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Microbe-associated molecular
pattern recognition receptors
have little effect on endophytic
Arabidopsis thaliana microbiome
assembly in the field

Caroline Oldstone-Jackson1,
Feng Huang1,2 and Joy Bergelson1,3*

1Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States, 2Plant
Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou,
Guangdong, China, 3Center for Genomics and Systems Biology, Department of Biology, College of
Arts and Science, New York University, New York, NY, United States
Plant microbiome structure affects plant health and productivity. A limited subset

of environmental microbes successfully establishes within plant tissues, but the

forces underlying this selectivity remain poorly characterized. Transmembrane

pattern recognition receptors (PRRs), used by plants to detect microbe-

associated molecular patterns (MAMPs), are strong candidates for achieving

this selectivity because PRRs can potentially interact with many members of

the microbiome. Indeed, MAMPs found in many microbial taxa, including

beneficials and commensals, can instigate a robust immune response that

affects microbial growth. Surprisingly, we found that MAMP-detecting PRRs

have little effect on endophytic bacterial and fungal microbiome structure in

the field. We compared the microbiomes of four PRR knockout lines of

Arabidopsis thaliana to wild-type plants in multiple tissue types over several

developmental stages and detected only subtle shifts in fungal, but not bacterial,

b-diversity in one of the four PRR mutants. In one developmental stage, lore

mutants had slightly altered fungal b-diversity, indicating that LORE may be

involved in plant-fungal interactions in addition to its known role in detecting

certain bacterial lipids. No other effects of PRRs on a-diversity, microbiome

variability, within-individual homogeneity, or microbial load were found. The

general lack of effect suggests that individual MAMP-detecting PRRs are not

critical in shaping the endophytic plant microbiome. Rather, we suggest that

MAMP-detecting PRRs must either act in concert and/or are individually

maintained through pleiotropic effects or interactions with coevolved

mutualists or pathogens. Although unexpected, these results offer insights into

the role of MAMP-detecting PRRs in plant-microbe interactions and help direct

future efforts to uncover host genetic elements that control plant

microbiome assembly.
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1 Introduction

Plants closely associate with complex microbial communities

composed of bacteria, fungi, oomycetes, and other microorganisms.

This community, or microbiome, colonizes the soil surrounding the

roots (rhizosphere), external plant surfaces, and the spaces within

plants (endosphere). The microbiome affects plant growth (Vessey,

2003), phenology (Lau and Lennon, 2011; Wagner et al., 2014),

abiotic stress tolerance (Rodriguez et al., 2008) and disease

resistance (Vannier et al., 2019). These observations have sparked

a major effort to engineer plant microbiomes to improve crop yields

and tolerance to abiotic and biotic stress, thus reducing dependency

on chemical fertilizers and pesticides and increasing crop resiliency

to the mounting challenges of climate change. To harness the

microbiome to achieve these agricultural goals, the rules

governing plant microbiome assembly processes must

be elucidated.

Plant microbiomes are primarily composed of microbes derived

from the environment. Only a subset of environmental microbes

associate with plants (Bulgarelli et al., 2012; Lundberg et al., 2012;

Vorholt, 2012). Numerous factors, including abiotic conditions,

microbe-microbe interactions, and host-effects, underpin this

selective filtering (Fitzpatrick et al., 2020). Selectivity typically

increases in the endosphere; the microbial communities within

plant tissues are generally less diverse than those of external plant

surfaces (Bulgarelli et al., 2012; Lundberg et al., 2012; Bodenhausen

et al., 2013; Coleman-Derr et al., 2016; Chen et al., 2020; Mina et al.,

2020). This filtering effect is also tissue-specific (Beilsmith et al.,

2021). Host genetics likely play a role in filtering environmental

microbes, as plant microbiomes are typically more similar within

species than between species, even when grown in common

environments (Naylor et al., 2017; Tkacz et al., 2020; Wippel

et al., 2021). Within-species genotype can also affect microbiome

composition (Bulgarelli et al., 2012; Lundberg et al., 2012; Horton

et al., 2014; Brachi et al., 2022).

How are microbes filtered from the environment during

colonization of plant tissues? The plant immune system is an obvious

candidate, as host-microbe interactions often involve the host’s immune

system. The plant immune system recognizes non-self and modified-self

molecules via two main classes of receptor proteins (Jones and Dangl,

2006; Dodds and Rathjen, 2010). One class, transmembrane pattern

recognition receptors (PRRs), detects microbe-associated molecular

patterns (MAMPs) and endogenous signals caused by damage to plant

cells, known as damage-associated molecular patterns (DAMPs).

MAMPs are non-self molecules commonly found across broad

taxonomic classes of microbes that contribute to microbial fitness in

numerous environments, such as flagellin, elongation factor Tu, chitin,

peptidoglycan, and lipid metabolites (Boller and Felix, 2009; Tang et al.,

2017; Kutschera et al., 2019; Schellenberger et al., 2021). Indeed, genomic

surveys reveal that most, if not all, plant-associated bacteria produce

immunogenic MAMPs (Garrido-Oter et al., 2018; Teixeira et al., 2019).

In addition to PRRs, plants employ Resistance (R) receptors to detect

effectors, molecules secreted by microbes to suppress plant immunity

and/or manipulate the plant environment to promote microbial growth

(Cui et al., 2015). R proteins can also detect the modified plant targets of

these effectors.
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Upon detection of MAMPs, plants respond with a multifaceted

response including ion fluxes, reactive oxygen species bursts, and

massive transcriptional reprogramming (Boller and Felix, 2009;

Macho and Zipfel, 2014). This response, pattern-triggered

immunity (PTI), moderates pathogen growth and is thought to

control the majority of plant-microbe interactions (Hacquard et al.,

2017). If R proteins are stimulated in conjunction with PRRs, the

plant can generate an amplified immune response called effector-

triggered immunity (Jones and Dangl, 2006). While PTI can

generate robust immunity independently of effector-triggered

immunity, effector-triggered immunity requires PTI to mount

meaningful resistance (Ngou et al., 2021; Yuan et al., 2021).

Furthermore, PTI and effector-triggered immunity can have

systemic, long-term effects on plant physiology by inducing

systemic resistance (Mishina and Zeier, 2007; Pieterse et al.,

2014). This causes distal, unexposed tissues to exhibit enhanced

resistance to pathogen infection: a phenotype that can persist over

many weeks and potentially into future generations (Luna

et al., 2012).

Since MAMPs of numerous microbes are reactive with plant

PRRs (Yu et al., 2019) and PTI is a central component in plant

immune responses that affect microbial growth, MAMP-detecting

PRRs may affect the structure of plant microbiomes. Experimental

evidence from plant-microbe pairs supports the hypothesis. For

example, single knockouts of many well-characterized MAMP-

detecting PRRs in A. thaliana allow increased pathogen growth

and/or increased disease severity (Zipfel et al., 2004; Wan et al.,

2008; Nekrasov et al., 2009; Willmann et al., 2011; Wan et al., 2012;

Ranf et al., 2015). Likewise, transforming plants with non-native

PRRs can reduce pathogen growth and disease severity (Lacombe

et al., 2010; Liu et al., 2021). In addition to suppressing pathogen

growth, plant PRRs can also mediate the interaction between plants

and beneficial microbes. For example, plant beneficial Bacillus

velezensis requires PTI induced by the PRR EF-TU RECEPTOR

(EFR), which detects a small fragment of bacterial elongation factor

Tu, to efficiently colonize the A. thaliana root surface (Tzipilevich

et al., 2021). Similarly, beneficial arbuscular mycorrhizal fungi

requires stimulation of the PRR OsCERK1, which detects fungal

chitin, to effectively colonize rice (Miyata et al., 2014).

