moreover, the scientific

community has invested in the development of genomic resources

as well as in intelligent decision support systems (a decision support

system that makes extensive use of artificial intelligence (AI)) that

result in the reduction of the genotype-phenotype gap and provide

effective strategies to develop next-generation climate-resilient crop

species (Batley and Edwards, 2016). Being sessile, plants are prone

to several stresses that limit their yield. A sound technical

knowledge of the gene networks that govern plant stress

responses is required to efficiently produce climate-resilient crops.

Integrated omics approaches are of great importance as they help in

elucidating the essential genetic basis of gene networks that are

involved in crop development and plant stress responses

(Großkinsky et al., 2018; Muthamilarasan et al., 2019; Naqvi

et al., 2022). Omics technologies have been widely utilized to

identify the mechanisms involved in plant development, stress

responses, yield, and other economically vital traits in important

food and fiber crops, such as wheat, rice, maize, potato, tomato,

cassava, cotton, etc. In this review, we highlight certain omics-based

approaches and their implementation from the perspective of crop

improvement. Furthermore, we also described the recent

discoveries of crop genomics, transcriptomics, and phenomics

and the genes identified through these approaches. Moreover, we

have highlighted other technologies (e.g., metabolomics and

ionomics) that, if integrated with transcriptomics, can provide

deeper insights into the mining of hub genes, which could be

employed for developing climate-smart crops. We also provided a

list of genes identified from transcriptomics analysis of important

food and fiber crops. Lastly, the genes identified from these omics

approaches could further be validated through functional genomics

techniques, e.g., overexpression, virus-induced gene-silencing

(VIGS), and genome editing.
Genomics-assisted breeding for
sustainable agriculture

Several types of molecular markers have been employed for

crop improvement. Marker-assisted selection using molecular

markers greatly increases the speed of crop breeding by allowing

traits to be selected without the need to perform phenotyping. The

reduced cost, high read accuracy, and long reads of modern

sequencing platforms have further enhanced the application of

these molecular markers for crop breeding (Kang et al., 2016).

For designing tailored crops, one or more of the following

genomics-assisted breeding (GAB) approaches, namely marker-

assisted recurrent selection (MARS), marker-assisted backcrossing

(MABC), advanced backcross quantitative trait loci (AB-QTL),

marker-assisted selection (MAS), promotion/removal of allele
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through genome editing (PAGE/RAGE), haplotype-based

breeding, and genomics selection (GS), have been utilized in

breeding programs. The initial step for MAS is the identification

of specific molecular markers, which are strongly linked with the

genomic regions/QTLs regulating the traits of interest. Ultimately,

these individual or multiple QTLs can be pyramided through

breeding into an elite cultivar through MABC. Successful stories

of MABC include the introgression of QTL-hotspot into elite

varieties of chickpeas for improved yield under drought

conditions (Bharadwaj et al., 2021) and improving the yield and

stress tolerance in rice variety IR64. This rice variety has improved

cooking quality, earliness, high yield, and disease resistance, which

has made it registered worldwide (Swamy et al., 2013; Kumar et al.,

2014). Other crops such as barley, sorghum, rice, etc. have also been

improved for multiple yield and stress-related traits using a similar

approach (Hasan et al., 2015; Gorthy et al., 2017; Xu et al., 2018;

Cobb et al., 2019; Kim et al., 2021). MAS has also been applied to

improve drought tolerance in multiple crops such as maize, rice,

sorghum, wheat, sunflower, and soybean (Borrell et al., 2014; Rama

Reddy et al., 2014; Khan et al., 2016). Most agronomically valuable

genes were cloned by QTL mapping in plants, i.e., by using

biparental mapping populations including doubled-haploid

libraries (DHLs), recombinant inbred line (RILs), backcross

inbred lines (BILs), chromosomal segment substitution lines

(CSSLs), fine mapping, and gene validation by using transgenic

approaches. Some valuable genes were also cloned by reverse

genetics by using insertional mutant pools (Krishnan et al., 2009;

Viana et al., 2019).

