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Plants experience constant exposed to diverse abiotic stresses throughout their

growth and development stages. Given the burgeoning world population, abiotic

stresses pose significant challenges to food and nutritional security. These stresses are

complex and influenced by both genetic networks and environmental factors, often

resulting in significant crop losses, which can reach as high as fifty percent. To

mitigate the effects of abiotic stresses on crops, various strategies rooted in crop

improvement and genomics are being explored. In particular, the utilization of

biostimulants, including bio-based compounds derived from plants and beneficial

microbes, has garnered considerable attention. Biostimulants offer the potential to

reduce reliance on artificial chemical agents while enhancing nutritional efficiency

and promoting plant growth under abiotic stress condition. Commonly used

biostimulants, which are friendly to ecology and human health, encompass

inorganic substances (e.g., zinc oxide and silicon) and natural substances (e.g.,

seaweed extracts, humic substances, chitosan, exudates, and microbes). Notably,

prioritizing environmentally friendly biostimulants is crucial to prevent issues such as

soil degradation, air andwater pollution. In recent years, several studies have explored

the biological role of biostimulants in plant production, focusing particularly on their

mechanisms of effectiveness in horticulture. In this context, we conducted a

comprehensive review of the existing scientific literature to analyze the current

status and future research directions concerning the use of various biostimulants,

such as plant-based zinc oxide, silicon, selenium and aminobutyric acid, seaweed

extracts, humic acids, and chitosan for enhancing abiotic stress tolerance in crop

plants. Furthermore, we correlated the molecular modifications induced by these

biostimulantswith different physiological pathways and assessed their impact on plant

performance in response to abiotic stresses, which can provide valuable insights.
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1 Introduction

Plants being sessile are constantly susceptible to various biotic

and abiotic stresses, which adversely affect their development and

yield performance (He et al., 2018; López-Valdez et al., 2022). Plants

experience constant exposure to a wide range of biotic (bacteria,

fungi, nematodes, herbivores, and weeds) and abiotic stresses

(salinity, waterlogging, drought, high temperature, and ultraviolet

B radiation) (Cirillo et al., 2022). They respond to these stresses

using adaptive mechanisms that involve multifarious and

interlinked cross-talks for survival. Notably, such as strsses could

potentially impact various physiological, biochemical, and

molecular mechanisms in the plant life cycle, ranging from seed

germination to flowering, resulting in heavy yield losses (Pareek

et al., 2010; Ranjan et al., 2021). Abiotic stresses can adversely

impact the overall yield of several crop plants (Pareek et al., 2010;

Kar and Raichaudhuri, 2021). Current climate change and global

warming are obfuscating the food chain by existing negative

influences on crop yield via increased biotic and abiotic stresses

(Yousaf et al., 2022). Increasing global population predicted to

reach 9.7 billion by 2050 according to the United Nations

Department of Economic and Social Affairs, is resulting in a

soaring demand for food (UNDESA, 2019). In this scenario,

agricultural production needs to be increased by 60%–70%, and

crop losses due to abiotic and biotic stresses need to be significantly

reduced (Moenne and González, 2021). Extensive utilization of

biostimulant applications against various abiotic stresses such as
Frontiers in Plant Science 02
drought, heat, salinity, and waterlogging, can enhance plant growth

at several developmental stages.

Bio-based compounds including zinc oxide (Khan et al., 2018b;

Azmat et al., 2022), silicon (Grusak et al., 2016; Araújo et al., 2022),

silica (Ismail et al., 2022), selenium (Zhai et al., 2017; El-Badri et al.,

2022), and g-aminobutyric acid (GABA) (Nayyar et al., 2014;

Balfagón et al., 2022), and melatonin (Pawar and Laware, 2018;

Rajora et al., 2022) have diverse effects on plant growth and yield

(Figure 1). Beyond their stress-counteracting properties, they can

also confer biotic and abiotic stress tolerance to crop plants, thereby

opening up a new horizon to support sustainable crop production

in several agro-ecological areas of the world (Katarzyna, 2015).

The use of synthetic chemicals against biotic or abiotic stresses

is likely to reduce soil fertility and above/below-ground biodiversity.

Furthermore, the indiscriminate use of chemical stimulants and

pesticides poses a severe risk to ecosystems and human health. It is

important to identify the environmentally friendly compounds that

might influence crop yield indirectly by triggering the defense

system against biotic and abiotic stresses (Hidangmayum et al.,

2019; Moenne and González, 2021). Therefore, employing

environmentally safe methods is essential to reduce the

antagonistic consequences of the agro-chemicals (Patil and

Solanki, 2016; Poveda, 2021). For instance, plant-derived

biostimulants can have a significant role in improving sustainable

crop production (Zulfiqar et al., 2019). Such biostimulants can

promote nutrient uptake and enhance plant growth to overcome

different abiotic stresses by promoting bioactive compounds
FIGURE 1

An integrated beneficial influence of biostimulants treatment on plants in different developmental stages and species under abiotic stress conditions.
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contents and antioxidant capacity of the several crops (Zulfiqar

et al., 2020; Aldhanhani et al., 2022a; Aldhanhani et al., 2022b). The

advantages of plant-based biostimulants undoubtedly open up new

avenues for sustainable agriculture.

Numerous biostimulants have been developed and currently

marketed, especially in the agricultural sector. Plant root system and

leaf spray of three different tree species (Quercus rubra, Betula

pendula, and Fagus sylvatica), for example, respond favorably to

multiple biostimulant products marketed under the trade names

Ģeneŕate, Çrop Set, Fulcrum, and Redicrop 2000 (De Vasconcelos

and Chaves, 2019). Applying the biostimulant Stimulate® (contains

0.009% cytokinin, 0.005% gibberellin, and 0.005% auxin) on

sugarcane stalks yield increased production and profitability

index. Biostimulants such as Çarbonsolo® (contains 25% fulvic

acids, 50% humic acids, 20% amino acids, and 2% water-soluble

nitrogen), Retrosal® (contains calcium, zinc, and specific active

ingredients), Terra-Sorb® (contains an amino acid product

obtained by Enzymatic Hydrolysis), and Ķymon Plus®, which

contain amino acids (e.g., arginine, serine, phenylalanine, alanine,

aspartic acid, glycine, proline, hydroxyproline, glutamic acid,

tryptophan, and valine) were used separately or in multiple

combinations to treat maize crop, soybeans, lettuce and ryegrass

via leaves. Application of these biostimulants on plants growing

under water deficit, resulted in increased dry mass and leaf area (De

Vasconcelos and Chaves, 2019).

In this review, we analyzed the current status on the use of

various plant biostimulants, such as humic acids (Has)

hydrolysates, seaweed extracts, chitosan, bacteria, zinc oxide,

silicon, selenium, and GABA, in reducing the negative effects of

various abiotic stresses on plant growth and yield of significant

crop plants.
2 Role of bio-based compounds
against biotic and abiotic stresses
in plants

2.1 Zinc oxide

Zinc (Zn) is a crucial micronutrient, significantly contributes to

plant growth, development, and yield, participating in several plant

functions including protein synthesis. It can counteract the

antagonistic effects of high temperature, heavy metal, and salt

stresses on plants (Kambe et al., 2015; Ahmad et al., 2020).

