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and underlying mechanisms
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Guangzhou, China, 3School of Environmental Science and Engineering, Nanjing University of
Information Science and Technology, Nanjing, China
Phytoplankton are key members of river ecosystems wherein they influence and

regulate the health of the local environment. Headwater streams are subject to

minimal human activity and serve as the sources of rivers, generally exhibiting

minimal pollution and strong hydrodynamic forces. To date, the characteristics

of phytoplankton communities in headwater streams have remained poorly

understood. This study aims to address this knowledge gap by comparing

phytoplankton communities in headwater streams with those in plain rivers.

The results demonstrated that within similar watershed sizes, lower levels of

spatiotemporal variability were observed with respect to phytoplankton

community as compared to plain rivers. Lower nutrient levels and strong

hydrodynamics contribute to phytoplankton growth limitation in these

streams, thereby reducing the levels of spatiotemporal variation. However,

these conditions additionally contribute to greater phytoplankton diversity and

consequent succession towards Cyanophyta. Overall, these results provide new

insights into the dynamics of headwater stream ecosystems and support efforts

for their ecological conservation.
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1 Introduction

Headwater streams are the first-order confluence units in the watershed, wherein they

exist as primary rivers formed via the accumulation of runoff from the surrounding

catchment area. These headwater streams play an important role in transporting and

delivering water and nutrients from the land to the downstream rivers (Marx et al., 2017;

Baattrup-Pedersen et al., 2018; Petrin et al., 2023). Phytoplankton are fundamental primary

producers in aquatic ecosystems, serving as the bedrock of the food web and playing a

pivotal role in nutrient cycling and energy flow (Qiu et al., 2013; Taipale et al., 2016;

Amaneesh et al., 2023). As phytoplankton can promptly respond to signals indicating

changes in the aquatic environment, their community structure can serve as a valuable
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indicator of ecological quality (Li et al., 2019; Chiellini et al., 2020).

As such, there is a need for research focused on phytoplankton

communities in headwater streams in an effort to preserve the

associated aquatic ecosystems.

Many environmental factors, such as water temperature,

nutrient availability, and hydrodynamics can impact the structure

of phytoplankton community (Garzke et al., 2019; Xu et al., 2021).

Water temperature can impact phytoplankton cell size and growth

rate (Grimaud et al., 2017). Within a favorable water temperature

range, rising water temperatures correspond to higher rates of

phytoplankton growth (Baker and Geider, 2021). Changes in

nutrient availability can significantly impact phytoplankton

community structure, with growth rates being related to nutrient

absorption rates under suitable water temperature and pH

conditions (Schulhof et al., 2019; Villanova et al., 2021; Du et al.,

2023). Hydrodynamic conditions also play a role in shaping

phytoplankton community, as many phytoplankton are prone to

thrive under stagnant water conditions (Li et al., 2013). Thus, there

might be significant variability in phytoplankton community

structure across different habitats. Headwater streams are

primarily localized in mountainous regions where they exhibit

strong hydrodynamic forces and are subject to relatively little

human activity. The primary factors influencing the structure of

headwater stream phytoplankton communities have not been firmly

established, which hinders the development of evidence-based

conservation strategies for these ecosystems.

In this study, we investigated phytoplankton communities in

typical representative headwater streams and compared them with

plain rivers. The main objectives were to study the phytoplankton

community in headwater streams and identify key environmental

factors influencing their patterns. The findings may provide

significant implications for the ecological preservation of

headwater streams.
2 Materials and methods

2.1 Study area

This study was conducted in headwater streams (23°51’–23°54’

N, 113°48’–113°52’ E) of Pearl River, China (Figure 1A). The region

experiences a subtropical maritime monsoon climate, characterized

by long summers and warm winters, with annual temperatures

ranging from 19°C to 24°C. The coldest temperatures are typically

observed in January, averaging 16°C to 19°C, while the warmest

temperatures occur in July, averaging 28°C to 29°C. Both headwater

streams are situated in mountainous areas with an average slope of

2.6%. The study also included plain rivers (31°28’–31°34’ N, 119°

40’–119°46’ E) in the watershed of Taihu Lake, China (Figure 1B),

as the control. These rivers exhibited a flat terrain with an average

slope of 0.04% and low flow velocity. The surrounding areas of these

rivers were primarily characterized by residential zones and

farmland. The region experiences a subtropical monsoon climate,

with an average annual temperature of approximately 16°C. The

Pearl River basin is predominantly mountainous, while the Taihu
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Lake basin is characterized by plains, making them commonly used

subjects for studying headwater streams and plain rivers.
2.2 Field survey

Field sampling of headwater streams was conducted in June and

December of 2022, including a total of 17 sampling sites

(Figure 1A). Additionally, 31 sampling sites were established in

the plain rivers (Figure 1B), and field sampling was conducted in

January and July of 2022.

