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The rapid development of image processing technology and the improvement of

computing power in recent years have made deep learning one of the main

methods for plant disease identification. Currently, many neural network models

have shown better performance in plant disease identification. Typically, the

performance improvement of the model needs to be achieved by increasing the

depth of the network. However, this also increases the computational

complexity, memory requirements, and training time, which will be detrimental

to the deployment of the model on mobile devices. To address this problem, a

novel lightweight convolutional neural network has been proposed for plant

disease detection. Skip connections are introduced into the conventional

MobileNetV3 network to enrich the input features of the deep network, and

the feature fusion weight parameters in the skip connections are optimized using

an improved whale optimization algorithm to achieve higher classification

accuracy. In addition, the bias loss substitutes the conventional cross-entropy

loss to reduce the interference caused by redundant data during the learning

process. The proposed model is pre-trained on the plant classification task

dataset instead of using the classical ImageNet for pre-training, which further

enhances the performance and robustness of the model. The constructed

network achieved high performance with fewer parameters, reaching an

accuracy of 99.8% on the PlantVillage dataset. Encouragingly, it also achieved

a prediction accuracy of 97.8% on an apple leaf disease dataset with a complex

outdoor background. The experimental results show that compared with existing

advanced plant disease diagnosis models, the proposed model has fewer

parameters, higher recognition accuracy, and lower complexity.

KEYWORDS

deep learning, plant disease recognition, convolutional neural network (CNN), transfer
learning, lightweight networks
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1 Introduction

As the population grows, the demand for food will increase

dramatically, and it is particularly important to minimize food

losses due to pests and diseases, which not only reduce food

production but also affect biodiversity, food prices and human

health, while trying to increase yields (Ristaino et al., 2021; Sileshi

and Gebeyehu, 2021). Early prevention and control of plant diseases

can recover some of the agricultural economic losses and improve

the yield and quality of agricultural production and food safety

(Savary et al., 2019; Gold, 2021). Thus, the diagnosis and control of

crop diseases are crucial for food production. The traditional

method of diagnosing plant pests and diseases is the visual

observation by plant protection specialists or people with

experience in planting. However, this approach relies heavily on

experience and subjective cognition and is prone to bias, which can

lead to misdiagnosis. (Bai et al., 2018; Barbedo, 2018). Moreover, in

some underdeveloped or remote areas, there is often a shortage of

experts. Therefore, one kind of portable, fast, and accurate plant

disease automatic identification system is significant for the timely

diagnosis of crop diseases.

Currently, the automatic diagnosis of plant diseases primarily

relies on computer vision (CV) techniques. The predominant

methods in this field can be categorized into two groups: machine

learning-based approaches and deep learning-based approaches

(Saeed et al., 2021; Uguz and Uysal, 2021). The widely used

machine learning methods are the Bayesian model (BM), k-nearest

neighbor (KNN), support vector machine (SVM), decision tree

(DT), random forest tree (RF), etc. (Liakos et al., 2018; Chen et al.,

2020). Within deep learning-based methods, many outstanding

architectures such as ResNet, Inception, and DenseNet have

achieved excellent results in image classification tasks. (Szegedy

et al., 2015; He et al., 2016; Huang et al., 2017). Machine learning

has made significant progress in the field of plant disease and pest

recognition. However, it has a high degree of subjectivity, heavily

relies on manual feature selection, is time-consuming, and has low

efficiency (Li et al., 2021; Albattah et al., 2022b). In comparison,

using deep learning methods is simpler and more efficient.

Recent studies demonstrated the effectiveness and feasibility of

deep learning in plant disease classification tasks (Abbas et al., 2021;

Deng et al., 2021; Elaraby et al., 2022). The end-to-end training

approach avoids the drawbacks of manual feature extraction.

Although there are many advanced deep CNN models for crop

disease diagnosis, it is still difficult to promote this method on a

large scale. The key reason is that complex models lead to high

computational costs, making it difficult to deploy on simple mobile

devices. In the agricultural field, using complex laboratory

equipment with GPUs restricted the application and promotion

of artificial intelligence, as growers cannot undertake the additional

costs brought by complex equipment (Karthik et al., 2020; Chen

et al., 2022a; Hassan and Maji, 2022). Therefore, lightweight models

with fewer parameters, faster training speeds, and higher accuracy

are a more promising research trend (Atila et al., 2021), which can

further promote the popularization of automatic crop disease

diagnosis methods. To address the aforementioned challenges,

this paper proposes an improved MobileNetV3, which has low
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parameter count, high accuracy, and short training cycles.