Although MAMP-detecting PRRs clearly regulate the

interactions of many plant-microbe pairs, how they sculpt the

complex plant microbiome is less clear. In a complex community,

the effect of the plant immune system on a given microbe may

depend on the activity of other community members, including

immunosuppression (Ma et al., 2021; Teixeira et al., 2021).

Furthermore, plants respond in a distinct manner to particular

types of MAMPs (Vetter et al., 2016). The baseline expression of

MAMP-detecting PRRs and their downstream signaling pathways

depends on the PRR in question, tissue type and developmental

stage (Millet et al., 2010; Wan et al., 2012; Wyrsch et al., 2015; Rich-

Griffin et al., 2020; Emonet et al., 2021; Verbon et al., 2023), thus the

influence of PRRs on microbiome assembly may be specific to the

present MAMPs and localized within an individual plant.

Experiments evaluating the role of MAMP-detecting PRRs in A.

thaliana microbiome assembly using synthetic microbial

communities have yielded mixed results. Colaianni et al. (2021)
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found that root and shoot microbiomes were depleted in bacteria

carrying immunogenic versions of the MAMP flagellin compared to

microbial communities in surrounding agar. On the other hand,

lab-based studies using complex synthetic communities rarely

observe differences in microbiome structure in MAMP-detecting

PRRs knockout lines compared to wild-type plants (Bodenhausen

et al., 2014; Chen et al., 2020; Wippel et al., 2021; Wolinska et al.,

2021). However, the synthetic communities used in these

experiments were derived from microbes that closely associate

with wild-type plants, potentially bypassing the filtering of

environmental microbes mediated by PRRs. Other greenhouse-

based experiments found some evidence of small effects of PRRs

on plant microbiome structure using soil collected from the field

(Wolinska et al., 2021; Fonseca et al., 2022). Fonseca et al. (2022)

found that A. thaliana fls2mutant plants, which are unable to detect

a MAMP derived from bacterial flagellin, assembled distinct

rhizosphere communities compared to wild-type plants, but the

rhizospheres of other PRR knockout lines (efr and cerk1,

respectively) were indistinguishable from wild-type plants.

Wolinska et al. (2021) found minor changes in endophytic

(within tissue) bacterial root communities in the triple fls2 efr

cerk1 mutant compared to wild-type plants. Curiously, the triple

mutant bak1 bkk1 cerk1, with dysfunctional coreceptors of these

PRRs, had no apparent effect on bacterial community structure.

Additionally, experiments using wild soil and a synthetic

community derived from this soil identified only partially

overlapping PRRs/PRR coreceptors as important factors in

structuring microbial communities (Wolinska et al., 2021).

Several key questions remain concerning the role of PRRs in

microbiome assembly. When exposed to the immense microbial

diversity present in the field, do MAMP-detecting PRRs modulate

microbiome structure? If so, is the effect specific to certain tissues or

developmental stages? To address these questions, we grew wild-

type A. thaliana Columbia-0 and four single knockout lines of

MAMP-targeting PRRs, fls2, efr, lore and lyk4, in the field in

southwest Michigan. Mutant plants were prevented or impaired

from detecting various well-characterized MAMPs: epitopes from

bacterial flagellin or elongation factor-Tu, certain bacterial lipids

(medium-chain 3-hydroxy fatty acids and 3-hydroxyalkanoates), or

fungal chitin (Table 1). Mutant lines were also previously shown to

affect the growth of at least one microbe (Zipfel et al., 2004;

Nekrasov et al., 2009; Wan et al., 2012; Ranf et al., 2015). Surface

sterilized seeds were planted in flats filled with field soil in Fall 2017.

Flats were placed into the field, where plants germinated,

overwintered as rosettes, and bolted in the spring as is typical for

local, wild A. thaliana. At four developmental stages (Vegetative,

Flowering, Unripe Siliques, Ripe Siliques), all present plant tissues,

including roots, rosettes, stems, cauline leaves, flowers, and siliques

(seed pods), were harvested. We characterized the endophytic

microbiome of each tissue because the microbial filtering effect is

strongest in internal plant spaces. This experiment reveals a

comprehensive picture of if, when, and where MAMP-detecting

PRRs influence A. thaliana endosphere microbiome structure in

the field.
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2 Materials and methods

2.1 Plant materials

Wild-type A. thaliana Columbia-0 (Col-0) and four PRR T-

DNA insertion lines in the Col-0 background were used. The

mutants lore (SAIL 857 E06) and lyk4 (WISCDSLOX297300 01C)

were obtained from the Arabidopsis Biological Resource Center. fls2

(SALK 141277) was a gift from J. Greenberg and efr (SALK 044334)

was a gift from S. Robatzek. All lines were previously confirmed to

be null mutants and affect microbial growth in planta (Zipfel et al.,

2004; Zipfel et al., 2006; Nekrasov et al., 2009; Wan et al., 2012; Ranf

et al., 2015). Mutant lines were confirmed homozygous mutants by

T-DNA amplification with the primers listed in Table S1.
2.2 Study site and planting

The field experiment occurred from October 2017 - May 2018

at the University of ChicagoWarrenWoods Ecological Field Station

in southwest Michigan (41.83, -86.63). Seeds were surface sterilized

with 50% bleach and stratified in sterile DI water for three days at

4°C. In late September, soil was collected from the field site and

sifted with a 2 mm sieve to remove large debris. 36-cell flats were

filled with the sifted soil and soaked with tap water. A plastic washer

was placed in the center of each cell to mark target plants, and a

single stratified seed was pipetted into the center of the washer.

Plant genotypes were randomized across flats. Flats were placed in

shallow holes in the field site and spaces between each cell loosely

packed with soil. Drainage holes in the bottom of each cell allowed

contact with the surrounding soil. Until the first true leaves

emerged, flats were covered with plastic domes during rainstorms

to prevent seeds from washing away, but left uncovered otherwise.

Flats were initially watered daily with tap water for several weeks if

required by weather conditions. In total, 35 flats with 1250 plants

(250 replicates of each genotype) were planted. Plants germinated

and overwintered as rosettes as is typical for local A.

thaliana populations.
TABLE 1 Pattern recognition receptors evaluated in this experiment.

Receptor Name
MAMP detected Microbes

affected
References

FLAGELLIN-SENSITIVE 2 (FLS2)
flg22 epitope from

flagellin
bacteria Zipfel et al., 2004

EF-TU RECEPTOR (EFR)
elf18 epitope from EF-

Tu
bacteria

Zipfel et al., 2006;

Nekrasov et al., 2009

LIPOOLIGOSACCHARIDE-

SPECIFIC REDUCED ELICITATION

(LORE)

medium-chain 3-

hydroxy fatty acid

metabolites/

(R)-3-hydroxyalkanoate

bacteria

Ranf et al., 2015,

Kutschera et al., 2019;

Schellenberger et al.,

2021

LYSM-CONTAINING RECEPTOR-

LIKE

KINASE 4 (LYK4)

chitin/? fungi/

bacteria

Wan et al., 2012
A. thaliana knockout lines of each of these receptors were planted in the field alongside wild-
type plants. Bacterial and fungal microbiome composition was characterized across numerous
tissues and developmental stages.
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2.3 Sample collection and processing

Bulk soil from the four corners and the center of the

experimental plot was sampled each day plants were harvested.