A multiparameter water quality meter (YSI ProQuatro, YSI Inc.,

USA) was used to measure water temperature, dissolved oxygen

(DO), and pH at each site. Water samples were collected at 0.2 m

below the surface using an organic glass water sampler with a

capacity of 5 L. Subsequently, the water samples were transferred

into 500 mL sample bottles for preservation and later

water analyses.

Phytoplankton cell counting was performed on the collected

surface water samples. For this, 1 L sample bottles to which 15 mL

of Lugol’s iodine solution was added, aiding in the preservation of

the samples for subsequent analysis.
2.3 Sample analyses

Total nitrogen (TN), total phosphorus (TP), nitrate, nitrite,

ammonium, and soluble reactive phosphorus (SRP) levels were

measured according to the Monitoring Analysis Method of Water

and Wastewater. Water samples were passed through a 0.45 mm
filter membrane (GF/F, Whatman) prior to the analyses of dissolved

nutrients. Dissolved inorganic nitrogen (DIN) was calculated by

summing up the concentrations of nitrate, nitrite, and

ammonium values.

For phytoplankton analyses, the water sample with Lugol’s

solution was left to settle for 24 hours. After sedimentation, the

supernatant was siphoned off using a small-diameter silicone tube

to obtain a final volume of 30 mL. The remaining water samples

were thoroughly mixed, and 0.1 mL was taken with a pipette and

placed on a counting chamber covered with a glass coverslip. The

samples were then imaged at magnifications of 10 × and 40 × to

identify the species and count the cells of each species. Counts for 20

randomly selected fields of view were obtained, with the average of

three counts per field of view being determined and reported as

phytoplankton cell density (cells/L).

The alpha diversity of phytoplankton community was measured

using equations 1-3: (Chang et al., 2021):

Dominance index (Y) (McNaughton, 1967):

Y =
ni
N
fi (1)

where ni representing the number of individual phytoplankton

in genus i; N represents the total number of individual

phytoplankton at each point; fi represents the occurrence

frequency of this species in the sample site.
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Shannon-Wiener index (H’)

H0 = −o
S

i=1

ni
N

� �
ln

ni
N

� �
(2)

where S represents the number of phytoplankton genera per

sampling point.

Pielou’s evenness index (J)

J =
H0

ln S
(3)
2.4 Statistical analysis

Spearman’s correlation analyses were used to analyze the

correlations between environmental factors and phytoplankton

abundance as well as alpha diversity values. Statistical analyses
Frontiers in Plant Science 03
were performed using SPSS v22.0 (SPSS Inc., IL, USA). Results were

compared using independent sample t-tests following the variance

homogeneity tests. * P< 0.05, ** P< 0.01 and ***P< 0.001.
3 Results

3.1 Water temperature, DO, and pH levels

Compared to the plain rivers, headwater streams showed

relatively small fluctuations in water temperature, ranging from

9.6°C to 28.8°C. In the dry and wet seasons, the average water

temperatures in headwater streams were 12.8°C and 23.7°C,

respectively. On the other hand, the plain rivers experienced

significant seasonal fluctuations, with average water temperatures

of 6.2°C and 32.4°C during the dry and wet seasons, respectively

(Figure 2A). There were no significant seasonal variations in
B CA

FIGURE 2

Characteristics of water temperature, DO and pH in the river flow. Water temperature (A); DO (B); pH (C). PR, Plain rivers; HS, Headwater streams;
WT, water temperature; DO, dissolved oxygen. ***P < 0.001.
FIGURE 1