The GS approach has gained much attention as it enables the

selection of traits based on a larger set of markers rather than a few,

as in MAS. The examples exhibiting the potential application of GS

in cereal breeding included the transfer of eyespot (Rhizoctonia

cerealis) resistance genes, Pch1 andmlo, for barley powdery mildew,

and recessive resistance genes rym4/rym5 against barley yellow

mosaic viruses (Varshney et al., 2021). The evaluation of GS

mainly depends on the genomic-estimated breeding values

(GEBVs), and to calculate GEBVs, intensive phenotypic and

genome-wide marker information is utilized. The benefit of

GEBVs is that they allow the prediction of better-performing

individuals compared to their parents and are fit for the next

breeding cycle; they can also enter directly into the pipeline for

variety release (Crossa et al., 2017). The breakthrough success

stories in which GS applied for cultivar improvement against

diseases include blast in rice, rust in wheat, and bacterial blight

(Viana et al., 2019). Moreover, among abiotic stresses, tolerance to

salinity, submergence, and drought remained the preferred traits for

improvement. Knowledge of specific marker-trait associations is

not required for GS. However, the inclusion of a substantial set of

markers, such as outcomes of genome-wide association studies

(GWAS), into GS models has improved the prediction accuracy

(Li et al., 2018). Thus, GS has attracted attention in plant breeding

over traditionally employed strategies. With the availability of

effective and economical genotyping platforms and advancements

in predictive algorithms, GS is anticipated to be a regular method

like MAS/MABC in crop breeding programs. The haplotype-based

GWAS and selective sweeps are crucial explanations for
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understanding genetic diversity in the field of population genetics

and genomics, particularly when researching the evolution,

adaptability, and stress responses of plant species (Shokat et al.,

2020; Bhat et al., 2021; Shokat et al., 2023). A study involving

diverse exotics and historical elites developed 2,867 pre-breeding

lines for agronomic traits. The study revealed selection footprints

and exotic-specific associations, and it uncovered connections

specific to invasive species and selection footprints. Many pre-

breeding lines contained substantial exotic contributions, despite

bias in favor of elite genomes. The selected seven lines were

subjected to a varietal release process, and 95 lines have been

adopted by national breeding programs for the improvement of

the germplasm (Singh et al., 2021). Multiple haplotype and SNP-

based model analyses were used to elucidate significant associations

within the selection sweeps in tomatoes, which revealed

evolutionary insights and potential candidate genes regulating the

fruit metabolite content and weight (Zhao et al., 2022). The

genomic characterization through NGS and phenotyping data

showed 16.1%–25.1% exotic imprints, among which a favorable

rare haplotype on chromosome 6D was detected to show minimal

grain yield loss upon heat stress. The SNP region annotation

showed hits with the isoflavone reductase IRL-like protein of

wheat progenitor Aegilops tauschii. The overall positive

contribution of exotic germplasm was demonstrated, and it was

inferred that selected sweeps could be potentially used to secure

food insecurity, particularly under climate change threats (Singh

et al., 2018).
Pangenomics: capturing the genetic
diversity in a species

Increased genomic sequence information from diverse

accessions has allowed the development of pangenomes (Zhou

et al., 2015; Varshney et al., 2017). Pangenomics is an ideal and

comprehensive approach to capturing all the variations in a species

as well as representing the combined genetic repertoire of a species.

A pangenome generally consists of two components: the core

genome and the dispensable genome. Plant studies have

discovered that the core genome has a larger size, contributing

the maximum portion of genes (Zhao et al., 2018) while the

dispensable genome is more likely to contain polymorphic genes,

which could account for survival and adaptation in diverse

environments. The comparison of the wild species’ core genome

and the dispensable genome of cultivated species uncovers the effect

of domestication (Li et al., 2014). At present, pangenomes of several

crops, including wheat, rice, soybean, sesame, and tomato, have

been published, revealing structural variations and eliminating the

single-sample bias of “reference” genomes. Pangenomics has the

capability to exhibit an almost full assessment of the diversification

existing in a plant species (Montenegro et al., 2017; Yu J. et al.,

2019). Recently, a tomato pangenome has been assembled from 725

phylogenetically and geographically distinct accessions. The

recognition of 351 Mbp of sequences that were missing in the

reference genome was done using a map-to-pan strategy, which also
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detected a 4-bp substitution in the TomLoxC gene’s regulatory

region entailing their role in modification in fruit flavor, thus

highlighting the selection of fruit quality during the course of

domestication (Gao et al., 2019). The advent of robust long-read

sequencing technologies and bioinformatics tools is making

pangenomics more powerful to aid in discovering crucial genes

for trait improvement in major crops.
Exome sequencing applications in
crop improvement