Flame-sterilized tweezers were pressed 5 cm deep into the soil to

extract a narrow core. Soil cores were placed into plastic storage

tubes and immediately frozen at -80°C.

Plants were randomly selected for harvesting at several

developmental stages described in Table 2. Plants were harvested

in sets of five (one of each genotype) and immediately processed.

Siliques of each plant were counted if present. Excess soil was

removed by gently patting roots with a flame-sterilized metal

spatula. Roots and aerial tissues were separated with a flame-

sterilized razor blade and placed into a 50 mL conical tube with

25 mL of surfactant buffer (6.33 g NaH2PO4·H2O, 16.5 g

Na2HPO4·7H2O, per 1 L, autoclaved then 200 µL Silwet L-77

added) (Lundberg et al., 2012). Epiphytes were removed based on

protocols described in Lundberg et al. (2012) and Perisin (2016).

Briefly, tubes were vortexted for 15 seconds, transferred to a fresh

tube of buffer, and vortexed again for 15 seconds. Any remaining

clumps of soil attached to plant tissues were removed by gently

rinsing with additional surfactant buffer and/or using flame-

sterilized tweezers. Aerial plant parts were separated using a

flame-sterilize razor blade. The entire plant was retained with

replicate parts combined into a single tube (e.g. all cauline leaves

of an individual plant were combined into a single tube). Separated

plant parts were transferred to fresh tubes of surfactant buffer; large

plant parts in 50 mL conical tubes (25 mL surfactant buffer) and

small plant parts in 1.7 mL Eppendorf tubes (1 mL surfactant

buffer) and then sonicated using 30 second on/off cycles for a total

of 5 minutes. Plant parts were transferred to storage tubes and

immediately placed at -80°C until further processing. If samples

were too large to fit into a single tube, they were spread across

additional tubes.
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2.4 Spike-in sequences and design

Plasmids containing synthetic sequences that coamplify with

ITS1 region of the fungal internal transcribed spacer region were

acquired from Addgene (Tkacz et al., 2018), and synthetic

sequences that coamplify the 799F - 1193R region of 16S were

designed in-house (Supplemental Methods, Section 1.4). Plasmids

were grown in E. coli and purified using QIAGEN MiniPrep kits.

Known amounts of purified plasmid were added to the initial PCR

reaction to allow absolute quantitation of microbial load across

samples as described in Tkacz et al. (2018).
2.5 DNA extraction

Sample preparation and DNA extraction was performed as in

Perisin (2016). Briefly, samples were lyophilized (LABCONCO

FreeZone 4.5), weighed, and randomized across plates. Negative

controls (TES: 10 mM Tris-Cl, 1 mM EDTA, 100 mM NaCl) and a

synthetic control community composed of 10 microbes

(ZymoBIOMICS Microbial Community Standard, D6300) were

included in each extraction plate. Samples were homogenized by

bead beating; 2-3 sterilized 2.3 mm silica beads were added to each

tube, and samples were homogenized over two, 2.5 minute cycles at

1750 RPM in a homogenizer (2010 Geno/Grinder, SPEX). Samples

that were not adequately homogenized were subjected to additional

bead beating cycles using several 2.3 mm steel beads and/or manual

grinding. Samples were suspended in TES at 0.05 mg sample per µL,

with a minimum volume of 250 µL TES. Samples were

homogenized once more at 1750 RPM for 2.5 minutes, and DNA

was extracted using a double enzyme digest, chloroform/

isopropanol precipitation (Perisin, 2016; Supplemental Methods,

Section 1.1).
2.6 Mutant confirmation of
field-grown plants

After DNA extraction, each plant sample was tested to confirm

it matched the expected genotype using T-DNA insert amplification

with the primers listed in Table S1. Only samples that were the

expected genotype were included in the downstream analysis.

Samples that appeared heterozygous for the T-DNA insertion

(likely due to well-to-well cross-contamination) were excluded

from the analysis.
2.7 Library preparation and sequencing

Amplicon libraries were generated using KAPA HotStart HiFi

PCR kits (Roche), with custom Illumina primers with inline

barcodes (Tables S2–S4). Briefly, in the first amplification round,

the V5-V7 region of 16S ribosomal gene (Bodenhausen et al., 2013)

or ITS1 (Horton et al., 2014) were amplified (Tables S5, S6). PCR

products were purified with magnetic beads (Supplemental
TABLE 2 Tissues and developmental stages harvested.

Stage Tissues present
Harvest
dates

Number of
whole plants
harvested

Vegetative root, rosette March 9-
10, 2018

40 (8 per
genotype)

Flowering
root, rosette, stems, cauline
leaves, flowers

April 21-23,
2018

40 (8 per
genotype)

Unripe
Siliques

root, rosette, stems, cauline
leaves, flowers, immature
siliques

May 6-15,
2018

90 (17-19 per
genotype)

Ripe
Siliques

root, rosette, stems, cauline
leaves, flowers, immature
siliques, mature siliques

May 15 -
23, 2018

40 (7-9 per
genotype)
Whole plants were harvested in sets of five (one of each genotype). The number of samples
derived from each plant is equivalent to the number of tissues present at the time of harvest
(e.g. Vegetative plants each produced two samples: a root and a rosette sample).
Developmental stages were defined as follows: Vegetative = no reproductive tissues,
Flowering = flowers present without siliques, Unripe Siliques = siliques present but
immature, Ripe Siliques = at least some are ripe siliques are present.
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Methods, Section 1.2) and indexed with custom Illumina MiSeq

indexing primers (Tables S4, S7, S8). PCR products were bead

purified and quantified with Quant-iT PicoGreen dsDNA kits

(Invitrogen) according to manufacturer’s instructions (3 µL PCR

product in 200 µL total volume per sample). PCR products were

pooled in equimolar amounts and concentrated (SpeedVac,

ThermoFisher). Concentrated pools were size selected between

200-700 bp on a 1.5% agarose gel to remove primer dimers

(BluePippin, Sage Science). Size-selected libraries were bead

purified and library quality was assessed with a Bioanalyzer (High

Sensitivity DNA, Agilent). Final libraries were sequenced on an

Illumina MiSeq with a v3 2x 300 kit with ∼ 12% PhiX.
2.8 Data processing

Raw FASTQs were initially demultiplexed using the MiSeq

onboard bcl2fastq2 software. Primer sequences were trimmed

using cutadapt (paired 5’ primers, e=2.0, minimum length = 100

for both reads) (Martin, 2011). Each MiSeq run was processed

separately until chimera removal, after which libraries of the same

amplicon were pooled. For 16S libraries, truncation length and

maximum expected error for DADA2 were determined using

FIGARO on untrimmed reads (Sasada et al., 2020). ITS1 libraries

were not trimmed. Reads were filtered, inferred, and merged using

DADA2 (merging = minimum 40 bp overlap) to generate amplicon

sequence variants (ASVs) (Callahan et al., 2016). Runs within

amplicon type were combined and chimeras were removed with

DADA2 (method = pooled). Sequences were classified to the genera

level with Naive Bayes classifiers custom built with scikit-learn in

QIIME2 (Bolyen et al., 2019). The 16S classifier was built using the

SILVA-138 database (Quast et al., 2013), while the ITS1 classifier

was built using the UNITE database (version 8) (Nilsson et al.,

2018). Taxonomic trees were generated using MAFFT in QIIME2

(Bolyen et al., 2019).