Location of study area and sampling sites. Headwater streams (A); Plain rivers (B).
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average DO or pH values when comparing the headwater streams

and the plain rivers. However, during the wet season, the plain

rivers exhibited greater spatial fluctuations in DO (1.16–20.00 mg/

L) and pH (6.9–9.8) (Figures 2B, C).
3.2 Water nutrients

In headwater streams, significant seasonal variations in TN

concentrations were observed, with average concentrations of 0.79

mg/L during the dry season and 2.69 mg/L during the wet season. In

contrast, the plain rivers showed an average TN concentration of

2.54 mg/L during the dry season, while during the wet season, these

concentrations fluctuated substantially, ranging from 1.10 to 3.60

mg/L, with an average of 2.85 mg/L (Figure 3A). On the other hand,

no significant seasonal differences in DIN concentrations were

observed in headwater streams, with an average of 0.53 mg/L

during the dry season and 0.30 mg/L during the wet season, with

respective ranges of 0.18–0.60 mg/L and 0.01–0.86 mg/L. In

contrast, the plain rivers exhibited significant seasonal differences

in DIN concentrations, with average values of 2.28 mg/L during the

dry season and 0.51 mg/L during the wet season (Figure 3B).

In general, headwater streams exhibited lower TP and SRP

concentrations compared to the plain rivers, which aligns with the

observed trend in TN concentrations. Notably, during the wet

season, the plain rivers showed greater spatial fluctuations and

higher overall TP and SRP concentrations (Figures 4A, B).

Headwater streams displayed relatively low SRP concentrations,

ranging from 0.001 to 0.016 mg/L during the dry season and mostly

undetectable levels during the wet season. In contrast, the average

SRP concentration in the plain rivers was 0.14 mg/L (0.01–0.17 mg/

L) during the wet season, while the average TP concentration was

0.32 mg/L (0.14–0.52 mg/L).
3.3 Phytoplankton density and species

Headwater streams did not display any significant seasonal

variability in phytoplankton density, maintaining an average of

1.18 × 105 cells/L during the dry season (2.26 × 104–2.38 × 105 cells/

L) and 1.25 × 105 cells/L during the wet season (5.66 × 103–5.32 ×
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105 cells/L). In contrast, the plain rivers exhibited notable

spatiotemporal differences in phytoplankton density. The average

phytoplankton density in these rivers during the wet season was

2.04 × 106 cells/L (2.28 × 105–6.18 × 106 cells/L), significantly higher

than the average of 8.55 × 105 cells/L during the dry season (3.68 ×

105–2.01 × 106 cells/L) (Figure 5A).

In total, seven phytoplankton phyla were detected in the headwater

streams, with an additional Pyrrophyta phylum being detected in

samples collected from the plain rivers. The dominant phyla in both

water systems included Cyanophyta, Euglenophyta, Bacillariophyta,

and Chlorophyta (Figure 5B). In the headwater streams, 6 phyla, 30

genera, and 50 species of phytoplankton were detected during the dry

season, while 6 phyla, 27 genera, and 38 species were detected during

the wet season. In the plain rivers, 8 phyla, 54 genera, and 161 species

were detected during the dry season, while 8 phyla, 42 genera, and 95

species were detected during the wet season (Figure 5B). During the dry

season, the headwater streams were primarily dominated by

Cyanophyta, Chlorophyta, and Bacillariophyta, accounting for 75.5%,

9.9%, and 9.0% of the overall phytoplankton community, respectively.

Similarly, during the wet season, these dominant groups were

Cyanophyta, Bacillariophyta, and Chlorophyta, with respective

proportional abundance values of 76.4%, 11.9%, and 8.2%. In

contrast, in the plain rivers, the dominant groups during the dry

season were Cyanophyta, Chlorophyta, and Bacillariophyta, making up

63.4%, 17.2%, and 11.6% of the overall phytoplankton community.

However, during the wet season, Cyanophyta dominated the plain

rivers, representing a substantial 96.0% of the cell density (Figure 5C).
3.4 Phytoplankton diversity

Both the Shannon-Wiener index and Pielou’s evenness index

were significantly higher in headwater streams compared to those in

the plain rivers, and there were no seasonal differences observed. In

headwater streams, the average Pielou’s evenness index during the

dry and wet seasons were 0.83 and 0.87, respectively, whereas the

corresponding values for the plain rivers were 0.33 and 0.11.

Similarly, the average Shannon-Wiener index values in headwater

streams during the dry and wet seasons were 1.51 and 1.32,

respectively, whereas the corresponding values for the plain rivers

were 1.00 and 0.26 (Figures 6A, B).
BA

FIGURE 3

Characteristics of TN and DIN in the river flow. TN (A); DIN (B). *P < 0.05 and ***P < 0.001.
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4 Discussion

4.1 Headwater streams exhibit poor
nutrient levels and strong hydrodynamics

Headwater streams generally exhibit lower levels of nutrients

compared to the plain rivers, particularly in terms of SRP and DIN.