Additionally, zinc acts as a catalyst in the activity of various

enzymes including DNA and RNA polymerases, dehydrogenases,

transphosphorylases, and proteinases, given its involvement in the

maintenance of membranous structure and cell division and

chlorophyll production in plants (Vaghar et al., 2020).

Zinc oxide, by upregulating antioxidants and osmoprotectants,

can help mitigate the negative effects of heat stress on mung bean

crops. This, in turn, may lead to increased agricultural output and

productivity, even under adverse environmental conditions

(Kareem et al., 2022). Drought is an abiotic factor that

significantly affects the grain yield in bread wheat crops (Eftekhari

et al., 2017). Plants respond to drought conditions by exhibiting
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adaptive mechanisms at the morphological and physiological levels,

enabling their survival and resilience to water deficits (Hayatu et al.,

2014; Merwad et al., 2018). According to White and Broadley

(2009), the application of zinc fertilizer treatment resulted in

increased grain production and enhanced grain zinc level in

cereal crops, addressing both yield and nutritional requirements.

Zou et al. (2012) have determined the required nutritional zinc

level. Plants’ zinc intake may influence their susceptibility to

drought stress (Table 1).

In rice, seed priming with zinc oxide nanoparticles (ZnONPs)

was found to mitigate water deficit, by altering antioxidant enzymes

and osmolytes production (Mazhar et al., 2022). The foliar

application of ZnONPs mitigates water stress in cucumber

seedlings by altering the antioxidant mechanism, scavenging

reactive oxygen species (ROS), and synthesizing osmolytes,

resulting in overall improved crop growth (Ghani et al., 2022).

Owing to their eco-friendliness, ZnONPs have gained global

recognition and can significantly promote cotton (Gossypium

hirsutum) growth, physiological indexes, and enzyme activities

with decreased malondialdehyde (MDA) levels in plants

(Priyanka and Venkatachalam, 2016; Feng et al., 2019; Adrees

et al., 2021). ZnONPs applied to mustard plants can promote

growth and antioxidant enzyme activities (Rao and Shekhawat,

2014). Foliar exposure of ZnONPs increased the growth and stress

tolerance mechanism of wheat plant demonstrated by increased

antioxidant enzyme activity and oxidative stress markers in the

leaves under water deficit (Adrees et al., 2021; Zulfiqar and Ashraf,

2021a). Additionally, arsenic, cadmium, and salt stresses were

reduced upon ZnONPs application to wheat and rice, which

altered crop redox status, antioxidant, and morphophysiological

mechanisms (Adrees et al., 2021; Faizan et al., 2021) as presented

in Table 1.

Genetic engineering, and molecular marker-assisted selection,

specifically quantitative trait locus mapping, represent long-term

approaches to reducing the negative effects of abiotic stress on rice

crops (Faizan et al., 2021). Nanoparticles (NPs) utilization in

agriculture can reduce the overreliance on chemical fertilizers and

significantly enhance seed germination and plant growth in

different crops (Acharya et al., 2019). Overall, future studies

should explore ZnONPs utilization for increasing the stress

tolerance and production of agricultural plants, especially in areas

with drought and salt issues, which have become major problems in

most cultivated lands in dry climatic regions. While incorporating

biotechnologies in these studies to investigate the molecular

mechanism underlying plant defensive systems is crucial,

applying NP mediation targeting biomolecules to obtain novel

cultivars tolerant to varying ecological challenges is also necessary.
2.2 Silicon

Silicon (Si) is a micronutrient, can increase plant tolerance to

abiotic stresses (e.g., higher temperature, UV radiation, metal

toxicity, nutrient deficiency and water deficit) via its potential to

synthesize phytoalexins and phenolics in response to these stresses

(Tripathi et al., 2020; Awasthi et al., 2022; Christian et al., 2022).
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TABLE 1 Effect of biostimulants in alleviating various abiotic stresses on different plant crops.

Species Biostimulants Stress Beneficial effect References

Arabidopsis (Arabidopsis thaliana)
Solid medium, liquid cultures,
Seaweed extracts and
humic acid

Drought, salinity or
cold stress and
heat stress

Early growth cell death, chloroplast
degradation and activate Heat-
Shock Proteins

Cha et al., 2020; Benito
et al., 2022;
Nephali et al., 2020

Corn
(Zea mays)

NOM-based biostimulant
Drought and
salt stress

Root, shoot weights and final yields Sleighter et al., 2023

(Catharanthus roseus)
Chitosan nanoparticles
(Ch-NPs)

Salinity stress
higher alkaloid accumulation,
antioxidant capacity

Hassan et al., 2021

Forages plants (Urochloa brizantha cv.
Marandu and Megathyrsus maximum
cv. Massai)

Silicon Water deficit Nutrient efficiency, root Araújo et al., 2022

Grapevine
(Vitis vinifera)

Kaolin, glycine betaine,
chitosan, seaweed

heat stress
photosynthetic activity,
antioxidant capacity

Monteiro et al., 2022

Baby Leaf lettuce and Batavia Lettuce
(Lactuca sativa)

Bacillus subtilis PTB185, B.
pumilus PTB180
and wollastonite

Drought stress
Germination rates and
Chlorophyll fluorescence

Clément et al., 2023

Lettuce protein hydrolysates Salt and drought Nitrogen metabolism and osmolytes Nephali et al., 2020

Maize
Humic substances,
HA, seed soaking

Salt and
drought stress

Cell elongation in roots,
antioxidants development

Hasanuzzaman et al.,
2022;
Nephali et al., 2020

Mango
(Mangifera indica)

KCl, K2SO4
and biostimulants

Water deficit and
nutrient deficiency

branch maturation Araújo et al., 2022

Mung bean
(Vigna radiata)

Zinc oxide Heat stress Final yield Eftekhari et al., 2017

Mustard
(Brassica nigra)

Foliar application of ZnONPs
Salt, drought
stress, cadmium

Growth and antioxidants activities
Adrees et al., 2021;
Priyanka and
Venkatachalam, 2016

Orange
(Citrus sinensis)

A. nodosum seaweed extract Drought stress Weight, quality and maturity Battacharyya et al., 2015

Olive
(Olea europaea)

Seaweed, glycine betaine
and kaolin

Heat and drought
Vegetative and leaf
nutraceutical trait

Graziani et al., 2022

Oilseed rape
(Brassica napus)

Application of
Selenium nanoparticles

Arsenic stress Growth and development
El-Badri et al., 2022; Hu
et al., 2022

Peanut
(Arachis hypogaea)

Biostimulants; MPB and
MIRCEN (Bradyrhizobium)

Drought,
oxidative stress

ROS (reactive oxygen species);
plant growth

Furlan et al., 2019

Rice
(Oryza sativa)

Foliar application of ZnONPs Water deficit Seed priming, scavenging ROS
Ghani et al., 2022;
Mazhar et al., 2022

Sunflower
(Helianthus annuus)

Application of
GABA metabolite

Drought stress,
heat/chilling

Chlorophyll and sugar
level development

Ali et al., 2020; Abdel
Razik et al., 2021

Sorghum
(Sorghum bicolor)

Humic acid application Salinity stress Early seedlings
Ali et al., 2020; Abdel
Razik et al., 2021

Sugarcane
(Saccharum officinarum)