Specifically, we added two skip connections after the first bneck

layer of the original feature extraction network. The low-level

features extracted by the first bneck layer are used to compensate

for the 7th and 11th bneck layers, thereby enriching the input

features of the higher layers. Moreover, to achieve better results,

different weights are assigned to the input feature maps of the skip

connection parts, and the improved whale optimization algorithm

is used to automatically adjust the weight parameters. Compared to

manual hyperparameter tuning, the automatic optimization

algorithm saves a significant amount of time and results in better

model performance. The improved whale optimization algorithm

enhances the search capability for global optimal parameters and

convergence speed. Secondly, the Bias loss replaces the standard

cross-entropy loss function. The Bias loss function can reduce the

errors caused by redundant features during the model learning

process. Another reason for the superior performance of the

method proposed in this paper is the abandonment of the

traditional ImageNet pre-training dataset. The constructed

network is pre-trained on a large-scale plant classification task

dataset. Transfer learning on similar objects further enhances the

performance of the model. We refer to the re-formed lightweight

network as MS-Net, which is mainly used for crop disease

recognition. Experimental results demonstrate the effectiveness

and feasibility of the proposed method. Compared to other SOTA

models in the research field, MS-Net achieves the highest accuracy

with lower parameter count, computational complexity, and

memory size. The main contributions of this study are as follows.
1. We propose a new lightweight network, MS-Net. This

network uses MobileNetV3 as the feature extraction

network, embeds skip connections into the network, and

adjusts the loss function, thereby improving the model’s

accuracy and convergence speed.

2. The improved WOA (Whale Optimization Algorithm) is

used to optimize the weight parameters in the skip

connections.

3. Bias loss replaces the traditional cross-entropy loss, and this

loss function can optimize the errors during the feature

learning process, thereby enhancing the performance of the

lightweight model.

4. The proposed model is pre-trained on a plant classification

task dataset, which, compared to pre-training on ImageNet,

can further improve the accuracy of crop disease

recognition tasks.
The rest of this paper is organized as follows: The “Related

Work” section introduces and summarizes recent work related to

this research; the “Materials and Methods” section describes the

materials used in the experiments, relevant concepts, and the

proposed method, as well as summarizes the experimental

procedure; the “Experimental Results and Discussion” section

includes the experimental setup and results, and evaluates and

compares the experimental results with other current advanced

methods; finally, the “Conclusion” section summarizes this research

and proposes future research directions.
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2 Related work

In this section, various recent works related to this study are

described, and relevant methods based on machine learning and

deep learning for plant disease detection are summarized. Due to

the limitations of machine learning methods and the flexibility of

convolutional neural networks, deep learning approaches are more

common in research.

Machine learning methods have fewer parameters, shorter

training cycles, and do not require a large amount of training

data, making them easier to deploy in practice (Albattah et al.,

2022a). However, the challenges lie in complex data preprocessing

and accurate manual feature extraction processes. Sharif et al.

(2018) proposed a method for automatic detection and

classification of citrus diseases based on optimized weighted

segmentation and feature selection. The contrast of input images

is enhanced using Top-hat filters and Gaussian functions, and the

weighted segmentation method using chi-square distance and

threshold functions is employed to extract the enhanced lesion

points. The results show that the preprocessing method further

improves the accuracy of lesion segmentation. Manually extracted

features still contain many noisy features, Tan Nhat et al. (2020)

used Adaptive Particle-Grey Wolf metaheuristic (APGWO) to

screen extracted mango leaf pathology features and combined

them with artificial neural networks (ANN) to detect early mango

leaf diseases. Common types of features include texture features,

geometric features, statistical features, etc., and multiple features

can be used in combination. Pantazi et al. (2019) used the GrabCut

algorithm to segment sample images and extracted histogram

features of the segmented samples using Local Binary Patterns

(LBP). Li et al. (2020) employed the Gray-Level Co-occurrence

Matrix (GLCM) to extract texture features from multispectral

images and constructed a Binary Logistic Regression (BLR) model

for cotton root rot disease classification. Experiments showed that

the spectral model is suitable for more severely infected cotton

fields, while the spectral-texture model is more suitable for low or

moderately infected cotton fields. Different classifiers can also be

combined to further improve classification accuracy, Sahu and

Pandey (2023) proposed a novel hybrid Random Forest Multi-

Class Support Vector Machine (HRF-MCSVM) method for plant

leaf disease detection. Experimental results on PlantVillage

showed that this method performs better than popular stand

alone classifiers.