The differences in nutrient concentrations in headwater streams are

smaller during both the dry and wet seasons (Figures 3, 4). This is

primarily due to the limited human activities in headwater streams,

resulting in lower external nutrient inputs. Additionally, the steeper

slopes and stronger hydrodynamics in headwater streams impede

nutrient accumulation (Lamb et al., 2017). In contrast, the plain rivers

have weaker hydrodynamics and are affected by higher levels of

nearby industrialization, agriculture, and urbanization. The uneven

distribution of point and non-point pollution sources, such as

agricultural runoff and domestic wastewater, also contributes to

more significant spatial variability in nutrient levels within the

plain rivers (Xiong et al., 2021; Tang et al., 2022). During the wet

season, the TN levels in headwater streams increased significantly

compared to the dry season, while there was no corresponding

change in DIN levels. This can be attributed to frequent rainfalls

during the wet season, which wash organic matter from the

watershed into the streams (Panton et al., 2020; Croghan et al.,

2021). Despite the increase in organic matter input, the elevated DO

levels and less hydraulic residence time in these streams limit the

conversion of organic nitrogen into inorganic nitrogen (Liu et al.,
Frontiers in Plant Science 05
2021). As a result, there is no significant rise in inorganic nitrogen

levels in these headwater streams (Figure 3B). The seasonal water

temperature difference observed in headwater streams was 11.0°C,

which was significantly lower than the 31.6°C in the plain rivers

(Figure 2A). This discrepancy can be attributed to their geographic

locations (Ding et al., 2016). There were relatively limited spatial

differences in DO and pH among different sites, with the exception of

the plain rivers during the wet season (Figures 2B, C).
4.2 Headwater streams display lower
spatiotemporal variations in
phytoplankton community

Diversity index were utilized in this study to assess the

phytoplankton community structure (Wang et al., 2020; Hu et al.,

2022). Both the Pielou’s evenness index and Shannon-Wiener index

for headwater streams were significantly higher than those for the

plain rivers (Figure 6), indicating a greater stability and even

distribution of the phytoplankton community in headwater

streams compared to the plain rivers. In headwater streams, there

was relatively limited spatial variation in the phytoplankton

community, with an average density during the wet season only

1.06-fold higher than that during the dry season. On the other hand,

the plain rivers showed pronounced seasonal fluctuations in

phytoplankton density, ranging from 3.68 × 105 to 6.18 × 106

cells/L, with an average density during the wet season that was 2.40-
BA

FIGURE 4

Characteristics of TP and SRP in the river flow. TP (A); SRP (B). **P < 0.01 and *** P < 0.001.
B CA

FIGURE 5

Characteristics of phytoplankton community in the river flow. phytoplankton density (A); phytoplankton species (B); phytoplankton density
proportion (C).
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fold higher than that during the dry season. Additionally, significant

spatial variability was evident during the wet season (Figure 5A).

Overall, headwater streams displayed lower spatiotemporal

variations in phytoplankton community composition compared

to the plain rivers.

Within a specific range, there was a positive correlation

observed between water temperature and phytoplankton growth

rates (Grimaud et al., 2017; Gerhard et al., 2019). This correlation is

particularly noticeable for Cyanophyta, as they exhibit greater water

temperature sensitivity compared to other phytoplankton species

(Elliott, 2010). Surprisingly, during the wet season, an 11.0°C

increase in water temperature in headwater streams did not have

any impact on phytoplankton density, and no apparent seasonal

variations in the relative abundance of water temperature-sensitive

Cyanophyta were observed in these headwater streams (Figure 5C).

As a result, there were no significant correlations were found

between water temperature, DO, pH, and phytoplankton density

in headwater streams. These findings suggest that water

temperature, DO, and pH might not be the primary influencing

factors for the phytoplankton community in headwater streams.

During the wet season, both TP and TN levels in headwater

streams increased compared to the dry season, while phytoplankton

density remained relatively low (Figure 5A). This can be attributed to

that SRP and DIN are the nutrient forms most readily utilized by

aquatic organisms (Gomez-Velez et al., 2015; Chen et al., 2020). SRP

and DIN concentrations in headwater streams remained consistently

low without significant seasonal fluctuations (Figures 3B, 4B).