Spike-in sequences were identified by BLAST alignment in

QIIME2. Reads mapping to E. coli TOP10 16S sequence were

removed from the analysis, as this strain was used to grow the

plasmid carrying the spike sequence. After spike-in and E. coli read

removal, plant-associated samples had a median sequencing depth

of 11929 and 5089 reads for 16S and ITS1, respectively.

Downstream analysis was performed in R (R Core Team, 2022)

using the phyloseq package unless otherwise noted (McMurdie and

Holmes, 2013).
2.9 Microbial load analysis and scaling
for absolute quantitation

For overall load and absolute quantitation, only samples with

spike reads representing between 20%-80% of the total read count

were analyzed to ensure accurate quantitation (Tkacz et al., 2018).

Experimental read counts were then scaled by the amount of spike-
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in sequences recovered using the following equation:

Experimentalscaled = Experimentalraw � Spikemedian

Spikesample
(1)

where Experimentalraw are the number of experimental (non-

spike) reads in the sample, Spikemedian is the median count of spike

reads across the data set and Spikesample is the number of spike reads

in the sample.
2.10 Quality filtering

For all community composition analyses using 16S and ITS1 data

sets, samples with less than 500 reads were discarded. ASVs with less

than 10 reads across the entire data set were also discarded. Senescent

siliques were excluded from downstream analyses because their low

biomass frequently resulted in poor DNA yields and representation

in microbiome data set. In plant-associated samples, this quality

filtering resulted in a median of 12404 or 5843 reads per sample in

bacterial and fungal data sets, respectively.
2.11 a-diversity

Data was repeatedly rarefied to account for read depth variation

(Cameron et al., 2021). Sampling depth was determined by

analyzing rarefaction curves generated with the vegan package

(Oksanen et al., 2022). Each data set was rarefied by sampling

without replacement 100 times (sample depth: 16S = 1380, ITS1 =

751). Shannon Diversity (Shannon, 1948) and Pielou’s Evenness

(Pielou, 1966) was calculated after each iteration for 16S and ITS1

data using the microbiome package (Lahti and Shetty, 2019). Faith’s

Phylogentic Distance (Faith, 1992) corrected for species richness

was calculated for the 16S data set using picante (Kembel et al.,

2010). The mean a-diversity of each sample after 100 iterations was

used in downstream analysis (Cameron et al., 2021).

Statistical analysis of a-diversity was performed using 3-way

permutational ANOVA (Manly, 2007) using the following model

where all terms interact:

AlphaDiversity = Tissue ∗ Stage ∗Genotype (2)
2.12 Defining the core microbiome

We defined the core microbiome in three ways. Core A

represents a global plant endophyte core, spanning all plant parts

and developmental stages. ASVs with at least 0.5% relative

abundance in four or more samples across the entire data set

were retained. Core B was compiled from tissue and stage specific

communities, since tissue type and developmental stage affects

microbiome composition of A. thaliana at our field site

(Beilsmith et al., 2021). Samples were subsetted by tissue type and
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stage score, and ASVs with ≥ 1% relative abundance in at least 20%

of samples in at least one subset were retained. Finally, the Indicator

Core was composed of ASVs enriched in the plant compared to the

surrounding soil, determined by the indicspecies package (De

Cáceres and Legendre, 2009).
2.13 b-diversity analysis

Several combinations of core filtering procedures, data

transformations, and b-diversity indices were completed

(summarized in Table 3). Two broad classes of transformations

methods, rarefying and log-ratio transformations, were applied to

the data sets.

2.13.1 Rarefying
Sample depth varied over three orders of magnitude in these

data sets. To mitigate spurious correlations generated by read depth

variation, we repeat rarefied the ASV table 100 times (sample depth:

16S = 1380, ITS1 = 751) (Cameron et al., 2021). The mean ASV

table of these iterations was used in downstream analyses. The

rarefied table was filtered according to different core definitions

described previously. For absolute abundance analyses, ASV counts

were scaled using the ratio of spike-in reads to the total sample

reads. Bray-Curtis Dissimilarity (Bray and Curtis, 1957) and Jaccard

Index (Jaccard, 1912) were calculated for 16S and ITS1 data sets

using vegan (Oksanen et al., 2022) and Weighted UniFrac

(Lozupone et al., 2011) was calculated for 16S data only using

QIIME2 (Bolyen et al., 2019).

2.13.2 Log-ratio transformations
We also used methods appropriate for compositional data sets

(Quinn et al., 2019) in parallel with the transformations described

above. Transformations included the robust center log-ratio (rCLR)

(Martino et al., 2019) and additive log-ratio (ALR) (Aitchison,

1986). For rCLR transformations, core microbiomes were scaled to

the median read depth before transformation. For ALR calculations,

core microbiomes ASV counts were scaled by the number of spike

reads within the sample. The Euclidean distances between log-
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transformed communities were used for downstream cluster

analyses (Quinn et al., 2019).

2.13.3 Statistical analysis of b-diversity metrics
The factors influencing microbiome community structure in all

resulting distance matrices were evaluated using PERMANOVA

(Anderson, 2017) with the adonis2 function in vegan (Oksanen

et al., 2022), using the equation:

Distance ∼ MiSeqRun : Plate + Tissue ∗ Stage ∗Genotype (3)

where the DNA extraction/PCR plate nested in MiSeq run is

considered a random effect, and tissue, stage, and genotype are fixed

effects in a three-way interaction.
2.14 Differential abundance

Differential abundance analysis across the overall data set was

performed using ANCOM-BC2 (Lin and Peddada, 2020).

Untransformed (raw counts) core microbiomes were analyzed in

ANCOM-BC2. The effect of genotype was tested with the model:

Abundance ∼ Tissue + Stage + Genotype (4)

We also manually tested the interactions between genotype,

stage, and tissue. To accomplish this, the data were subsetted by

tissue, stage, and tissue by stage, and reanalyzed for a

genotype effect.