Seaweed extract (SWE) Drought stress stalk and final yield Jacomassi et al., 2022

Soybean
(Glycine max)

NOM-based biostimulant
Drought and
salt stress

Root, shoot weights and final yields Sleighter et al., 2023

Tomato
(Solanum lycopersicum)

Soil and foliar applied
biostimulants (NPK)

Salt and
drought stress

Pollen viability and
photosynthetic protectants

Kolesǩa et al., 2017;
Francesca et al., 2022

Wheat
(Triticum aestivum)

NOM-based
biostimulant, Glutacetine;

Drought and
salt stress

Root, shoot weights and spike
Liu et al., 2021; Sleighter
et al., 2023

Other crops
Agrobacterium radiobacter,
Streptomyces, B. subtilis
and Rhizobium

Drought stress
Biomass accumulation, root
and growth

Hamid et al., 2021

(Continued)
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Silicon is the second most abundant element in the soil after oxygen,

comprising 60 to 70% of the soil mass in the form of SiO2, and it

contributes significantly to plant nutrient uptake, nutrient

remobilization, and protection against biotic and abiotic stresses

(Richmond and Sussman, 2003; Christian et al., 2022).

Silicon reduces the negative effects and nutritional shortages on

forage (Urochloa brizantha andMegathyrsus maximum) crops. The

emerging climate change is responsible for the prevailing

nutritional deficiency related to nitrogen, phosphorus, and

calcium in many forage growing parts (Katz et al., 2021). The

benefits of silicon in pasturelands may be amplified using fertigation

to attenuate water deficit, which is a common condition in drought

periods in several regions worldwide that results in low forage

production, regardless of crop species (Buchelt et al., 2020; Araújo

et al., 2022) (Table 1). As determined by liquid chromatography

mass spectrometry-based metabolomics, salinity tolerance in silicon

treated tomato plants was attributed to the induced accumulation of

primary metabolites in treated plants, which acted as osmotic and

photosynthetic protectants (Le et al., 2014; Chele et al., 2021).

Likewise, Christian et al. (2022) demonstrated the positive role of

silicon in improving plant nutrition and tolerance against drought

stress, leading to improved wheat grain yield and overall

crop quality.

Application of silicon on various crops increased tolerance

against salinity and drought stress by modulating the metabolic

mechanisms (Wang et al., 2021). Notably, silicon NPs (SiNPs) can

effectively alleviate the antagonistic effects of abiotic stresses,

resulting in reduced postharvest losses in climate resilient crops

by suppressing oxidative injury (Le et al., 2014; Yousaf et al., 2022).

The positive effects of SiNPs were also correlated with improved

resistance mechanisms in salt-stressed mango trees (Elsheery

et al., 2020).

Silicon plays a critical role in salt stress in cucumber plants by

improving tolerance and nutrients uptake, resulting in increased

mechanical support to plant shoots and leaf edges (Khan et al.,

2018a; Zhu et al., 2019). The foliar application of silicon has several

other beneficial effects on plants growing under salt conditions,

including improved ion balance, reduced membrane injury,

osmotic concentrations, enhanced the production of antioxidant

enzymes to degrade oxidative chemicals, better morphological

traits, and enhanced growth of liquor ice (Glycyrrhiza glabra L.)

by reducing plant sodium ion uptake (Sapre and Vakharia, 2016;
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Shen et al., 2022). Silicon accelerates the activity of enzymes such as

peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, and

acyltransferase related to lignin biosynthesis. Silicon application

enhances lignification in rice crop (Fleck et al., 2011; Dhiman et al.,

2021). Adequate seed germination is critical for crop establishment.

Moisture availability, temperature, nutrient availability, and seed

quality can influence seed germination rate (Hassan et al., 2023).

Silicon application as a priming agent enhanced the seed

germination rate by up to 24% under drought conditions (Shi

et al., 2016; Ayed et al., 2022). Silicon emerges as a potential

solution for alleviation ecological stresses and mitigating soil

nutrient depletion, making it a viable option for promoting

sustainable agriculture. Comprehensive molecular and genetic

research is necessary to provide theoretical support for silicon

supplementation in crop cultivation. This research can help

elucidate the mechanisms by which silicon mediates the reduction

of nutritional imbalance stress in plants. To maximize the

effectiveness of silicon in the agriculture sector, future studies

should establish ideal silicon nutrition timing and dosages for

certain crops cultivated in various edaphic and climatic conditions.
2.3 Selenium

Selenium (Se) is a valuable trace element that positively affects

crop health and stress tolerance when applied at low concentrations

(Awasthi et al., 2022). Several researchers have demonstrated its

defensive role against various abiotic stresses in higher plants. The

application of selenium NPs (SeNPs) favors the remediation of

suppressed rapeseed growth and development under abiotic stress

(El-Badri et al., 2022). The supplementation of organic selenium

significantly increased resistance to arsenic stress/toxicity in radish

(Raphanus sativus) by enhancing superoxide dismutase and

peroxidase activities and soluble protein, chlorophyll, and proline

levels while decreasing MDA levels (Hu et al., 2022). Selenium

supplementation can also limit metal translocation to roots and

shoots, thus promoting tolerance against metal stress. Furthermore,

Hasanuzzaman et al. (2022) highlighted the alleviating effect of

selenium on metal/metalloid toxicity in plants via improved

tolerance involving various mechanisms. Selenium activates

hormones related to biosynthesis to modulate the root structure,

enabling suppressed metal uptake. Selenium supplementation also
TABLE 1 Continued

Species Biostimulants Stress Beneficial effect References

Nutrient
solution (hydroponics)

Salinity
and temperature

Phenotypic changes in
different stages

Drobek et al., 2019

Biostimulants, humic
acid extract

Drought and
cold stress

stalk length and leaf color
Deolu-Ajayi et al., 2022;
Franzoni et al., 2022

Fungi seaweeds, Zn, Gas
and BRs

Salinity
and Waterlogging

Seed germination and flowering
Diaz-Vivancos et al.,
2013; Cirillo et al., 2022

Humic acid, phosphorus,
algal extracts and
protein hydrolysates

Water deficit, salt
and oxidative stress

Roots and shoots development,
increase crop yield and
osmotic stress

Zhu, 2001; Çimrin et al.,
2010; Van Oosten
et al., 2017
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improves photosynthesis under metal/metalloid stress via inhibited

pigment degradation, enhanced antioxidant defense related

enzymatic activities, better stomatal function, and photosystem

activation (Feng et al., 2020; Hasanuzzaman et al., 2022).

SeNPs significantly contribute to the activation of plant defense

system in response to several stress factors (El-Saadony et al., 2021).