Exome sequencing enables researchers to pinpoint important

genes involved in the improvement of traits like disease resistance,

heat tolerance, and drought resistance by staying focused on the

protein-coding portions of the genome. Exome sequencing is

utilized for capturing and sequencing 1%–2% of high-value

genomic regions, enriched for functional variants and low

repetitive regions. It has proven successful in solving biological

questions, understanding molecular variation, marker

development, and developing genomic resources for complex

crop plants (Kaur and Gaikwad, 2017; Bayer et al., 2019; Xiong

et al., 2023). Exome-capturing sequencing yielded 27.8 Gb data,

identifying 217,948 SNP and 13,554 Indels in wheat, where

functionally important SNPs and Indels were identified at 5.0%

and 5.3%, respectively. The exome variations in 12 mutant wheat

lines provided insights into mutagenic effects, and functionally

enriched genes were found in metabolic pathways like plant–

pathogen interactions and ADP binding (Li et al., 2022). The

G1674A mutation in a barley gene on chromosome 1HL,

encoding cellulose synthase-like C1 protein (HvCSLC1), was

identified through whole exome sequencing. It was inferred that

this mutation leads to the retention of the second intron and

premature termination of the HvCSLC1 protein (Gajek et al.,

2021). The combined bulk segregant analysis and whole exome-

capturing methods employed in potatoes for studying tuber sprout

elongation corroborated different QTL sites, helped to narrow down

the related genomic regions, and discovered novel QTLs (Sharma

et al., 2021). Overall, with this focused strategy, crop development

efforts are more precisely made while simultaneously speeding up

the breeding process. Exome sequencing, along with other omics

technologies, provides breeders with insights that allow them to

develop food and fiber crops that can survive in changing

environmental conditions, which eventually contributes to a more

sustainable and resilient global food supply.
Transcriptomics as a tool to discover
vital genes

Transcriptomics aids in investigating the differential gene

expression and identification of potential genes involved in

response to a particular biotic or abiotic stress. Identification of

important genes and elucidation of gene expression is thus a potent

strategy to develop crops with improved traits (Abdurakhmonov
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et al., 2016). The availability of well-annotated reference genomes

through NGS in the postgenomic era has enabled robust

transcriptome profiling. RNA-sequencing (RNA-seq) provides a

global representation and coverage of differential gene expression,

along with the detection of novel transcripts. Several transcriptome

studies have shed light on gene and transcript profiling in crop

plants. NGS-based transcriptomics has been utilized for all types of

RNA with the advances in massively parallel sequencing platforms.