Targeted evaluation of differential abundance between lore and

wild-type lineages at Ripe Siliques developmental stage was

performed using ANCOM-BC2 (Lin and Peddada, 2020) and

DESeq2 (Love et al., 2014). DESeq2 was performed by using

filtered data sets (Core B) using a zero-tolerant geometric mean

(zeros ignored) to estimate size factors. ANCOM-BC2 analysis was

performed as described above, except the model was adjusted to:

Abundance ∼ Tissue + Genotype (5)
2.15 Within genotype microbiome
dispersion

To test if microbiome community structure was equally variable

within different genotypes, the genotype group dispersion was

calculated using PERMDISP2 (Anderson et al. , 2006),

implemented using the betadisper and permutest functions in

vegan (Oksanen et al., 2022). This analysis was applied to

distance matrices generated by all microbiome cores,

transformation methods, and b-diversity indices generated in

previous sections. Additionally, dispersion was evaluated in a

minimally filtered data set to capture variability derived from rare

community members. Since PERMDISP2 can only be applied to

models with a single factor, we evaluated the dispersion of different

genotypes across all tissues and stages, as well as genotype within

stage, within tissue, and within tissue by stage subsets to test for an

interaction between genotype and other fixed factors.
TABLE 3 Data filtering, transformations, and diversity metrics used in b-
diversity analysis.

Analytical variables for rarefied data

Filtering levels Core A, Core B, Indicator Core

Transformation
methods

Repeat rarefy (compositional), Spike-in scaled repeat
rarefy (absolute)

b-diversity metrics Bray-Curtis, Jaccard, Weighted Unifrac*

Analytical variables for log-ratio transformed data

Filtering levels Core A, Core B, Indicator Core

Transformation
methods

Robust center log-ratio (rCLR), Additive log-ratio (ALR)
scaled by spike-in

b-diversity metrics Euclidean (Aitchison)
*Performed on 16S data only.
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2.16 Microbiome variation within
individual plants

We tested if microbiomes derived from different tissues of the

same individual plant were more similar to one another in PRR

knockout lineages compared to wild type plants. Three different

tissue subsets were analyzed: 1) all tissue types (roots, rosettes,

stems, cauline leaves, flowers, and siliques) to cover all within-plant

tissue variation but limited to the final developmental stages, 2)

roots and rosettes only to assess all developmental stages, and 3) all

aerial tissues except siliques, because above-ground selective

pressures are highly distinct from below-ground pressures. Only

individual plants with all relevant tissue types present in the data set

were considered in each analysis.

After selecting appropriate samples, distance matrices were

generated using Bray-Curtis dissimilarity. The betadisper function

was used to ordinate these data and calculate the distance between

the median community of an individual plant and each of its

associated tissues (Oksanen et al., 2022). The mean of these

distances used to quantify tissue similarity within individuals. A

permutational ANOVA was used to determine if stage or genotype

affected within-individual community similarity with the following

equation:

MeanDistanceToMedian ∼ Stage ∗Genotype (6)
2.17 Early fitness analysis

Two fitness proxies for vegetative biomass and seed output

(Violle et al., 2007) were assessed: rosette dry weight (vegetative

biomass) and silique count (seed production). Rosette dry weight

and siliques counts were assessed during sample processing as

described in Section 2.3. Plants were harvested before all siliques
Frontiers in Plant Science 07
emerged, thus this assay measured only early fitness. As expected,

rosette dry weight and total silique count is correlated when plant

age is considered, except in the final week of the experiment when

sample size was small (Pearson’s correlation, p < 0.05, Figure S1).
3 Results

3.1 A single PRR knockout does not affect
endophytic microbiome a-diversity

Endophytic microbiomes are composed of only a subset of

environmental microbes (Bulgarelli et al., 2012; Lundberg et al.,

2012; Wippel et al., 2021). As front-line mediators of plant-microbe

interactions, MAMP-detecting PRRs may contribute to this effect.

We tested if the endosphere microbiomes of PRRmutant plants had

increased a-diversity, which could indicate less plant selectivity. We

calculated Shannon Diversity (Shannon, 1948) on rarefied 16S and

ITS1 data sets and Faith’s Phylogenetic Distance scaled for species

richness (Faith, 1992) on the rarefied 16S data set. To account for

data loss from rarefying, rarefying and subsequent diversity

calculations were repeated 100 times and the mean diversity score

was used in statistical analyses (Cameron et al., 2021). There was no

difference in Shannon diversity between PRR knockouts and wild-

type plants in bacterial or fungal microbiomes (three-way

permutational ANOVA, p > 0.05; Figure 1; Tables S9 and S10) or

the Faith’s phylogenetic distance of bacterial communities (three-

way permutational ANOVA, p > 0.05; Figure S2; Tables S9 and

S10). Tissue type, developmental stage, and the interaction between

these factors affected a-diversity (p < 0.05). We also considered the

possibility that MAMP-detecting PRRs preferentially exclude high-

growth, pathogenic microbes. If PRR knockout allows previously

excluded pathogens to infiltrate and then dominate the

microbiome, community evenness - the distribution of
BA

FIGURE 1

PRR knockout has no significant effect on Shannon diversity of bacterial or fungal microbiomes. PRR knockouts efr, fls2, lore, and lyk4 do not have
significantly different Shannon diversity than wild-type plants in (A) bacterial or (B) fungal communities, either as a main effect (shown here,
permutational ANOVA, p > 0.05) or in interactions with tissue and stage (permutational ANOVA, p > 0.05; Tables S9 and S10). Bacteria, genotype
main effects n=166-200; genotype by tissue by stage subsets n=3-18. Fungi, genotype main effects: n=143-183; genotype by tissue by stage
subsets: n=2-17. Statistical difference between genotypes (main effect) in a global permutational ANOVA: NS = not significant.
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abundances of the species in the community - may be affected.

However, we did not find any support for this supposition; Pielou’s

evenness in bacterial and fungal microbiomes is indistinguishable

between PRR knockouts and wild-type plants (three-way

permutational ANOVA, p > 0.05; Figure S3; Tables S9 and S10).
3.2 A single PRR knockout has a small
effect on fungal, but not bacterial,
endosphere microbiome composition

We then asked if PRRs affected the b-diversity of endosphere

microbiome composition. We evaluated the significance of genotype,

tissue type, and developmental stage on core endosphere microbiome

structure using several different approaches targeting different features of

b-diversity (Table 3). PRR knockout had a small effect on endophytic

fungal communities and interacted with developmental stage (Figure 2,

Bray-Curtis, R2 = 0.0044, p < 0.05, Table S13), although this effect was

detected in only some b-diversity metrics (Tables S13, S14). Post-hoc

analyses revealed that genotype affected endosphere fungal communities

in the Unripe Siliques and Ripe Siliques stages (PERMANOVA, p < 0.05

and p < 0.05, respectively). Pairwise comparisons showed that lore

knockouts had statistically different fungal communities than wild-type

plants in the Ripe Siliques stage (Bray-Curtis, WT vs. lore pairwise

PERMANOVAwithin the Ripe Siliques developmental stage, R2 = 0.015,

p < 0.05). This was unexpected because LORE detects bacterial medium-

chain 3-hydroxy fatty acids and 3-hydroxyalkanoates (Kutschera et al.,

2019; Schellenberger et al., 2021), but has no documented effect on fungi.

However, it is possible that LORE also detects fungal lipids/MAMPs -

other PRRs detect multiple elicitors and affect plant interactions with

both fungi and bacteria (Willmann et al., 2011; Wan et al., 2012).