Several researchers have showed that SeNPs favor suppression of

water deficit (Ikram et al., 2020), heat stress (Sita et al., 2022), and

salt stress (Rasool et al., 2022). Overall, agricultural experiments

should be conducted to determine the best dosages of selenium for

various plant species as well as the proper timing of administration,

particularly for those used to combat abiotic stressors. Additionally,

the omics technique can quickly and accurately produce data that

correlates a crop’s responses to its performance under various

environmental situations.
2.4 GABA

GABA is a four-carbon non-protein amino acid that acts as a

signaling and defense molecule in plant tissues and organs

(Breitkreuz and Shelp, 1995; Wang et al., 2017; Balfagón et al.,

2021). It comprises a significant fraction of the free amino acid pool

in plant cells, serving as an important neurotransmitter while being

involved in alleviating abiotic stresses (Nicolas Bouché, 2004;

Nayyar et al., 2014; Balusǩa et al., 2020). The exogenous activity

of GABA simulates the effects of stress on growth and development

and increases endogenous GABA concentrations in tissues in

response to diverse abiotic influences (Michaeli and Fromm,

2015). GABA accumulation in response to different abiotic and

biotic stresses validates its role as a signaling molecule (Breitkreuz

and Shelp, 1995; Ramesh et al., 2015). In Arabidopsis and Brassica

napus, GABA is suggested to regulate nitrate uptake and improve

nodule formation in Medicago sativa (Beuve et al., 2004; Barbosa

et al., 2010). Furthermore, GABA participates in regulating leaf

senescence and the plant circadian clock (Allan et al., 2008).

The effect of stress on crop expansion and growth is reduced

through exogenous GABA control. Notably, GABA metabolite

application in maize seedlings results in improved growth,

reduced plant cell membrane injury, and enhanced soluble sugar

and proline level. It also inhibits water loss under salt stress (Wang

et al., 2017; Nephali et al., 2020; Kaspal et al., 2021). Abdel Razik

et al. (2021) examined the effects of GABA on sunflower and found

that it resulted in increase in chlorophyll and sugar concentrations

via upregulation of antioxidant related defense enzymes under high

temperature and drought stress (Table 1). The treatment of GABA

against chilling injury on cold sensitive tomatoes resulted in

enhancement of plant growth and development, as it upregulate

cell expansion and antioxidant capacity (Liu et al., 2020). Other

studies have demonstrated that GABA supplementation to wheat

seedlings resulted in reduced ROS production, enhanced soluble

protein biosynthesis, and regulated cellular amino acid balance (Sita

and Kumar, 2020). While GABA application enhances reproductive

function in mung beans under heat stress (Priya et al., 2019; Wang

et al., 2021), it reduces ROS biosynthesis by upregulating osmolytes,

resulting in sustained cell morphology and enhanced cellular
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functions under salt stress in various crops (Sita and Kumar,

2020). GABA mediated the activation of the Abscisic acid (ABA)

signal pathway and improves the drought resistance of apple

seedlings (Liu et al., 2021). ABA is a valuable plant hormone that

controls plant response to environmental stresses and plays an

important function in plant development and growth (Tuteja, 2007;

Kaspal et al., 2021). Numerous abiotic stressors, such as salinity,

heat, and drought, can result in increased ABA levels and regulated

ethylene levels (Morgan and Drew, 1997; Kathiresan et al., 2018;

Khalil et al., 2022). When GABA was applied, sunflower seedlings

produced more ethylene (concentrations dependent; 0-300 mM).

This was due to an increase in the expression of 1-

aminocyclopropane-1-carboxylic acid synthesis (Kaspal

et al., 2021).

The effect of GABA priming in creeping bent grass (Agrostis

capillaris) on increasing plant resistance against abiotic stress was

correlated with modifications in the levels of endogenous

polyamines, amino acids, and sugars content under heat, drought,

and salt stress (Li et al., 2020; Wang et al., 2020). Sita and Kumar

(2020) linked abiotic stress tolerance in legumes with the metabolic

and signaling functions of GABA and suggested that GABA can

provide several health benefits. As pulses contain high amounts of

GABA, developing legume-based functional foods will favor

populations that suffer from chronic diseases. Despite significant

advancements in the study of GABA in agricultural plants. In recent

years, further investigation is necessary to fully comprehend the

molecular processes underlying the protective benefits of GABA in

stress endurance and to develop practical agricultural applications.
2.5 Seaweed extracts

Vast differences in seaweed extract composition produced using

various extraction techniques and unique ingredients, may

significantly affect plant response. Seaweed exhibits dual

functionality as both a plant biostimulant and soil enhancer,

promoting plant growth under stress conditions such as chilling,

water deficit, and salt stress; it enhances photosynthetic activity,

thereby improving the yield of various crops (Nephali et al., 2020;

Banakar et al., 2022). Seaweed extracts are rich in carbohydrates,

enzymes and proteins, and can be used to reduce abiotic stress,

increase nutrient utilization, and stimulate root growth, quality,

weight and microbial activity in the root zone of orange and other

plants (Battacharyya et al., 2015; Sible et al., 2021; Lau et al., 2022).

The effects of seaweed biostimulant have been linked with the plant

growth hormones such as cytokinins and other low molecular

weight compounds found in seaweed extracts (Safaei et al., 2022).

The application of seaweed extracts resulted in improved growth

and functioning of grapevines (Vitis vinifera) by enhancing

resistance to water deficit stress (Monteiro et al., 2022; Samuels

et al., 2022). Moreover, seaweed extracts can effectively improve

plant nutrient assimilation and fruit development; enhance stress

alleviation due to water deficit, salinity, drought, and heat

conditions and improve yield in several horticultural and arable

crops by increasing antioxidant enzyme activity and decreasing

MDA levels (Mukherjee and Patel, 2020; Jacomassi et al. (2022).
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Seaweed extracts helped to promote the development and

productivity of cowpea and maize (Vigna sinensis and Zea mays)

plants. under salt stress (Hussein et al., 2021; Sleighter et al., 2023).

Hernández-Herrera et al. (2014) revealed that most economically

available seaweed extracts were obtained from brown seaweeds,

including Ascophyllum, Fucus, and Laminaria. The application of

Algafect (extracts from Ascophyllum nodosum, Fucus spp., and

Laminaria spp.) at 16 mg kg−1 decreased leaf damage, increased

shoot and root growth, and promoted root length and density in

maize plants (Bradáčová et al., 2016).

Seaweed extract can stimulate the expression of genes encoding

transporters of micronutrients (e.g., Cu, Fe and Zn) in B. napus,

while improving the mineral composition of plant tissues (Billard

et al., 2014; Kapoore et al., 2021). A seaweed extract-based

biost imulant (Dunaliel la salina) enriched in sulfated

exopolysaccharides was found to increase proline, phenolic, and

osmo-protectant chemical substance levels and enzyme activities,

thereby alleviating salt stress in tomato plants (Table 1; El Arroussi

et al., 2018). Notably, seaweed extracts can enhance nutrient uptake

and improve growth performance in crops under stressed and

normal conditions, as they contain several active compounds such

as polysaccharides, polyphenols and phytohormones (Deolu-Ajayi

et al., 2022). Initially, the beneficial effects observed in plants from

seaweed products were attributed to the presence of multiple

mineral elements in soluble forms. These elements were believed

to play crucial roles during the vegetative phase in olive plants

(Graziani et al., 2022). The presence of many bioactive molecules in

seaweed biomass was subsequently found to directly affect plant

physiology and metabolism while regulating the production and

accumulation of endogenous metabolites involved in these

biological processes (Bhattacharyya and Pal, 2015) The variability

of the seaweed extract effect on plants makes it challenging for the

research community to identify and separate the active ingredients

in these products. Therefore, a need for standardization is arises in

order to recognize and describe how these seaweed extracts

impact plants.
2.6 Humic acids

Humic acid (HA) is a key component of humic substances

(HSs) which are widely found in the environment. These materials

undergo humification through organic matter, primarily derived

from plants (Cha et al., 2020; Picchi et al., 2021). HAs are

considered key priming agents to increase the production of some

key plant biochemicals such as nucleic acids, vitamins, amino acids,

and nutrients; they can improve the physicochemical properties of

soil (Sangeetha et al., 2006; Kaya et al., 2020), by enhancing soil

structure, cation exchange capacity, and nutrient and water

retention thereby improving abiotic stress tolerance in plants

(Baıá et al., 2020).