NGS-based RNA sequencing techniques include RNA-seq (whole

transcriptome quantification or assembly), small RNA-seq

(characterization of small RNA, including micro- and noncoding

RNA), PRO-seq (detection of nascent RNA), degradome-seq

(typical ly for miRNA target predict ion), SMART-seq

(quantification of low input RNA), and ScRNA-seq (detection of

gene expression in an individual cell) (Dong and Chen, 2013; Olsen

and Baryawno, 2018). The latest bioinformatics tools also provide

help in the identification of hub genes through weighted co-

expression analysis and genome-wide analysis of gene families

(Zaidi et al., 2020; Ehsan et al., 2023). Alternative splicing studies

through transcriptomics allow the investigation of genetic diversity

in different crops (Glushkevich et al., 2022; Farooq et al., 2023). The

innovations in NGS technology have empowered gene expression

profiling and annotation of transcriptomes in major food and feed

crops, including wheat, rice, maize, potato, tomato, cotton, and

cassava, under different conditions and stimuli. The important

genes ident ified in recent years by RNA-seq-based

transcriptomics linked to certain responses in major crops are

highlighted in Table 1.
Metabolomics, ionomics,
and proteomics

Metabolites have essential roles in plant growth, development,

yield, and defense mechanisms. Metabolite profiling through

metabolomics is a vital tool for studying crop interactions with

environmental stresses. Different techniques being utilized to study

crop metabolites include gas chromatography-mass spectrometry

(GC-MS), liquid chromatography-mass spectrometry (LC-MS),

and nuclear magnetic resonance (NMR), each with their own

sample preparation protocols and sensitivity (Pretorius et al.,

2021). Metabolomics predicts the biochemical markers linked to

phenotypic traits, enabling it to be used as a primary detection tool

for the identification of favorable traits, which in combination with

genetic analysis can be exploited in crop breeding programs (Peng

et al., 2015; Razzaq et al., 2019; Raza, 2020). Comparative

metabolomics in the roots and leaves of soybean cultivars

(sensitive vs. moderately tolerant) through NMR exhibited

primary and secondary metabolites. Among these metabolites,

alanine, acetate, citrate, GABA, sucrose, and succinate were found

to accumulate in plant roots under flooding conditions, however

low levels of these metabolites were detected in leaves (Coutinho

et al., 2018). Whitefly-resistant and susceptible cassava accessions

were compared through metabolomics, which showed that low
Frontiers in Plant Science 04
levels of lignification are associated with whitefly susceptibility

(Perez-Fons et al., 2019).

Ultra-performance liquid chromatography-mass spectrometry

(UPLC-MS) has been utilized to study comprehensive metabolite

profiling of drought-tolerant and sensitive genotypes of Chinese

wheat. Guo et al. showed that seedlings of drought-tolerant wheat

genotype harbored higher levels of phenolics and 13-fold higher

thymine than drought-sensitive genotype (Guo et al., 2020). GC-MS

analysis was done for fatty acids profiling in cottonseed (Illarionova

et al., 2020) and NMR-based metabolomics has been used to explore

metabolites in Bt vs. non-Bt cotton for insect resistance (Shami

et al., 2023).

The advances in functional genomics, along with the availability

of statistical and bioinformatics tools, allow metabolic profiling to

be used as a phenotypic input for genetic association studies, like

QTL, thus facilitating crop improvement. The metabolome analysis

of 81 accessions of barley under drought and heat stress revealed 57

metabolite QTLs, which were mostly involved in antioxidant

defense responses (Templer et al., 2017). Metabolite-based GWAS

is another powerful tool to link genetic factors with primary and

secondary metabolites. It provides a prospect for identifying

candidate genes by exploiting the information from integrated

genetics and metabolites. This approach was used efficaciously in

tomatoes and detected 44 loci associated with fruit metabolites

(Sauvage et al., 2014). mGWAS in 175 rice accessions showed 323

associations among SNPs and metabolites (Matsuda et al., 2015).

Another mGWAS study displayed 16 metabolites related to

threonine-producing genes in rice under abiotic stress

(Muthuramalingam et al., 2018). Thus, metabolomics has great

potential to identify candidate genes and quantitative loci that can

be used for crop improvement.

Ionomics is another powerful approach, introduced around a

decade ago which provides information on the metabolism of

elemental composition in plants. It is a high-throughput

technique to study the organism’s molecular mechanistic basis of

mineral nutrients and their trace element components (also termed

the ionome) (Huang and Salt, 2016). For instance, the functional

analysis of wheat ionome showed variation in sulfur and

phosphorous content associated with grain’s phenotype (Fatiukha

et al., 2020). Furthermore, the genome-ionome linkage study in rice

revealed 12 micronutrients linked to brown rice, which exhibited its

nutrient-dense properties (Pasion et al., 2023). Ionome study

combined with GWAS and QTL analysis has shown that shoot

and root ionomes in rice were associated with 114 genomic regions

where the most significant regions were associated with cadmium,

manganese, molybdenum, and sulfur, thus displaying the strength

of this approach to manipulate and interrogate the complex traits

(Cobb et al., 2021). Ionome and transcriptome combined analysis of

two cotton varieties under salinity stress showed accumulation

variation of different nutrients in different plant tissues and

expressional changes in ion transport-related genes (Guo H.

et al., 2019).

Proteomics allows for the study of expressed proteins in crops

under specific conditions. A combination of crop proteomics with
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TABLE 1 Potential gene targets identified via transcriptomics in food and fiber crops.