Hydrodynamics are also important factors influencing

phytoplankton species composition. Larger Bacillariophyta cells are

more likely to settle in the flow (Wang et al., 2018). In headwater

streams with stronger hydrodynamic forces during the wet season,

there were increased proportions of Bacillariophyta in the

phytoplankton community (Figures 5B, C). However, the low

nutrient availability limited phytoplankton growth in these

headwater streams, resulting in no significant seasonal differences in

phytoplankton density. Consequently, nutrient availability and

hydrodynamic conditions were the primary factors influencing the

phytoplankton community structure in headwater streams, leading to

reduced seasonal variability in phytoplankton abundance.

During the dry season, there were no significant correlations

between environmental factors and phytoplankton density in the
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plain rivers. However, during the wet season, phytoplankton density

showed significant positive correlations with water temperature, DO,

pH, TP, and SRP (Supplementary Figure 1). The phytoplankton

community structure displayed pronounced seasonal differences,

with Cyanophyta accounting for 63.4% of the phytoplankton density

in the plain rivers during the dry season, but increasing to 96.0% during

the wet season (Figure 5C). Previous studies have shown that

Cyanophyta thrive in water temperatures between 25.0°C–35.0°C and

exhibit heat-tolerant metabolic activity, making them able to tolerate

water temperature fluctuations (Nalewajko andMurphy, 2001). During

the wet season, the plain rivers experiences higher water temperatures

conducive to Cyanophyta growth. These elevated water temperatures

also enhance the nutrient acquisition rates by phytoplankton (Nalley

et al., 2018), coupled with abundant nutrient supply in the plain rivers,

facilitating Cyanophyta growth and their dominance during the wet

season (Supplementary Table 1). Moreover, Cyanophyta have lower

specific gravity, enabling them to cluster and proliferate under the

lower flow velocity in the plain rivers (Huisman et al., 2018). As a

result, plain rivers displayed lower spatiotemporal variations in

phytoplankton community than headwater streams.
4.3 Implications for headwater
stream conservation

Headwater streams play a crucial role as valuable natural resources,

serving as vital water sources for energy production (Ferreira et al.,

2019; Zhang et al., 2020). Although the water quality in the analyzed

headwater streams was found to be in good condition, as evidenced by

the Pielou’s evenness index for the phytoplankton communities (Ali

and Khairy, 2016), However, it is essential to acknowledge that future

resource development efforts could potentially impact the ecological

health of these streams. At present, there is an increasing number of

small hydropower stations being developed worldwide, particularly in

headwater streams (Couto and Olden, 2018). The construction of small

hydropower stations can reduce water flow velocity, leading to greater

nutrient enrichment in the river (Alp et al., 2020; Lai et al., 2022). This

disruption may have influences on phytoplankton communities in

headwater streams. Moreover, while the impact of water temperature

on phytoplankton communities in headwater streams is limited, the

rising global temperatures may change this scenario (Hoegh-Guldberg
BA

FIGURE 6

Pielou’s evenness and Shannon-Wiener indexes of phytoplankton in the river flow. Pielou’s evenness index (A); Shannon-Wiener index (B).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1276289
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zeng et al. 10.3389/fpls.2023.1276289
et al., 2019). As nutrient concentration and water temperature increase,

the risk of phytoplankton blooms in headwater streams could also

increase. To ensure the health of these streams, it is essential to enhance

monitoring and protection efforts while undertaking resource

development. Strict regulations on river pollution and comprehensive

assessments of the effects of resource development on headwater

stream ecology are essential steps towards ensuring the sustainable

health of these water bodies. In this study, headwater streams were

situated in the Pearl River basin, while plain rivers were in the Taihu

Lake basin. They were in separate watersheds, which may result in

differences in phytoplankton communities due to their geographical

locations. Moreover, their different field survey time may also influence

the phytoplankton communities. Field surveys are still needed to collect

more data in future.
5 Conclusions

In this study, we analyzed the characteristics of phytoplankton

communities in headwater streams and evaluated their associations

with environmental factors by comparing phytoplankton

communities in headwater streams with those in plain rivers. The

main findings are as follows:
Fron
(1) The phytoplankton communities in headwater streams

exhibited greater diversity and lower spatiotemporal

variability compared to those in plain rivers, with

Cyanophyta being the dominant species.

(2) Low nutrient concentrations and strong hydrodynamics

shape the structure of phytoplankton communities in

headwater streams.

(3) These results offer valuable insights into the ecology feature

of headwater streams, benefitting efforts to support their

ecological conservation in the future.
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