Plants exhibit various responses to water deficit, encompassing

physiological environmental conditions (Shehab et al., 2010). Plant

sensitivity to drought varies depending on the species, level of stress,

and development stage (Lewandrowski et al., 2017). Due to their

physicochemical associations with soil particles, water, and metallic
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nutrients for plants, humic compounds can improve soil fertility

(Cha et al., 2020). The mechanism of HAs in promoting plant

growth may involve the enhancement of nutrient uptake and

reduction of toxic element uptake (Russo and Berlyn, 1991;

Masciandaro et al., 2002; Adil, 2012). Treatments of HAs and

phosphorus were applied to pepper plants to alleviate abiotic

stress (water deficit, salt and oxidative stress). The results showed

improvements in crop health due to decreased Na content as well as

enhanced macro/micro essential elements in roots and shoots

(Çimrin et al., 2010; Van Oosten et al., 2017).

To actively regulate and decrease oxidative stress, plants utilize

ROS scavenging mechanisms, including (i) an enzymatic

antioxidant system and (ii) a non-enzymatic antioxidant

mechanism commonly referred to as the “low molecular weight”

antioxidant system (Tuteja, 2007; Choudhury et al., 2017). Salt

stress also causes the accumulation of ROS, which results in

oxidative-stress-induced toxic effects in plants (Hasanuzzaman

et al., 2020; Khalil et al., 2022). HA application activated

antioxidant related and ROS scavenging enzyme activities in rice

(Schiavon et al., 2010). Such enzymes are essential for deactivating

free O2 radicals synthesized in plants under water deficit and saline

stress (Nephali et al., 2020). Cha et al. (2020) and Benito et al.

(2022) reported that HAs enhanced high temperature stress

tolerance in Arabidopsis plants by transcriptionally activating the

heat-shock proteins. HAs can protect early seedlings of sorghum by

enhancing plant tolerance under salt stress (Ali et al., 2020).

In common beans (Phaseolus vulgaris L.) treated with HAs at

high salinity (120 mM NaCl), increased endogenous proline levels

and decreased membrane diffusion signify adaptation to a higher

saline environment (Table 1; Adil, 2012). Glycine betaine and

proline can induce increased resistance to environmental

conditions such as freezing, salt, drought, and oxidative stress in

plants (du Jardin, 2015). Metabolomic analysis revealed that

Dunaliella salina is enriched with sulfated exopolysaccharides,

which upregulate levels of proline, phenolics, osmoprotectants,

and antioxidant enzyme activities and reduce salt stress (Garcıá

et al., 2012; Paul et al., 2019; Albadwawi et al., 2022). Jindo et al.

(2020) demonstrated that HAs exerted multiple positive effects on

crops: (i) enhancing soil structure, (ii) increasing phosphorus

availability, (iii) balancing soil pH, (iv) promoting lateral root

growth, and (v) stimulating nitrate absorption. With current

investigations revealing the beneficial effects of biostimulants on

plant health, conducting a meta-analysis of biostimulant effects on

plant development could be a suitable approach. Nevertheless, the

presence of numerous variables, such as different species, testing

settings, and compositions, makes it challenging to obtain

conclusive results.
2.7 Chitosan

Chitosan (Cs) is a biopolymer derived from the deacetylation of

nontoxic and biofunctional chitin found in the exoskeleton of

crustaceans (Zhao et al., 2019; Wang et al., 2021), and can be

used to manage various biotic and abiotic stresses in plants

(Hadwiger, 2013; Malerba and Cerana, 2020). Cs causes several
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biotic and abiotic stress-related defensive reactions in plants

(Ahmed et al., 2022). The use of Cs as an elicitor can effectively

address the difficulties in stress adaption resulting from abiotic and

biotic stresses due to environmental challenges and increased food

demand, which results in the unsustainable usage of synthetic

chemicals (Hidangmayum et al., 2019; Malerba and Cerana, 2020).

Chitosan is a matrix for encapsulating and sequestering bioactive

compounds (Malerba and Cerana, 2019). Chitosan–seleniumNPs have

been used as carriers for the slow release and adsorption of fertilizers,

pesticides, herbicides, and plant growth regulators (Amer and Ibrahim,

2019). Sheikhalipour et al. (2021) reported that the use of foliar

application of Cs-NPs can prevent potentially harmful effects on

plants to improve plant yield (Table 1). Nephali et al. (2020)

demonstrated the active role of Cs in mitigating the deteriorative

impacts of salt stress on plant yield, growth, development and biomass

by upregulating cellular ion translocation, managing osmotic balance

and enhancing antioxidant-related enzymatic activities in lettuce.

Hassan et al. (2021) reported that Cs-NPs efficiently counter salt

stress by increasing antioxidant-related enzyme activity and alkaloid

generation in periwinkle plant (Catharanthus roseus). The potential of

Cs-NPs to increase the leaf antioxidant pool both in greenhouse and

field plants was attributed to the slower release of chitosan due to nano‐

formulation (Picchi et al., 2021). It induces the enzymatic antioxidant

system and H2O2 scavenging, which increase membrane integrity and

consequently improve plant tolerance to salt stress (Safikhan et al.,

2018; Sen et al., 2020; Zulfiqar and Ashraf, 2021b).

Water scarcity, identified as the primary constraint to global food

production (FAO, 2002), can be addressed using the topical application

of chitosan. This approach has been shown to enhance water deficit

resistance in maize hybrids (Z. mays L.) (Khordadi Veramin et al.,

2019) and reduce plant damage caused by drought stress sesame

(Sesamum indicum) (Veroneze-Júnior et al., 2020). Pretreatment of

chitosan in various plants, prior to exposure to abiotic stresses, such as

water deficit, salt, and heat stresses, was beneficial in achieving the

desired plant growth and development owing to the enhanced activities

of antioxidant-related enzymes (Pongprayoon et al., 2022).

Foliar application of chitosan resulted in enhanced crop tolerance

against cadmium, ozone and oxidative stress in wheat (Liu et al.,

2021; Picchi et al., 2021). Moreover, chitosan application stimulates

germination and alters the expression of resistance genes in chili

pepper, preventing the significant decrease in chili yield imposed by

Phytophthora capsici (Esyanti et al., 2019). The most promising

strategies for mitigating multiple stressors and enabling significant

development in the productivity of plants are chitin and chitosan

(Malerba and Cerana, 2019). Notably, both chitin and chitosan can be

applied directly as natural fertilizers due to their substantial nitrogen

levels and low C/N ratio (Shamshina et al., 2019). Despite positive

findings, further effort in terms of production and research is required

to ensure consistency in these elements and fully maximize the

potential of chitosan significance.
2.8 Protein hydrolysate

Protein hydrolysates (PHs) are a category of plant

biostimulants, including mixtures of polypeptides, oligopeptides
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and amino acids, which are manufactured from protein sources

using partial hydrolysis (Schaafsma, 2009; Colla et al., 2014). Plant-

derived PHs are increasingly well-known as plant biostimulants due

to their capability to improve the emergence, production, and

nutritional value of diverse horticultural and agronomic crops.