Alternatively, the bacterial microbiome has been shown to strongly
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influence fungal microbiome structure (Durán et al., 2018); if LORE

transiently affected the bacterial community, this may have had

cascading effects on the fungal microbiome. Other notable but

statistically insignificant differences in fungal community composition

betweenwild-type and PRR knockouts include lore in theUnripe Siliques

stage and lyk4, a chitin-responsive PRR, in the Ripe Siliques stage (Bray-

Curtis, pairwise PERMANOVA: R2 = 0.0081, p = 0.069; R2 = 0.041, p =

0.067, respectively). Finally, genotype effects were only detectable on the

ASV taxonomic level (data not shown). In contrast, genotype had no

effect on bacterial b-diversity across all core communities, transformation

methods and diversity metrics (Figure 2, PERMANOVA, R2 = 0.005, p >

0.05, Supplemental Tables S11, S12). Additionally, genotype had no effect

on bacterial community composition at higher taxonomic levels (data

not shown). Considering all of the b-diversity analyses together, we

found that PRRs have little effect on endosphere microbiome b-diversity
as effects were limited to a single genotype and developmental stage

within the fungal microbiome.

We next attempted to uncover which fungal ASVs drove the shift

in b-diversity of lore mutants in the Ripe Siliques stage by testing for

differentially abundant ASVs using ANCOM-BC2 (Lin and Peddada,

2020) and DESeq2 (Love et al., 2014). Neither analysis detected any

fungal ASVs with statistically significant changes in abundance

between wild-type plants and lore mutants (ANCOM-BC2, p >

0.05; DESeq2, p > 0.05), which was unsurprising given the small

Bray-Curtis effect size of this comparison (Nearing et al., 2022; effect

size determined by PERMANOVA: R2 = 0.015). We also evaluated if

any bacterial or fungal ASVs were differentially abundant between

wild-type and PRR knockout lineages across the entire data set using

ANCOM-BC2 (Lin and Peddada, 2020). No bacteria or fungi were

differentially abundant when genotype was considered as a main

effect, nor when genotype was tested within tissue, developmental

stage, or tissue by stage subsets (ANCOM-BC2, p > 0.05).
BA

FIGURE 2

PRR knockout has subtle effects on Bray-Curtis b-diversity of endophytic fungal microbiomes, but not bacterial microbiomes. Principle Coordinate
Analysis (PCoA) of Bray-Curtis distances between bacterial (A) or fungal (B) microbiomes. (A) PRR mutations, denoted by color, do not explain
community variation in Bray-Curtis distances in endophytic bacterial communities as a main effect or as an interaction with tissue and/or stage
(PERMANOVA, p > 0.05). (B) PRR genotype had subtle effects on Bray-Curtis distance in fungal communities, but this effect is not obvious on
primary PCoA axes (PERMANOVA, R2 = 0.005, p < 0.05). In accordance with previous work at this field site (Beilsmith et al., 2021), microbial
communities segregate by tissue type (represented by shape) on primary PCoA axes. Tissue type had a substantial effect on community
composition (PERMANOVA, bacteria: R2 = 0.183, p < 0.05; fungi R2 = 0.121, p < 0.05). Bacteria: n=3-18 for each genotype by tissue by stage subset,
with n=888 total samples. Fungi: n=2-17 for each genotype by tissue by stage subset, with n=816 total samples.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1276472
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Oldstone-Jackson et al. 10.3389/fpls.2023.1276472
3.3 Single PRR knockouts and
wild-type plants show no
difference in microbiome variability

Plant control of the microbiome can manifest in numerous

ways. Host selection is a deterministic force governing microbiome

assembly (Bulgarelli et al., 2012; Lundberg et al., 2012; Horton et al.,

2014; Tkacz et al., 2020; Wippel et al., 2021; Brachi et al., 2022). If

the host plant is unable to effectively select microbes, variability (i.e.

dispersion) in microbiome structure between individuals could

increase as stochastic processes, such as microbial dispersal and

drift, become more important in community assembly (Arnault

et al., 2022). Thus, if PRRs contribute to host control of the

microbiome, within-genotype microbiome variability in PRR

mutants may be increased compared to variability between wild-

type plants. To test this, we compared b-diversity dispersion of each

genotype using the PERMDISP2 procedure (betadisper function in

vegan, Oksanen et al., 2022). Neither bacterial nor fungal

communities were more variable within PRR mutants than within

wild-type plants, even if the effects of tissue and stage were

controlled (Figure 3, PERMDISP2 analysis of multivariate

homogeneity of group dispersions, p > 0.05, Table S15). This

indicates that single PRRs are not required for deterministic

selection of environmental microbes.
3.4 The degree of tissue specificity in
endophytic microbiome structure is
not affected by the loss of individual
PRRs, but changes over time

PRRs and plant immunity may help maintain the distinct

microbial communities found in each tissue via two mechanisms.

First, the expression patterns of MAMP-detecting PRRs and the

regulation of downstream immune signaling pathways is cell-type
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specific (Millet et al., 2010; Wan et al., 2012; Beck et al., 2014; Vetter

et al., 2016; Rich-Griffin et al., 2020; Emonet et al., 2021; Verbon

et al., 2023). Second, PTI may impede the systemic spread of

microbes (Yadeta and Thomma, 2013; Beck et al., 2014; de Lamo

et al., 2021). Interestingly, there is evidence in humans that within-

individual site-specificity of microbiomes declines in disease;

critically ill patients exhibit reduced body-site specificity (Rogers

et al., 2016). We tested if PRRs help maintain tissue specificity

within individual plants by calculating Bray-Curtis distances

between each tissue within each plant, and then calculating the

mean distance from the community of each tissue to the median

community of the individual plant. A two-way permutational

ANOVA with genotype and development stage as fixed effects

was used to test statistical significance.

We found that wild-type plants and PRR knockout lines had the

same degree of tissue specificity of both fungal and bacterial

microbiomes within individual plants (Figure 4; Table S16).

Interestingly, we found that both fungal and bacterial

microbiomes of aerial tissues, excluding siliques, generally became

more similar within individuals as plants matured (Figure 4,

permutational ANOVA p < 0.05, with pairwise permutational

ANOVA post-hoc tests; Table S16). Thus, although the

microbiomes of most aerial tissues become more similar within

individuals over time, we found no evidence that single PRRs play a

direct role in regulating microbiome tissue specificity in A. thaliana.
3.5 No evidence of increased
microbial load or reduced fitness
in single PRR knockouts

A single PRR knockout can increase plant microbial load in

single-microbe infections (Zipfel et al., 2004; Wan et al., 2008;