A series of deep learning methods, represented by convolutional

neural networks, have attracted widespread attention from

researchers. However, their inherent dependence on high-cost

computational resources limits their development space.

Fortunately, in recent years, many scholars have noticed such

issues and started to study the application of lightweight networks

in plant disease recognition. Nandhini and Ashokkumar (2022)

used the improved Henry’s Law Constant Gas Solubility

Optimization algorithm to optimize the hyperparameters of the

pre-trained DenseNet-121, achieving a classification accuracy of

98.7% for various plant disease classification tasks on PlantVillage.

Amin et al. (2022) utilized pre-trained EfficientNetB0 and
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DenseNet-121 to extract deep features from corn plant images. By

extracting and fusing deep features from different CNNs to generate

more complex feature sets, the limitations of single lightweight

CNNs in feature extraction are compensated, thereby improving

classification accuracy. Zhao et al. (2022) proposed a CNN that

combines Inception, residual structures, and embedded attention

mechanisms, and conducted training and testing on three plant

disease image datasets in PlantVillage. With a model size of 19.1

MB, they achieved a classification accuracy of 99.55%. Chen et al.

(2022b) proposed an improved ResNet-18 method for disease

recognition in peanut leaf datasets and PlantVillage datasets.

Channel attention mechanisms were inserted into the model to

enhance feature extraction capabilities, and channel pruning

techniques were used to remove unimportant channels to reduce

model parameters and complexity. Compared to the baseline

model, the compressed model’s parameter count was reduced by

57.85%. Wang et al. (2021) formed a trilinear convolutional neural

network consisting of VGG-16, InceptionV3, and ResNeXt-101

through weight sharing methods and compared the effects of no

sharing, partial sharing, and complete sharing on model

performance. The weight sharing mechanism can reduce the

parameter count of the fused network and improve network

performance. In the PlantVillage dataset test, the fully shared

method based on ResNeXt-101 achieved the highest accuracy of

99.7% with 361.24M parameters. Notably, the fully shared method

based on InceptionV3 had a 0.1% lower accuracy than the former

but had only 91.13M parameters, seemingly having more

competitive potential. Moreover, lightweight models have limited

feature extraction capabilities, and in cases with fewer data samples,

the network’s few-shot learning ability is more challenging. Liu and

Zhang (2023) proposed an improved InceptionV3 network for few-

shot learning in the plant disease diagnosis domain, achieving a

prediction accuracy of 99.45% with a total of 120 training samples

in four apple disease categories.

The existing research achievements of machine learning and

deep learning in plant disease detection and classification are shown

in Table 1. Although the aforementioned studies tend to favor

relatively lightweight network models, it is still difficult to achieve

an ideal balance between accuracy and size. These studies generally

use complex networks or fused networks to achieve higher accuracy

and employ network compression techniques to reduce the model’s

parameter count(Wang et al., 2021; Zhao et al., 2022; Zhu et al.,

2022). However, network compression is a highly challenging task,

making it difficult to effectively balance accuracy and latency

(Hinton et al., 2015; Garg et al., 2023).
3 Materials and methods

3.1 Dataset and pre-processing

Three datasets were selected for the experiment: the

PlantVillage (PV) (Hughes and Salathe, 2015), the Plant

Pathology 2020 - FGVC7 (Thapa et al., 2020) apple leaf dataset,

and Pl@ntNet-300K (Garcin et al., 2021). The PV dataset is popular
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in the plant disease classification task. It consists of healthy and

diseased images of 14 crops with 38 different categories and 54,305

images. The dataset was captured in a controlled environment

where the images were stripped of complex backgrounds, and

only the individual leaves were retained. Therefore, the apple leaf

dataset from the Plant Pathology 2020-FGVC7 Kaggle competition

was used to further evaluate the model’s performance in a realistic

field environment. This dataset consists of 3651 high-quality images

of symptoms of multiple apple leaf diseases and contains four states

of apple black star disease, cedar apple rust, multiple diseases, and

healthy leaves. All images were taken in outdoor environments

containing complex background conditions; each image has

multiple leaves. According to the official description, this dataset
Frontiers in Plant Science 04
has 1821 labeled images for training and testing, and the remaining

unlabeled images are used to evaluate the participants’

performance. Therefore, only the 1821 annotated images from the

FGVC7 Apple Leaf dataset were used as the experimental dataset in

this work. The proposed model is pre-trained on Pl@ntNet-300K, a

plant species dataset built from the Pl@ntNet citizen observatory

database, which consists of 306,146 plant images covering 1,081

species, but excluding plant diseases.