The chemical hydrolysis of animal or microbial by-products

comprise >90% of the PH (Colla et al., 2014); while enzymatic

hydrolysis is typically used for producing plant-based protein

hydrolysates (Lisiecka, 2011).

PHs are examples of plant- and animal-derived stimulants

capable of increasing a plant’s tolerance to various abiotic stresses

while enhancing plant growth and performance-related metrics like

root growth/diameter, flowering, nutrient use efficiency/

translocation, soil water holding capacity, and bacterial activity

(Huang et al., 2011; Colla et al., 2014). PHs can stimulate N-

metabolism and assimilation (Ertani et al., 2009; Baglieri et al.,

2014). PHs and amino acids, including proline and betaine, favor

the induction of secondary plant metabolism and increase plant

defense responses and tolerance to various abiotic stresses, such as

salinity, drought, temperature, heavy metals, and oxidative

conditions (Apone et al., 2010; Ertani et al., 2013; Francesca et al.,

2022). PHs can enhance nutrient availability in soils for plant

development as well as the absorption of nutrients and

application reliability in plants, resulting in indirect effects. The

advantageous effects of PHs on plants could be attributed, in part, to

the stimulation of plant microbiomes. Amino acids and amides

serve as the primary organic nitrogen transport forms in nearly all

plants. These compounds can be utilized directly for protein

synthesis and the production of other necessary nitrogen

compounds, or they can undergo metabolism (Rentsch et al.,

2007). While PH can help promote plant growth, yield, and stress

tolerance by enhancing amino acid absorption and transport. They

can stimulate fine root growth and thereby improve the root

capacity for nutrient uptake. Moreover, it can also enhance soil

microbial and enzymatic activities to induce improved biological

fertility (Lisiecka, 2011).

Several studies have shown PH-enhancing effects on plant

growth, development, and yield. These beneficial effects may be

attributed to the direct influence of bioactive compounds (signaling

peptides and free amino acids) on plant metabolism and the

indirect impact resulting from the stimulation of plant

microbiomes (Ertani et al., 2009; Paul et al., 2019). Colla et al.

(2014) and Francesca et al. (2022) showed the positive impacts of

plant-derived PHs on the growth aspects of maize, pea, and tomato

(Table 1). In another study, PH derived from alfalfa plants

enhanced shoot biomass production, accumulation of soluble

sugars and nitrogen assimilation in hydroponically grown maize

plants (Nardi et al., 2016; Hamid et al., 2021). This biostimulant

produced from alfalfa plants improves the short-term development

of maize under salt stress by promoting the expression of

phenylalanine ammonia-lyase enzymes and genes as well as

flavonoid synthesis (Ertani et al., 2009; Ertani et al., 2013).

Tomato plants treated with a PH-based biostimulant; rich in

glycine betaine, glutamic acid, and micronutrients as manganese,

boron, and zinc, had better water status and pollen viability and

demonstrated higher yield and antioxidant level (Francesca et al.,
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2021).The above findings explain why the PH-treated plants usually

exhibit enhanced nutrient uptake and assimilation. The usefulness

of PH usage in tomato to improve plant performance was reported

under limited water availability (Francesca et al., 2022). To enable

crops to survive environmental challenges, PH are widely used in

agriculture as plant biostimulants. They can exhibit biostimulatory

function by upregulating some essential enzymes involved in

carbon-nitrogen metabolism and increasing the function of

antioxidant enzymes and the synthesis of secondary metabolites

(Rouphael and Colla, 2018; Lau et al., 2022). PHs offer significant

potential for tackling the dual challenges of feeding expanding

populations mitigating the negative impacts of agriculture on the

environment and human health. Further research is needed to

understand the mechanisms underlying the beneficial effects of

these substances and to develop optimal product formulations and

management practices that maximize their positive impact across

diverse agro-ecological conditions.
2.9 Microbial biostimulants

The use of bio-fertilizers and biostimulants, as sustainable

alternatives, could potentially mitigate the effects of abiotic and

biotic stresses and enhance the quality and production of crops.

Environmentally friendly materials known as biofertilizers, which

are applied in substantial amounts, include microbes e.g. bacteria,

fungi, yeast or microalgae that enhance the growth and

development of plants by inhabiting rhizospheres and increasing

their ability to absorb nutrients such as nitrogen, phosphorus,

potassium, and minerals (Ritika; and Utpal, 2014; Win et al.,

2018; Bulgari et al., 2019; Kapoore et al., 2021) (Figure 2).

Microbial plant biostimulants (MPBs) such as Arthrobacter,

Azotobacter, Azospirillum, Bacillus, Pseudomonas, and arbuscular

mycorrhizal fungi (AMF) can enhance plant growth and mitigate

abiotic stresses in crops such as tomato, potato, soybean, cabbage,

broccoli, maize, and rice (Lubna et al., 2018; Kim et al., 2020; Kubi et al.,

2021). While abiotic stresses induce physiological, biochemical, and

molecular effects on plants (Figure 3), they have various implications

on the soil microbial diversity, which influence key plant functional

traits (Ali et al., 2022). MPBs support plant nutrition and induce

significant changes in secondary metabolism and tolerance to soil and

environmental stresses (Rouphael et al., 2020). Combining different

biostimulants may have synergistic effects in combating biotic and

abiotic stresses in crop plants. Furlan et al. (2019) found that the

application of the biostimulant combination Nutrifer202 (includes in

its composition an algal extract) and Bradyrhizobium sp. C-145 was

promising for peanut crops growing in regions susceptible to water

deficit or arsenic exposure. The application reduced arsenic

translocation to leaves and improved plant growth and root

nodulation, in association with proline accumulation (Table 2). Ruzzi

and Ricardo (2015) suggested using to inoculate plant growth-

promoting rhizobacteria bacteria (PGPR) for the desired effects in

plants. The application of living cyanobacteria is recognized as a

potential biocontrol substance that stimulates the production of

defense enzymes and provides hydrolytic enzymes and antibacterial

chemicals to combat plant diseases (Dasgan et al., 2012; Gupta et al.,
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2013; Garcia-Gonzalez and Sommerfeld, 2016). Furthermore, Kolesǩa