Variety Condition
or stress

Tissue Sequencing
platform

Approach No. of
DEGs
or
variants

Important
genes/pathways

Reference

Wheat

Nongda 015
and FZ30

Powdery mildew Leaf Illumina
HiSeq 4000

2-step bulked
segregant
RNA
sequencing
(BSR-Seq)

31 and 20 Pm5e (Xie
et al., 2020)

Yunong211 Dithiothreitol and
tauroursodeoxycholic
acid for endoplasmic
reticulum stress

Seedling Illumina HiSeq RNA-Seq 8,204 Photosynthesis-related genes,
antioxidants, phytohormones,
transcription factors

(Yu X.
et al., 2019)

PBW677
and PBW703

Nitrogen
use efficiency

Root
and shoot

Illumina
Nextseq500

RNA-Seq 2,406 ABC and SWEET transporters,
MYB, bHLH, WRKY, zinc-
finger nuclease

(Kaur
et al., 2022)

Zhengmai 366
and
Chuanmai 42

Drought Root Illumina
HiSeq 6000

RNA-Seq 11,083 16 dehydrin genes (Xi
et al., 2023)

Rice

IR36 and Weigu Salinity Bursting
bud

Illumina HiSeq
X Ten

RNA-Seq and
QTL-Seq

5 OsSAP16 (Lei
et al., 2020)

Sahabhagidhan
and Geetanjali

Cold Leaf Illumina
HiSeq2000

RNA-Seq 13,930
and 10,599

AP2/ERF, MYB, WRKY (Pradhan
et al., 2019)

02428 and YZX Seed vigor Seed
and
seedling

Illumina HiSeq GWAS, QTL,
and RNA-Seq

44 OsEXPA17, OsLEA4, hsp20,
OsGH3.8, GA, and IAA-
responsive genes

(Guo T.
et al., 2019)

IR64 and Apo Drought Leaf Illumina GAIIx RNA-Seq 170 and 4 Dehydrin, MYB, NAC, zinc finger,
bZIP, HSF-type DNA-
binding protein

(Ereful
et al., 2020)

Maize

Zao 8-3 and
Ji 853

Low temperature Seed
embryo

Illumina
NovaSeq 6000

GWAS and
RNA-Seq

10 MAPK and fatty acid metabolism (Zhang
et al., 2020)

B73 Nitrogen stress Seedling Illumina
HiSeq 2500

Small
RNA-Seq

226 miR169, miR398, miR408,
miR1214, miR2199

(Yang
et al., 2019)

K12 and W64A Deep seeding Mesocotyl Illumina NovaSeq BSA-Seq and
RNA-Seq

24 Cell wall, phytohormones, circadian
clock-related genes

(Zhao and
Niu, 2022)

Potato

Kufri Gaurav Nitrogen
use efficiency

Leaf, root,
and
stolon

Ion Proton RNA-Seq 206,
144, 775

Superoxide dismutase, GDSL
esterase lipase, proline-rich proteins,
probable phosphatase 2C, nitrate
and sugar transporters, SPX domain,
VQ motif, bHLH

(Tiwari
et al., 2020)

Longshu No. 3 Wound healing Tuber Illumina
HiSeq 2500

RNA-Seq 7,665 WRKY, NAC, MYB, sugar and
starch metabolism,
phytohormone regulation

(Jiang
et al., 2022)

Vanderplank
and Innovator

Powdery scab Tuber Illumina
HiSeq 2000

RNA-Seq 2,058 StMRNA, StWRKY6, StUDP, StLOX,
StSN1, StPRF

(Lekota
et al., 2019)

Tomato

LA1698
and LA2093

Heat Leaf BGISEQ-500 RNA-Seq and
QTL-Seq

23,458 SlCathB2, SlGST, SlUBC5,
and SlARG1

(Wen
et al., 2019)

(Continued)
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advanced phenomics and other omics technologies can further

assist in the breeding of climate-smart crops (Komatsu et al.,

2013). Proteomic studies most predominantly use two-

d imens iona l ge l e l e c t rophores i s (2 -DE) and l iqu id

chromatography (LC)-based techniques that bring forth the

proteomes as well as post-translational modifications. Proteomic

analysis of soybean varieties by a 2-DE-based procedure under

drought and heat stress demonstrated 25 important proteins (Das

et al., 2016). The combined metabolome and proteome of maize

inbred lines and hybrids showed an abundance of photosynthesis-

related proteins, depicting the correlation of hybrid vigor with
Frontiers in Plant Science 06
efficient removal of toxic compounds in hybrids through