A portion of the PV dataset and the FGVC7 apple leaf dataset

are shown in Figure 1, and the dataset was expanded using

preprocessing techniques such as horizontal flipping, rotating,

cropping, and resizing to prevent the model from over-fitting

during training. In practical training, the image size of the apple

leaf dataset is cropped to 512×512, while the PV dataset is cropped

to 224×224.
3.2 Lightweight model

Existing lightweight models include EfficientNet, ShuffleNet,

MobileNet, Xception, DenseNet, etc. On the ImageNet classification

task, EfficientNet-B1 achieved 78.8% accuracy with 7.8M

parameters, EfficientNet-B3 achieved 81.1% accuracy with 12M

parameters (Tan and Le, 2019), MobileNet with 4.2M parameters

70.6% accuracy (Howard et al., 2017), and Xception achieved 79%

accuracy with 22M number of parameters (Chollet, 2017). These

deep learning models have fewer parameters and excellent

performance, making them more suitable for deployment on

mobile devices.

MobileNet withmore balanced performance is a lightweight model

designed by the Google team for mobile or embedded application

scenarios, where the number of parameters and computations are

reduced not only by the shallow network structure, but more

importantly by using a depth-separable convolutional structure to

replace the traditional standard convolutional structure.

Since some of the convolution kernels for deep convolution in

MobileNetV1 may be empty after training, the Inverted Residuals

structure is proposed in MobileNetV2 to solve this problem.

Sandler et al., 2018 realized that when using the ReLU function,

more information is lost when the dimensionality of the input
FIGURE 1

Example images of PlantVillage dataset and Plant Pathology 2020 - FGVC7 apple leaf disease dataset.
TABLE 1 Research related to machine learning and deep learning in
plant disease identification.

Reference Method Dataset Accuracy

Sharif et al. (2018) M-SVM Citrus Diseases
Image Gallery
Dataset

95.8%

Tan Nhat et al.
(2020)

ANN mango leaves 85.45%

Pantazi et al.
(2019)

SVM 46 plant-condition
combinations

95%

Li et al. (2020) RF、BLR Sentinel-2 imagery 92.95%

Sahu and Pandey
(2023)

HRF-MCSVM PlantVillage 98.9%

Elaraby et al.
(2022)

AlexNet Multiple leaf 98.83%

Deng et al. (2021) Ensemble Model rice diseases 91%

Nandhini and
Ashokkumar
(2022)

DenseNet-121 PlantVillage 98.7%

Amin et al. (2022) EfficientNetB0、
DenseNet-121

corn plant leaves 98.56%

Abbas et al. (2021) C-GAN、
DensNet-121

PlantVillage 97.11%

Zhao et al. (2022) RIC-Net PlantVillage 99.55%
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features is relatively low, while more information is retained when

the dimensionality of the input features is high, so the expansion

layer is added to boost the input features before deep convolution.

After the deep convolution is completed, a 1×1 convolution kernel

is used to reduce the dimensionality of the output features. In

addition, linear bottleneck have been proposed in MobileNetV2 to

replace some of the ReLU with linear activation functions (Sandler

et al., 2018). MobileNetV3 improves upon MobileNetV2 by

renaming the basic network unit bottleneck to bneck,

incorporating the squeeze-and-excite (SE) attention mechanism,

utilizing Network Architecture Search (NAS) to optimize the model

structure, and redesigning the time-consuming structure. In the

ImageNet classification task, MobileNetV3-Large 1.0 achieved a

Top-1 accuracy of 75.2% with 5.4 million parameters (Howard

et al., 2019).
3.3 Transfer learning

Deep learning requires massive amounts of sample data to train

the model, which can lead to limited model performance

improvement and overfitting if the labeled dataset used to train

the model is poor. However, collecting massive, labeled datasets is

challenging, and manually labeling samples is time consuming and

costly. Using transfer learning can solve these problems by

retraining the pre-trained model from a large dataset on a small

target dataset, which not only reduces the training time but also

enhances the performance of the model (Chen et al., 2020; Jiang

et al., 2021; Krishnamoorthy et al., 2021). In addition, Lee et al.