et al. (2017) reported that biostimulants prevented yield loss and

reduced oxidative damage in tomato plants grown on reduced NPK

nutrition. Synergizing biostimulants with reduced NPK fertilizer

stabilized of cell homeostasis in tomato plants with enhanced

adaptation to stress conditions

Microalgae are a varied group of primarily single-celled organisms

that utilize photosynthesis to convert light and CO2 into various

compounds. They are ecologically sound alternatives for improving

and sustaining plants as they can enhance soil conditions by

regenerating interactions between bacteria (Garcia-Gonzalez and

Sommerfeld, 2016; Kapoore et al., 2021). To date, microalgae have

been intensively investigated for their potential applications in biofuels,

aquaculture, animal feeds, bioremediation, nutraceuticals, medicines,

and cosmeceuticals (Chanda et al., 2019). Salt stress on crops is

diminished by treatment with microalgae. Ion osmotic stress is caused

by excessive salt, which is hazardous to plants (Zhu, 2001). Different

application rates of microalga extract have been used to increase plant

vegetative growth parameters, leaf chlorophyll level, nutrient use efficacy,

and total protein percentage (Kumar et al., 2022). In wheat, microalgae

significantly reduced the production of superoxide radicals, increased

the abundance of antioxidant enzymes, and consequently improved the

salt tolerance of wheat, implying that salt stress alters oxidative

metabolism (El-Baky et al., 2010; Kapoore et al., 2021). Spirulina

microalgae acts as biostimulants in snap bean cv. ‘Valentine’ during

plant growth, resulting in a 6% increase in normal growth yields and up

to a 10% yield when combined with biostimulants. It also enhances

plant growth parameters including leaf area per plant, and dry weight

(Kumar et al., 2022). The use of algae extract-based biostimulants

incorporating zinc and manganese in maize crops promotes plant

cold resistance/tolerance by improving the elimination of ROS

mechanisms (Bradáčová et al., 2016; Kaya et al., 2020).

Tarakhovskaya et al. (2007) revealed that micro- and macro-algae

comprise phytohormones such as auxins, cytokinins, GAs, and

brassinosteroids (BRs). The biosynthesis and signaling mechanisms

of phytohormones in microalgae were recently detected through

genomic research (Kenrick and Crane, 1997; Kapoore et al., 2021).

Microalgae, by maintaining phytohormones in their cells and releasing

them into the extracellular environment, offer various biostimulants

capable of enhancing the resilience and sustainability of agriculture.

Despite these beneficial outcomes, microbial biostimulants may

exhibit variable effects across different agricultural products or

locations. To enhance the effectiveness and consistency of microbial

biostimulants, further research is required to explore specific

microbes with targeted functions. This includes utilizing species-

specific microbes for soil restoration, improving nutrient uptake

limited conditions, and saline regions to increase plant resilience

against drought and salt stress (Khalil et al., 2022). The study of

microbe’s applications could be beneficial in preparing for potential

challenges in agriculture based on the aforementioned methods.
3 Conclusion

Intensive agricultural research must focus on promoting

sustainable agricultural ecosystems, conserving water resources,
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improving soil health, and increasing plant tolerance to abiotic

stresses. These fundamental concepts are crucial for ensuring the

safety and quality of agricultural products and mitigating irreversible

losses. Biostimulants are essential for reducing reliance on synthetic

chemicals and improving plant physiology and metabolism under

abiotic stress through various mechanisms, such as the regulation of
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phytohormones, signalling pathways and gene regulation;

enhancement of bioactive compounds, and optimization of ROS

enzyme activities. Different biostimulants including seaweed

extracts, zinc oxide, silicon, humic substances, chitosan, exudates,

and other microbial and nonmicrobial biostimulants, can counter

abiotic stress while ensuring ecological and human health safety.
FIGURE 2

Mechanisms of microbial biostimulants influence on plant growth under stress conditions.
FIGURE 3

Effect of different abiotic stresses on agronomic, physiological, biochemical and molecular functions of plants that may occur at different
developmental stages.
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Despite the confusion in classifying certain agents as biostimulants,

particularly hormones that play significant role beyond traditional

plant growth substances. Expanding the use of these biostimulants to

several crops and types for commercialization in order to ensure food

and nutritional security is necessary. Furthermore, investigating the

potential positive effects of plant biostimulants, specifically those based

on PGPR, in the context of climate change will be worthwhile.

Agriculture sector accounts for approximately 21% of the global

greenhouse effect, with 13% resulting from chemical fertilizer

utilization. Research and experimentation in this regard must

rapidly provide valuable insights to improve biostimulant

production and to optimize their techniques of application. Notably,

numerous biostimulant treatments can be used in future agriculture

research to enhance commercial yield under various stresses, as this

will contribute to increased annual global food productivity while

minimizing costs and reducing negative impacts on the environment.

Despite the potential benefits of microbial biostimulants, their

effectiveness and environmental sensitivity are still considered

drawbacks when compared to nonmicrobial biostimulants. The

utilization of microbial biostimulants can augment human

contributions to agricultural ecosystems by offering a sustainable

and effective solution to mitigate production losses caused by

climate change. The development of future generations of

biostimulant products holds promise for exploring synergistic effects

when combining multiple types of biostimulants. Maximizing the

beneficial impact through the development of multispecies

formulations is significantly important. Overall, biostimulants offer

the potential for improving soilless cultivation techniques.
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TABLE 2 Examples of commercial PGPR-based products.

Crop Products Compositions

Cereal crops

Nitroguard®

Azoarcus indigens NAB04,
Azorhizobium. caulinodens
NAB38, Azospirillum
brasilense NAB317,
Bacillus sp.

Micosat
F® Cereali

Streptomyces spp. ST 60,
Paenibacillus durus PD 76,
Bacillus. subtilis BR 62.

BactoFil
A10®

Azotobacter vinelandii, A.
brasilense, Pseudomonas
fluorescens, B. megaterium,
B. polymyxa,

Inomix®
Biostimulant

B. subtilis (IAB/BS/F1), B.
polymyxa (IAB/BP/01.,

Inomix®
Biofertilisant

Saccharomyces cerevisiae, B.
megaterium, Rhizobium
leguminosarum,
A. vinelandii,

Inomix®
phosphore
Rhizocell
® GC

P. fluorescens, B.
amyloliquefaciens souche
IT45, B. megaterium,
S. cerevisiae

Horticultural
crops

Fruits,
vegetables,
ornamental

Ceres® Pseudomonas fluorescens

FZB24®fl;
Rhizovital
42®

B. amyloliquefaciens ssp.
Plantarum
bamyloliquefaciens

Gmax®
PGPR

Azotobacter,
Phosphobacteria,
P. fluoresces

Micosat
F® Uno

A. radiobacter AR 39, B.
subtilis BA 41, Streptomyces
spp. SB 14

Amase® Pseudomonas azotoformans

Vegetables
(Cucumber,
lettuce,
tomato,
pepper)

AmniteA100®
Azotobacter, Bacillus,
Pseudomonas,
Rhizobium, Chaetomium

Micosat
F® Cereali

B. subtilis BR 62, P. durus
PD 76, Streptomyces spp.
ST 60

Symbion®-N
Azospirillum, Rhizobium,
Acetobacter, Azotobacter

TwinN®
A. brasilense NAB317, A.
caulinodens NAB38, A.
indigens NAB04

Symbion®-P
B. megaterium
var. phosphaticum

Symbion®-K Frateuria aurantia

Oil Crops

Sunflower,
Oilseed
Rape

BactoFil B10®

Azospirillum lipoferum, A.
vinelandii, B. megaterium, B.
circulans,
B. subtilis, P. luorescens