Nekrasov et al., 2009; Willmann et al., 2011; Wan et al., 2012; Ranf

et al., 2015). It is critical that plants regulate the total microbial load,
BA

FIGURE 3

PRR mutant microbiomes are not more variable than wild-type microbiomes. PCoA of Bray-Curtis distance of (A) bacterial and (B) fungal
communities. Only roots and rosettes are shown. To visualize group dispersions, ellipses encircle the 85% confidence interval t-distribution of
samples in a genotype group, and are colored according to genotype. Genotype has no statistical effect on within-group microbiome variation
(PERMDISP2, p > 0.05). Further, there is no effect of genotype on microbiome variability within tissue, stage, or tissue by stage subsets (PERMDISP2,
all subsets, p > 0.05). Bacteria: n=3-18 for each genotype by tissue by stage subset, with n=888 total samples. Fungi: n=2-17 for each genotype by
tissue by stage subset, with n=816 total samples.
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as high microbial loads are associated with reduced fitness in the

field (Traw et al., 2007). We thus asked if PRRs regulate overall

microbial load and if PRR mutants have altered early fitness

indicators. To estimate microbial load, a known amount of

synthetic spike-in DNA that co-amplified with 16S or ITS1 was

added to the initial PCR reaction. This allowed us to estimate total

microbial load by scaling total read counts by the number of spike

sequences (Tkacz et al., 2018). We detected no change in either

bacterial or fungal load in PRR knockouts compared to wild-type

plants either as a main effect or in interactions with tissue and stage

(bacterial load: ANOVA, p > 0.05, Figure 5A; fungal load: ANOVA,

p > 0.05, Figure 5B; Table S17). We also tested if the loss of a

MAMP-detecting PRR affected plant fitness, which may be expected

if PRR loss leads to increased susceptibility to pathogens and/or

microbiome dysbiosis. However, we failed to find evidence that loss

of MAMP-detecting PRRs impacted early silique counts (Figure

S4A: Kruskal-Wallis, p > 0.05) or rosette dry weight (Figure S4B:

Kruskal-Wallis, p > 0.05), although a small sample size limited our

power to detect fitness differences. Thus, we found no evidence that

individual MAMP-detecting PRRs control total microbial load in

the field, nor that PRRs have large effects on early plant fitness.
4 Discussion

Complex microbial communities assemble on and within plant

tissues, influencing plant phenotype. A key aim of many research
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programs is to effectively engineer these plant-associated

microbiomes to achieve agricultural objectives, such as increased

yield or resilience to abiotic and biotic stresses. Elucidation of

microbial community assembly rules has the potential to improve

the efficiency and reproducibility of these efforts.

Plant-associated microbiomes are comprised of only a subset of

the microbes present in the environment, suggesting that plants

filter and/or select their associated microbes. Plant immunity, which

includes pattern recognition receptors that detect microbial

MAMPs, is thought to sculpt plant microbiomes (Kniskern et al.,

2007; Traw et al., 2007; Carvalhais et al., 2015; Lebeis et al., 2015;

Hacquard et al., 2017; Colaianni et al., 2021; Kudjordjie et al., 2021;

Parys et al., 2021; Fonseca et al., 2022). Indeed, in plant interactions

with single microbes, individual MAMP-detecting PRRs can affect

the colonization and in planta growth of particular bacteria or fungi

(Zipfel et al., 2004; Nekrasov et al., 2009; Vetter et al., 2012; Wan

et al., 2012; Ranf et al., 2015; Colaianni et al., 2021; Parys et al.,

2021). However, the impact of PRRs on the assembly of complex

endophytic microbial communities in the field is unknown. We

characterized both bacterial and fungal endophytic microbiomes of

wild-type A. thaliana and MAMP-detecting PRR knockout lines

grown in the field, across several developmental stages and plant

parts. This unprecedented scope allowed us to determine if, when,

and where individual MAMP-detecting PRRs shape the endophytic

microbiome in the field.

We found little evidence that individual MAMP-detecting PRRs

impact endophytic microbiome structure despite measuring several
B
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FIGURE 4

Microbial communities of aerial tissues within individuals do not show different degrees of site-specificity between PRR mutants wild-type plants, but
generally become more similar as plants age. The mean Bray-Curtis distance from the microbial communities of the rosette, stems, cauline leaves, and
flowers to the individual median community was calculated to measure within-individual tissue specificity. Within-individual tissue specificity does not
vary by genotype in (A) bacterial (permutational ANOVA, p > 0.05) or (B) fungal communities (permutational ANOVA, p > 0.05). This is true for main
effects (shown above; bacteria, n= 13-27; fungi, n=9-21) or interactions with stage (Table S16). Significant differences between genotypes according to
global permutational ANOVA: * = p < 0.05, NS = not significant. However, developmental stage affects within individual site-specificity in both
(C) bacterial communities and (D) fungal communities (permutational ANOVA main effect, bacteria: p < 0.05, n=20-45; fungi: p < 0.05, n=17-38). In
(C) bacterial communities, the mean distance of each tissue’s microbiome to the plant median community decreased between the Flowering (no
siliques present) and Immature Siliques stages, thus tissues became more similar (pairwise permutational ANOVA post-hoc with Benjamini-Hochberg
correction, p < 0.05). However, this trend did not hold in the Mature Siliques stage (pairwise permutational ANOVA post-hoc, p > 0.05 after Benjamini-
Hochberg correction). In fungal communities (D), tissue specificity was significantly higher in the Flowering stage than both the Immature Siliques and
Mature Siliques stages (permutational pairwise ANOVA post-hoc with Benjamini-Hochberg correction p < 0.05). Significant differences between
developmental stages according to pairwise permutational ANOVA with B-H correction: * = p < 0.05, NS = not significant.
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a-diversity and b-diversity metrics, the variability in microbiome

composition, the degree of tissue differentiation within individual

plants, and the estimated total microbial load. We also failed to find

an impact of PRRs on early plant fitness indicators. Indeed, we

found no effect of PRR knockouts on the composition of bacterial

communities and, for fungal communities, only Bray-Curtis and

Jaccard diversity were altered in PRR knockout lineages (both

R2 = 0.005, p = 0.03; Table S11). Post-hoc analyses revealed that

lore mutants hosted slightly modified fungal communities

compared to wild-type plants, potentially revealing a role for

LORE in plant-fungal interactions. Field data suggests that fungal

communities can be affected by host factors that do not impact the

bacteria community (Horton et al., 2014; Bergelson et al., 2019;

Brachi et al., 2022) and that fungal communities are more sensitive

to host effects than bacterial communities (Bergelson et al., 2019). A

restricted impact of PRRs on fungi is furthermore consistent with

analyses of co-occurrence networks suggesting that most microbe-

microbe effects in wild A. thaliana occur within kingdom (Agler

et al., 2016; Bergelson et al., 2019; Brachi et al., 2022).

There are several possible explanations for the general lack of

effect of PRRs on microbiome community structure. First,

redundancy in the plant immune system may maintain robust

plant immune responses despite the loss of a single PRR.

Members of microbial consortia produce diverse MAMPs that

induce PTI to varying degrees (Garrido-Oter et al., 2018;

Colaianni et al., 2021; Parys et al., 2021). Although loss of an

individual PRR allows increased microbial proliferation in some

single-microbe infections (Zipfel et al., 2004; Wan et al., 2008;

Nekrasov et al., 2009; Willmann et al., 2011; Wan et al., 2012; Ranf

et al., 2015), the presence of other microbes eliciting PTI via other

intact PRRs may compensate for this effect. In nature, the plant

responds to a complex input of MAMPs, DAMPs, effectors and

other signals. Compellingly, recent work demonstrated that MAMP

signaling must coincide with cellular damage to generate substantial

PTI (Zhou et al., 2020). Thus, depending on the combination of
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signals produced by the microbiome, commensals may largely avoid

activating PTI.

There is also considerable evidence that many plant-associated

microbes have the ability to suppress plant immune responses and

that this facilitates the colonization of PTI-triggering microbes

(Teixeira et al., 2019; Ma et al., 2021). Three independent surveys

(Yu et al., 2019; Ma et al., 2021; Teixeira et al., 2021) found that

31%-42% of plant-associated bacteria suppress PTI. This trait spans

broad taxonomic categories and, importantly, the impact of

suppressive strains dominates that of nonsuppressive strains in

mixed bacterial communities (Teixeira et al., 2019; Ma et al., 2021).