photorespiration and higher levels of photosynthesis (Li et al.,

2020). Comparative proteomics in two rice cultivars under H2O2

stress revealed proteins related to oxidative metabolism,

photosynthesis, and cell defense mechanisms (Bhattacharjee et al.,

2023). Metabolomics coupled with proteomics in cassava cultivars

under Sri Lankan cassava mosaic virus stress linked results from

both approaches and identified pathways involved in plant viral

interactions (Siriwan et al., 2023). Thus, proteomics can deliver

candidate genes that could be utilized for marker-assisted breeding

programs (Jan et al., 2023).
TABLE 1 Continued

Variety Condition
or stress

Tissue Sequencing
platform

Approach No. of
DEGs
or
variants

Important
genes/pathways

Reference

Moneymaker Short- and long-
term hypoxia

Root Illumina
Nextseq500

RNA-Seq 267
and 1,421

CS9, RBOHB, CAT, MT2B,
and ACO1

(Safavi-Rizi
et al., 2020)

Local variety Heat Leaf Illumina
HiSeq 2500

RNA-Seq and
proteome
analysis

91 HSPs, HSFs, BAGs, NAC, MBF1C (Ding
et al., 2020)

Ailsa Craig and
SlBES1-RNAi-8

Fruit softening Fruit Illumina Miseq RNA-Seq 24 SlBES1 and PMEU1 (Liu
et al., 2021)

Cassava

South
China 6068

Waterlogging Leaf
and Root

Illumina RNA-Seq 2,538
and 13,364

MYBs, WRKYs, NACs, AP2/ERFs,
glycolysis, photosynthesis, and
galactose metabolism

(Cao
et al., 2022)

8
cassava varieties

Cassava brown
streak disease

Leaf Illumina
HiSeq 2500

RNA-Seq 8,971 Cinnamic acid, PAL1, PAL2, and
chalcone synthase

(Kavil
et al., 2021)

Arg7 and W14 Abiotic and
biotic stresses

Leaf,
stem,
and root

Illumina GA II RNA-Seq 91 MePOD genes (Wu
et al., 2019)

Cotton

G. hirsutum acc.
TM-1 and G.
barbadense cv.
Hai7124 and
acc. 3-79

Fiber development Buds Illumina Novaseq RNA-Seq and
co-
expression
analysis

1,850
and 1,050

GhP2C72, bHLH, MYB, GhIAA16,
HD-ZIP, TCP, GhARF2b, WRKY

(Zhang J.
et al., 2022)

G.
arboreum (Ravi)

Whitefly-
mediated CLCuD

Leaf Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

50 CRT, b-1,3-glucanase, HSP40,
HSP70, NADH, COX1, COX3,
MYB, NRT1/PTR family

(Naqvi
et al., 2017)

G. arboreum
(FDH 228)

Drought and whitefly Leaf PacBio IsoSeq
and Illumina

RNA-Seq 1,343 CRT1, ERF, bZIP, bHLH, ColI,
JAZ1, WRKY, MAPK

(Farooq
et al., 2023)

G.
hirsutum
(Karishma)

Whitefly-
mediated CLCuD

Leaf Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

53 AOS, MYB, NAC, bHLH, Auxin,
cytokinin, ABA, ethyltransferases

(Naqvi
et al., 2019)

G.
hirsutum
(Mac7)

Whitefly-
mediated CLCuD

Leaf Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

55 NRT1/PTR family, nitrate reductase,
IAA4, SAUR-36, cytochrome P450,
E3 ubiquitin-protein ligase

(Zaidi et al.,
2020; Aslam
et al., 2022)

G. hirsutum
SG747 and G.
barbadense
Giza75

Oil accumulation Ovule Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

14 GhCYSD1, TAG, FAD3, BGAL (Song
et al., 2022)
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Phenomics, artificial intelligence, and
speed breeding

Phenotypic information is crucial to be utilized in crop

breeding; however, recording the phenotypic information in

breeding programs remains laborious and time-consuming. The

advances in high-throughput computing, remote sensing, artificial

intelligence, machine learning, and robotics have made automated

phenotyping possible through an approach known as phenomics

(Ohyanagi et al., 2022). High-throughput phenomics allows for the

measurement of different plant traits, including stress and disease,

with automation and precision. A phenomics-based collection of

large datasets can be handled, analyzed, and interpreted by modern

machine learning algorithms to gain useful intuitions and future

predictions of incidence. Neural networks, vector machines, and k-

nearest neighbors have been employed in maize, soybean, and

wheat for the detection and classification of insect pests

(Kasinathan et al., 2021). Hyperspectral imaging, nonimaging

spectroscopy, and red–green–blue (RGB) imaging based

automated techniques have been emphasized as potential

methods for real-time differentiation between crops and weeds in

the field for timely management of the weeds (Su, 2020). Artificial

neural network-based classification was used to detect blast disease

in rice plants with 100% accuracy (Ramesh and Vydeki, 2019).