(2020) indicated that models for plant disease classification could

improve the network’s performance and reduce the effects of

overfitting if they are pre-trained using plant datasets, but this

approach may not apply to simpler, shallower networks. In this

work, comparison experiments were conducted using pre-trained

models on ImageNet and pre-trained models on Pl@ntNet-300K to

verify the effectiveness of this method for the lightweight model

proposed in this study. The architecture of the transfer learning

workflow is shown in Figure 2.
Frontiers in Plant Science 05
3.4 Whale optimization algorithm

The Whale Optimization Algorithm (WOA) is a meta-heuristic

optimization algorithm that finds the optimal solution by

mimicking the spiral bubble net feeding of humpback whale

populations in nature. The algorithm includes three types of

predation behaviors of humpback whale populations: encircling

prey, bubble netting to enclose prey, and randomly searching for

prey. By continuously updating the position of the whale population

in space through these three behaviors to achieve the search for the

globally optimal solution (Mirjalili and Lewis, 2016), the algorithm

has fewer parameters and is more capable of searching for the

optimal global solution.

In searching for prey, the whale needs to assume the current

best search agent (prey) first since the location of the prey is not

known a priori, and the other search agents (whales) will update

their locations to the best search agent. This behavior can be

expressed as Eq. (2).

~D = C : X*
�!

(t) −~X(t)
��� ��� (1)

~X(t + 1) = X*
�!

(t) −~A · ~D (2)

Where, t is the current number of iterations, ~A and ~C are the

coefficient vectors, X*
�!

is the current position of the best search

agent, ~X is the position of the present agent, ~X(t + 1) is the updated

position, and X*
�!

will be updated after each iteration if there is a

position closer to the optimal solution. ~A and~C are calculated using

Eq. (3) and Eq. (4).

~A = 2~a ·~r (3)

~C = 2 ·~r (4)

Where,~a decreases linearly from 2 to 0 during the iteration and
~r is a random vector in 0, 1�.

In addition, whale populations also employ the bubble-net

strategy to surround prey, consisting of constrictive encirclement
FIGURE 2

Flow chart of transfer learning of the proposed method.
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and spiral swimming around the prey. The mathematical modeling

equation for the constrictive encirclement behavior follows Eq. (2)

for the prey encirclement process, but the value of ~A in this process

is limited to − 1, 1�. The position search between the whale and the

prey is updated using a spiral path while swimming around the

prey. This can be expressed as Eq. (5).

~X(t + 1) = D0�!
· ebl · cos (2pl) + X*

�!
(t) (5)

Where, the distance between the whale and the prey is denoted

by D0 = j X*�!
(t) −~X(t)j, b is a constant that defines the shape of the

spiral, and l is a random number in the range −1, 1½ �. The whale has
two behaviors in the process of enclosing the prey, contraction and

encirclement and spiral swimming around the prey. Assuming that

the probabilities of these two behaviors are equal, this process can

be represented by Eq. (6).

~X(t + 1) =
X*
�!

(t) − ~A · ~D,          if p < 0:5

D0�!
· ebl · cos (2pl) + X*

�!
(t),   if p ≥ 0:5

8<
: (6)

When the range of ~A does not belong to −1, 1½ � during the

contraction envelope, the humpback whale will search for its prey

randomly. The current whale will choose a random whale in the

whale population to approach to update its position, which will

enhance the algorithm’s global search ability. The mathematical

expression of this behavior can be represented by Eq. (7) and Eq. (8).
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~D = ~C · Xrand
��!

−~X
��� ��� (7)

~X(t + 1) = Xrand
��!

−~A · ~D (8)

Where, Xrand
��!

is the location of the random whale.

To further enhance the global search capability of the algorithm,

the Lévy flight strategy is used to update the position of an

individual whale again after it has updated its position, and the

mathematical expression can be represented as Eq. (9).