Considering the frequency, taxonomic diversity, and dominance of

this trait, immunosuppressive microbes almost certainly affected

community assembly in our natural microbiomes. If the anti-

microbial response generated by stimulating PRRs is dampened

by the endophytic microbiome, loss of a PRR would have little effect

on subsequent microbiome assembly, as observed in our

experiment. In this case, other aspects of plant-microbe

associations such as plant structural components, bacterial

metabolism, and microbe-microbe interactions (Horton et al.,

2014; Bai et al., 2015; Levy et al., 2018; Salas-González et al.,

2021; Velásquez et al., 2022) would have relatively more influence

on commensal microbiome structure.

This study provokes two related questions. First, if PRRs are

effectively redundant, why does selection maintain multiple PRRs?

Second, if pattern triggered immunity is broadly suppressed, why

maintain PRRs at all? One hypothesis (Hacquard et al., 2017) is that

rather than filtering microbes from the environment, PRRs help

regulate the total microbial load of the commensal microbiome to

prevent damaging overgrowth. We found no evidence that single

MAMP-detecting PRR knockouts supported higher microbial loads

in the field (Figure 5 and Table S17). Related experiments using

PRR and PRR coreceptor multi-mutants report conflicting impacts

of these genes on microbial load, both within and between

experiments (Xin et al., 2016; Wolinska et al., 2021). This
BA

FIGURE 5

PRR knockout does not affect bacterial or fungal load. Microbial load was calculated by adjusting microbial read counts to synthetic spike-in read
counts. Wild type and PRR knockout plants do not have significantly different microbial loads of bacteria (A) or fungi (B) (ANOVA, p > 0.05). Shown
are main effects, but no interaction with tissue or stage was detected (Table S17). Bacteria, genotype main effects n=129-155; genotype by tissue by
stage subsets n=2-15. Fungi, genotype main effects: n=93-123; genotype by tissue by stage subsets: n=2-17. Significant differences between
genotypes according to global ANOVA: * = p < 0.05, NS = not significant.
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inconsistency suggests that PRRs regulate the microbial load of

some communities, but that this is not a general effect.

An alternative hypothesis is that individual MAMP-detecting

PRRs are maintained by selection from virulent pathogens or

mutualists, rather than from interactions with commensals.

Aggressive pathogen growth is typically accompanied by other

signals such as DAMPs and effectors, which may allow the plant

to overcome any background suppression of PTI. These pathogens

are often controlled by powerful effector-triggered immunity which

requires sustained PTI signaling to adequately function (Ngou et al.,

2021; Yuan et al., 2021). Thus, pathogens may exert selective

pressure on the specific subset of PRRs they activate. Since

different pathogens activate overlapping PRRs (Zipfel et al., 2006;

Wan et al., 2012; Ranf et al., 2015; Colaianni et al., 2021; Parys et al.,

2021), each receptor could be maintained through interactions with

numerous pathogens, even if encounters with a particular pathogen

species are infrequent. Another possibility is that mutualisms exert

selective pressure on specific PRRs. For example, orthologs of the

PRR CERK1 are required for both defense against pathogenic fungi

and establishing mutualisms with arbuscular mycorrhizal fungi

(AMF) in several distantly related plant species (Miyata et al.,

2014; Bozsoki et al., 2017; Feng et al., 2019; Gibelin-Viala et al.,

2019; Zhang et al., 2019). In these scenarios, the effect of PRRs on

microbiome composition would only be detectable in the presence

of virulent pathogens or important mutualists. Thus, results

between different microbiomes could be inconsistent, as has been

observed in this study and others (Bodenhausen et al., 2014; Chen

et al., 2020; Wippel et al., 2021; Wolinska et al., 2021; Fonseca et al.,

2022). Finally, specific PRRs may be maintained due to pleiotropic

effects. For example, CERK1 appears to have a conserved role in

promoting lateral root formation in numerous plants, including A.

thaliana, independent of accommodating an AMF mutualism

(Chiu et al., 2022). Other PRRs may have developed additional

functions, especially since MAMP-detecting PRRs are already

integrated into growth-defense signaling pathways (Huot

et al., 2014).

Finally, other biological and technical factors could explain why

we detected few effects of PRRs on microbiome structure in the

field. Myriad environmental conditions including temperature,

humidity, soil salinity, phosphorus availability, and drought are

known to modulate the strength of plant immunity and affect

microbiome composition (Cheng et al., 2013; Castrillo et al.,

2017; Naylor et al., 2017; Santos-Medellıń et al., 2017; Berens

et al., 2019; Chen et al., 2020). Although the field conditions in

our experiment were representative of Midwestern USA, an area in

which A. thaliana is common (Platt et al., 2010; Exposito-Alonso

et al., 2018; Shirsekar et al., 2021), it is possible that PRR signaling

was rendered unimportant by environmental conditions.

Nevertheless, two lines of evidence suggest that our results may

be generalizable. First, we characterized endophytic microbiomes

over several time points, which would mitigate the chance of

mischaracterizing the effects of plant immunity due to short-term

environmental fluctuations. Second, while genome-wide association

analyses on field-grown A. thaliana across years and locations

occasionally identify known PRRs as candidate genomic features
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that affect microbiome composition, these effects are limited to one

or two specific microbes rather than overall community

composition and are often ephemeral (Horton et al., 2014; Brachi

et al., 2022; Roux et al., 2023). We also cannot rule out the

possibility that our lack of signal is a result of technical

limitations. For example, the immunogenicity of flagellin is

broadly linked to taxonomy (Colaianni et al., 2021; Parys et al.,

2021), but the substantial within-genera and within-species

variation of flagellin epitopes, and their capacity to trigger PTI, is

unlikely to be resolved by 16S marker-gene sequencing (Vetter

et al., 2016; Colaianni et al., 2021; Parys et al., 2021). In addition,

PRRs may impact microbial subcommunities within tissues due to

their localized, cell-type specific responses (Millet et al., 2010; Rich-

Griffin et al., 2020; Emonet et al., 2021; Verbon et al., 2023);

assessing microbiome structure of whole plant parts, as we did in

this experiment, may mask these effects. Finally, we did not test

every MAMP-detecting PRR identified in A. thaliana. However,

even if other PRRs actively shape the commensal microbiome, why

selection maintains the PRRs assessed in this experiment remains

an important question.

In conclusion, we demonstrate that individual PRRs have little

effect on the overall endophytic bacterial and fungal microbiome inA.

thaliana in the field, as measured at the level of 16S and ITS1

characterization. Although initially surprising, these results offer

valuable insight into the function of MAMP-detecting PRRs and

help target the search for plant genetic factors that affect microbiome

assembly in the field. Further investigation of hypotheses concerning

the role of plant immunity in structuring microbiomes will improve

our understanding of plant-microbe interactions, leading to a deeper

understanding of these important ecological processes and more

effective engineering of the plant microbiome.
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combination of chitooligosaccharide and lipochitooligosaccharide recognition
promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat.
Commun. 10. doi: 10.1038/s41467-019-12999-5
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