Unmanned aerial vehicle (UAV) imaging and support vector

machine classification were used for the crop ’s texture

information for crop monitoring and yield forecasting (Kwak and

Park, 2019). Paudel et al. exploited machine learning models on five

crops, including barley, potato, sunflower, soft wheat, and sugar

beet in the Netherlands, Germany, and France, which provide

workflows to forecast crop yields (Paudel et al., 2021). Hitech

phenomics is also aiding in identifying nutrient deficiency and

water scarcity in crop-cultivated lands (Sahoo et al., 2023). Another

innovation of recent years, speed breeding, i.e., attaining multiple

crop generations with reduced generation time under controlled

conditions, is an influential approach for efficient plant breeding.

Speed breeding, along with advanced AI, provides a platform to

accelerate plant breeding programs via linking phenomics and

genomics, particularly under climate-changing scenario (Rai,

2022). Recent innovations in precision agricultural technologies

like remote sensing, the Internet of Things (IoT), and machine

learning can help breeders and farmers make informed decisions

and optimize their farming practices. These advanced technologies

can play a significant role in sustainable agriculture by improving

crop yield, reducing resource wastage, and enhancing overall

efficiency (Naqvi et al., 2020).
Functional genomics approaches for
tailored crop improvement

Most of the agronomically important traits are of complex

inheritance and challenging to improve. In this case, the mutant and

variant alleles can be identified by wide-association studies and QTL

mapping (as discussed above), which further need to be functionally
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validated before being utilized in the breeding program.

Understanding the molecular, genetic, and functional basis of a

particular gene can help breeders and researchers develop climate-

resilient, more productive, and stress-tolerant cultivars.

Conventionally, mutagenesis is an important strategy to

introduce mutations, which can be used as a tool for gene

functional study and to develop genetic variability. Moreover, to

evaluate the mutants and understand gene function, either a

forward genetics (from phenotype to genotype) or reverse

genetics (genotype to phenotype) strategy can be utilized.

Eliminating gene expression or disrupting gene structure exhibits

morphological changes in phenotype, providing evidence of the

relationship between a gene and its biological function. Although

the spontaneous mutation rates are very low (approximately 10−5 to

10−8) in plants, but mutagenesis is not always effective in gene

functional analysis of (Varshney et al., 2005) those genes that are

only required under specific biotic and abiotic stress; (2) those genes

which are involved in growth and development; and (3) redundant

genes because losing these gene function may not lead to

morphological changes (Jiang and Ramachandran, 2010; Wang

et al., 2013; Viana et al., 2019).

Another strategy of functional genomics is insertional

mutagenesis, which includes transfer DNA (T-DNA) insertions,

retrotransposon, and transposon tagging. These strategies have

been widely used in developing rice mutant libraries. In an

analysis of 206,668 insertion flanking sequence tags (FSTs), it was

found that 32,459 rice genes have already had insertion tags, and

about 50% of predicted protein-coding genes have been equipped

with insertional mutagenesis. This study showed the importance of

insertional mutagenesis but also had some drawbacks, such as

manual manipulations and high cost. However, new tools with

more directed, gene-specific methods are needed.

Over the past decade, several genes with substantial phenotypic

effects have been functionally validated in different crops via

clustered regularly interspaced short palindromic repeats

(CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based

genome editing (GE) to improve crop performance against

changing climatic conditions. A key feature of CRISPR/Cas9 is

the generation of double-stranded breaks (DSBs) of DNA at target

loci, which can further be repaired by two cellular mechanisms:

nonhomologous end joining (NHEJ) and homology-directed repair

(HDR). This tool offers to target various sites simultaneously by

utilizing multiple sgRNAs while expressing a single Cas9 or Cpf1

protein (Chen et al., 2019).

Crop-specific functional genes have been exploited to generate

gene-edited crops, and approximately more than 60 success stories

have been published for drought tolerance, better cell-wall

expansion, improved oil quality, and other plant traits.