~X(t + 1) = ~X(t) + 0:01 · ~u

j~vj
1
b
·~X(t) (9)

Where, b takes values in the range (0, 2), b = 1:5 in this work,

each component of ~u and ~v follows the normal distribution as

described in Eq. (10) and Eq. (11).

ud ∼N(0,s2
u),   vd ∼N(0,s2

v) (10)

su =
G(1+b)�sin pb

2ð Þ
b�G 1+b

2ð Þ�2
b−1
2

( )1
b

,  sv = 1 (11)

Where, ud denotes the component of ~u and vd denotes the

component of~v. The process of the whale optimization algorithm is

demonstrated in Figure 3.

Two skip blocks, s1 and s2, are embedded in the proposed

network architecture as shown in Figure 4. To achieve better fusion,
FIGURE 3

Flowchart of the Whale Optimization Algorithm.
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different weights are assigned to the input feature maps of each

jump connection and the weight parameters are automatically

adjusted using the whale optimization algorithm.

The mathematical expressions for the input features of the

bneck7 and bneck11 network base units are as follows.

Finb7 = w1 · F
out
s1 + w2 · F

out
b6 (12)

Finb11 = w3 · F
out
s2 + w4 · F

out
b10 (13)

Where, Fin denotes the input features, Fout denotes the output

features, wi denotes the weight parameters of different feature maps

and satisfies w1 + w2 = 1, w3 + w4 = 1.
3.5 Proposed approach

Considering the superior performance of MobileNetV3 with

the inclusion of the SE attention mechanism and optimized with

NAS, MobileNetV3-Small is used as the feature extraction

network in this work. The small version of the feature

extraction network consists of 11 bnecks, which has fewer

parameters compared to the large version, but the performance

is also degraded. In this paper, the classical MobileNetV3-Small is

modified by adding two skip blocks of different sizes after the first

bneck to pass the extracted low-level features to the 7th and 11th

bneck, enriching their input feature information and thus

improving the classification performance of the model.

Abrahamyan et al. (2021) proposed skip block to enhance the

performance of compact CNNs. To achieve skip connectivity in

the network, adaptive average pooling operation and convolution

operation are used in the skip block to reduce the spatial size of

feature information and retain key features (Ahmed et al., 2022).

In addition, to achieve better feature fusion, different weights are

assigned to the input feature maps of the skip connected parts, and
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the whale optimization algorithm is used to search for globally

optimal parameters. The newly generated network model is called

MS-Net, and the network structure is shown in Figure 4.

Abrahamyan et al. (2021) note that in compact CNNs, the

limited number of parameters always makes it unlikely for the

model to obtain rich features, and some irrelevant and redundant

data may negatively affect the optimization process of the model

and affect the final performance. There is no way to avoid this effect

in the standard cross-entropy loss function, which gives equal

weight to all data, and the standard cross-entropy loss is

mathematically defined by Eq. (14).

Lce = − 1
No

N

i=1
o
k

j=1
yij log(pij) (14)

Where, N represents the number of samples, and k represents

the number of categories. pij represents the probability that sample i

belongs to category j. yij is a one-hot encoding; if sample i belongs to

category j, then the value of yij is 1, otherwise, it is 0.

Abrahamyan et al. (2021) proposed bias loss to mitigate this

negative consequence. The variance is applied to measure the

feature diversity contained in the sample data and to weight each

data point to prevent samples with poor feature diversity from

influencing the optimization process. The mathematical

representation of bias loss is given by Eq. (15)-Eq. (18).

Lbias = − 1
No

N

i=1
o
k

j=1
z(vi)yij log(pij) (15)

z(vi) = exp(vi ∗a) − b (16)

vi =
on

j=1
(tj−m)2

n−1
(17)

m = on
j=1

tj
n

(18)
FIGURE 4

The proposed MS-Net architecture.
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Where, a and b are adjustable contribution parameters, which

can generally be set to a = 0:3 and b = 0:3. The variable vi
represents the proportional variance of the output characteristics

of the ith data point in the batch. The t ∈ Rb�n denotes the output

of the convolutional layer, while b stands for the batch size.

Additionally, n = c� h� w, where c corresponds to the number

of input channels, and h and w represent the tensor width and

height, respectively.