Sunflowers,
Soybeans

Micosat
F® Cereali

B. subtilis BR 62, P. durus
PD 76, Streptomyces spp.
ST 60

(Continued)
TABLE 2 Continued

Crop Products Compositions

Oilseed
Rape

Nitroguard®

A. brasilense NAB317,
Azorhizobium caulinodens
NAB38, A. indigens NAB04,
Bacillus sp.

Other crops

Sugar
beet,
Sugarcane,

TwinN®;
Nitroguard®

A. brasilense NAB317, A.
caulinodens NAB38, A.
indigens NAB04

Potato BactoFil B10®

A. lipoferum, A.
vinelandii, B. megaterium, B.
circulans,
B. subtilis, P. fluorescens
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Garcıá, A., LA, S., FG, I., MVL, S., RN, C., and RLL, B. (2012). Vermicompost humic
acids as an ecological pathway to protect rice plant against oxidative stress. Ecol.
Engineerin 47, 203–208. doi: 10.1016/j.ecoleng.2012.06.011

Garcia-Gonzalez, J., and Sommerfeld, M. (2016). Biofertilizer and biostimulant
properties of the microalga Acutodesmus dimorphus. J. Appl. Phycology 28, 1051–
1061. doi: 10.1007/s10811-015-0625-2

Ghani, J., Nawab, J., Khan, S., Khan, M. A., Ahmad, I., Ali, H. M., et al. (2022).
Organic amendments minimize the migration of potentially toxic elements in soil–
plant system in degraded agricultural lands. Biomass Conversion Biorefinery,
0123456789. doi: 10.1007/s13399-022-02816-3

Graziani, G., Cirillo, A., Giannini, P., Conti, S., El-Nakhel, C., Rouphael, Y., et al.
(2022). Biostimulants improve plant growth and bioactive compounds of young olive
trees under abiotic stress conditions. Agric. (Switzerland) 12, 1–18. doi: 10.3390/
agriculture12020227

Grusak, M. A., Broadley, M. R., and White, P. J. (2016). Plant macro- and
micronutrient minerals. ELS. doi: 10.1038/npg.els.0001306

Gupta, V., Ratha, S. K., Sood, A., Chaudhary, V., and Prasanna, R. (2013). New
insights into the biodiversity and applications of cyanobacteria (blue-green algae)-
Prospects and challenges. Algal Res. 2, 79–97. doi: 10.1016/j.algal.2013.01.006

Hadwiger, L. (2013). Multiple effects of chitosan on plant systems: Solid science or
hype. Plant Sci. 208, 42–49. doi: 10.1016/j.plantsci.2013.03.007
frontiersin.org

https://doi.org/10.1371/journal.pone.0109889
https://doi.org/10.1186/s40538-016-0069-1
https://doi.org/10.1104/pp.108.1.99
https://doi.org/10.1007/s42729-020-00245-7
https://doi.org/10.3390/agronomy9060306
https://doi.org/10.3390/agronomy9060306
https://doi.org/10.1038/s41598-020-71701-8
https://doi.org/10.1007/s11274-019-2745-3
https://doi.org/10.3390/metabo11120820
https://doi.org/10.1111/tpj.13299
https://doi.org/10.1111/tpj.13299
https://doi.org/10.1080/09064710.2021.1984564
https://doi.org/10.1016/j.envexpbot.2022.104865
https://doi.org/10.3390/agronomy13030879
https://doi.org/10.3389/fpls.2014.00448
https://doi.org/10.17660/ActaHortic.2012.927.17
https://doi.org/10.1111/pce.14391
https://doi.org/10.5772/intechopen.88829
https://doi.org/10.5772/intechopen.88829
https://doi.org/10.1016/j.plaphy.2021.02.023
https://doi.org/10.1007/s00299-013-1473-7
https://doi.org/10.3390/agronomy9060335
https://doi.org/10.1016/j.scienta.2015.09.021
https://doi.org/10.1080/13102818.2017.1316214
https://doi.org/10.1007/s10811-017-1382-1
https://doi.org/10.1186/s12951-022-01370-4
https://doi.org/10.1002/jsfa.3815
https://doi.org/10.1016/j.sjbs.2021.04.043
https://doi.org/10.1016/j.sjbs.2021.04.043
https://doi.org/10.3390/agronomy10040558
https://doi.org/10.3390/agronomy10040558
https://doi.org/10.1002/jpln.200800174
https://doi.org/10.1002/jpln.200800174
https://doi.org/10.1007/s11104-012-1335-z
https://doi.org/10.21475/ajcs.19.13.01.p1169
https://doi.org/10.3390/plants10112254
https://doi.org/10.1016/j.scitotenv.2019.134298
https://doi.org/10.1016/j.jhazmat.2020.123570
https://doi.org/10.1093/jxb/erq392
https://doi.org/10.3390/plants10040783
https://doi.org/10.1016/j.plaphy.2022.03.012
https://doi.org/10.1016/j.plaphy.2022.03.012
https://doi.org/10.3390/horticulturae8030189
https://doi.org/10.1007/978-3-030-17597-9_17
https://doi.org/10.1016/j.ecoleng.2012.06.011
https://doi.org/10.1007/s10811-015-0625-2
https://doi.org/10.1007/s13399-022-02816-3
https://doi.org/10.3390/agriculture12020227
https://doi.org/10.3390/agriculture12020227
https://doi.org/10.1038/npg.els.0001306
https://doi.org/10.1016/j.algal.2013.01.006
https://doi.org/10.1016/j.plantsci.2013.03.007
https://doi.org/10.3389/fpls.2023.1276117
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Asif et al. 10.3389/fpls.2023.1276117
Hamid, B., Zaman, M., Farooq, S., Fatima, S., Sayyed, R. Z., Baba, Z. A., et al. (2021).
Bacterial plant biostimulants: A sustainable way towards improving growth,
productivity, and health of crops. Sustainability (Switzerland) 13, 1–24. doi: 10.3390/
su13052856

Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J.
A., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic
stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681.
doi: 10.3390/antiox9080681

Hasanuzzaman, M., Nahar, K., Garcıá-Caparrós, P., Parvin, K., Zulfiqar, F., Ahmed,
N., et al. (2022). Selenium supplementation and crop plant tolerance to metal/metalloid
toxicity. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.792770

Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., and Mazrou, R. (2021). Chitosan
nanoparticles effectively combat salinity stress by enhancing antioxidant activity and
alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiol. Biochem. 162,
291–300. doi: 10.1016/j.plaphy.2021.03.004

Hassan, F. E., Alyafei, M. A. S., Kurup, S., Jaleel, A., Al Busaidi, N., and Ahmed, Z. F.
R. (2023). Effective priming techniques to enhance ghaf (Prosopis cineraria L. Druce)
seed germination for mass planting. Horticulturae 9 (5), 542. doi: 10.3390/
horticulturae9050542

Hayatu, M., Muhammad, S. Y., and Habibu, U. A. (2014). Effect of water stress on the
leaf relative water content and yield of some cowpea (Vigna unguiculata (L) walp.)
genotype. Int. Journa Sci. Technol. Res. 3, 148–152.

He, M., He, C. Q., and Ding, N. Z. (2018). Abiotic stresses: general defenses of land
plants and chances for engineering multistress tolerance. Front. Plant Sci. 1.
doi: 10.3389/fpls.2018.01771

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J.,
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López-Valdez, L. G., Herrera-Cabrera, B. E., Vásquez-Garcıá, I., Salazar-Magallón, J.
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