Furthermore, the crop genes that have been exploited by the

pathogens for virulence and pathogenicity can be targeted

through CRISPR/Cas9, providing an opportunity to break the life

cycle of the pathogen (Mahmood et al., 2022).

Several CRISPR-Cas nucleases and their engineered variants

have been momentously expanded beyond generating double-

stranded DNA breaks (Huang and Puchta, 2021). This technology

has advanced immensely owing to Cas variants and gene editing
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approaches aided by apt bioinformatics pipelines. For instance,

Cas9 and Cas12a systems have recognized different protospacer-

adjacent motif (PAM) for the diagnosis of DNA and RNA viruses

(Zhu et al., 2020), while the SHERLOCK system has been employed

in soybeans for genotyping and quantification of different traits

using crude extracts (Abudayyeh et al., 2019).

Through genomics and transcriptomics data, it has now become

possible to screen vital genes systematically. This is possible by using

silencing tools such as RNA interference (RNAi) and VIGS, which
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reduce the expression of specific host target genes and accelerate the

plant’s functional genomics. As recently reviewed (Lacomme, 2015;

Mahmood et al., 2023), many agricultural VIGS vectors derived

from both DNA and RNA viruses are presently available for a wide

range of plant species to knock out/down gene expression for

functional genomics. The innovative virus-induced genome editing

(VIGE) approach is an upgrade of VIGS based on a CRISPR system

that offers gene editing with higher efficiency without typical

laborious transformation protocols (Zhang C. et al., 2022).
FIGURE 1

Integrated omics technologies for food and fiber crop improvement. The schematic exhibits a holistic approach that aims to identify the favorable
alleles or purge the deleterious alleles in the plant genome for designing climate-resilient crops. (A) The plant genetic resources and experimental
populations from sites experiencing natural selection pressure are selected to serve as valuable sources for genetic variations. (B) Phenotyping
approaches consist of classical and high-throughput methods. The advanced imaging platforms span from those operating under controlled
conditions to field-based conditions. (C) Long-read sequencing methods provide high-quality reference genomes and facilitate pangenomic
analysis. (D) Advanced high-throughput genotyping approaches develop genome-wide marker information on these panels. (E) New genes/
haplotypes discovered from analyzing sequence information will be further validated by using the VIGS or CRISPR-Cas system, paving the way
forward for enhanced food and fiber crop improvement. MAGIC, multiparent advanced generation intercross; NAM, nested assisted mapping; DHLs,
doubled-haploid libraries; RILs, recombinant inbred line; BILs, backcross inbred lines; CSSLs, chromosomal segment substitution lines; VIGS, virus-
induced gene silencing; VIGE, virus-induced gene editing; GBS, genotype-by-sequencing; RAD-seq, restriction site-associated DNA sequencing;
REST-seq, restriction fragment sequencing.
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Conclusions and future prospects

State-of-the-art sequencing and bioinformatics approaches are

being widely used to explore genetic variations in crops. These

advances have paved the way for the exploitation of omics

technologies such as genomics, pangenomics, transcriptomics,

metabolomics, ionomics, proteomics, and phenomics for the

identification of potential molecular markers and genes for crop

improvement. Functional validation of these genes is possible using

VIGS or GE approaches. Identification of genes/markers using

integrated omics technologies has the potential to greatly enhance

trait selection and, when combined with speed breeding,

significantly accelerate crop improvement. In the era of food

insecurity and climate change, interconnected utilization of omics

technologies, artificial intelligence, speed breeding, and genome

editing (Figure 1) can certainly revolutionize breeding programs

to produce climate-smart food and fiber crops for meeting zero

hunger and feeding millions of people across the globe. The

unprecedented ability of CRISPR/Cas9 technology has led to the

tremendous advances in basic plant research and crop

improvement. Certain prospects, such as (1) CRISPR/Cas-

mediated multiplex gene regulation as a potential plant synthetic

biology tool; (2) exploring cop wild relatives (CWRs) by employing

omics technology; (3) improved CRISPR/Cas delivery systems; (4)

improved gene editing efficiency by HDR mechanism; and (5)

GMO regulatory landscape and concerns, have still been the

bottlenecks in the development of climate-resilient and future-

smart crops.
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