In this paper, bias loss is used to replace the conventional cross-

entropy loss to minimize the impact of redundant data in the

samples on MS-Net performance. Based on the transfer learning

approach, the proposed network model was first pre-trained on the

plant species dataset Pl@ntNet-300K, and then the completed pre-

trained model was fine-tuned on the PlantVillage dataset and the

FGVC7 apple leaf dataset.
4 Results and discussion

4.1 Experimental setup

To fully evaluate the model’s performance, experiments were

conducted on the PlantVillage and the FGVC7 Apple leaf datasets,

and the following quality metrics: Accuracy, Precision, Recall, F1-

score (F1), and confusion matrix were used. Where Accuracy is the

percentage of correctly predicted samples out of the total samples,

Precision is the probability of being genuinely positive out of all

samples predicted to be positive, and Recall is the probability of

being predicted to be positive out of the genuinely positive samples,

and F1-score is a combined measure of Accuracy and Recall. The

mathematical definitions of these metrics as Eq. (19)-Eq. (22).

Accuracy = TN+TP
TN+TP+FN+FP (19)

Precision = TP
TP+FP (20)

Recall = TP
FN+TP (21)

F1 − score = 2TP
2TP+FN+FP (22)
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Where TP, TN, FP, and FN represent true positive, true

negative, false positive, and false negative, respectively.

The experimental platform used in this research: the hardware

environment was Intel(R) Xeon(R) Silver 4314 CPU 2.40GH, 64G

RAM, NVIDIA GeForce RTX 3090 GPU; the software environment

was Ubuntu 20.04 system, Python3.9, and PyTorch1.11.0.
4.2 Experiments on the FGVC7

To evaluate the performance of the ImageNet pre-trained model

and the Pl@ntNet-300K pre-trained model on the FGVC7 apple leaf

dataset with a realistic field background, two pre-training schemes of

MobileNetV3 Small were used for ablation experiments. To

approximate the 1,000 classes found in the ImageNet dataset, a

random selection of classes was excluded from the Pl@ntNet-300K

dataset, resulting in a total of 966 classes. These classes were then

divided into training and validation sets in a 4:1 ratio. The pre-trained

model was run for 15 epochs on the FGVC7 apple leaf dataset,

Figure 5 depicts the training performance of MobileNetV3 utilizing

the two pre-training methods on the apple leaf dataset with a realistic

field background, and Table 2 summarizes the performance of the

models with different pre-training approaches on the test set.

The experimental results show that for classifying multiple

apple leaf diseases with a realistic background in the field, the

accuracy of the model pre-trained using ImageNet is 94.47% on the

test set, while the pre-trained model on Pl@ntNet-300K achieves an

accuracy of 96.13%. The model pre-trained with Pl@ntNet-300K

outperforms the model pre-trained with ImageNet, improving the

accuracy by 1.66%. Figure 5 also illustrates that the model pre-

trained with Pl@ntNet-300K has better data convergence and fit

during the training process compared to the model pre-trained with

ImageNet. The reason for the better pre-training results on the plant

classification task dataset may be that utilizing datasets within

similar domains can provide richer feature information for the

compact CNN during pre-training compared to the more broadly

generalized ImageNet dataset, allowing the model to learn more

features about similar target tasks. Consequently, the proposed MS-

Net will be pre-trained on Pl@ntNet-300K and then fine-tuned on

the FGVC7 apple leaf dataset. To further evaluate the performance

of the proposed method on the FGVC7 apple leaf dataset,
BA

FIGURE 5

Performance of MobileNetv3 on FGVC7 apple leaf disease dataset using different pre-training methods. (A) ImageNet and (B) Pl@ntNet-300K.
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MobileNetV2, MobileNetV3, EfficientNet-B3, Xception, and

DenseNet-121 are used to perform comparative experiments on

the FGVC7 apple leaf dataset. All networks were obtained pre-

trained weights from ImageNet and trained for 15 epochs. Figure 6

depicts the performance of the proposed method compared to other

lightweight models. Table 3 summarizes the test accuracy, F1 score,

parameter count, FLOPs, memory size, and training time for all

models. Table 4 s shows the prediction results of the models on the

test set, and Figure 7 presents the confusion matrix of the models on

the test set.

From Figure 6, it can be observed that the proposed method has

superior performance. Meanwhile, as shown in Table 3, after 15

epochs, the method proposed in this paper achieves the best

accuracy with fewer parameters, FLOPs, and memory size.
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Compared to the unimproved original MobileNetV3 network, the

method proposed in this paper slightly increases network

complexity but achieves a significant improvement in accuracy,

with almost the same training time and no significant increase in

memory size. In addition, most baseline models have relatively large

FLOPs, and the baseline models chosen in this study are popular

lightweight networks. The reason for this phenomenon is that the

dataset size is relatively large. The original pixel size of the apple leaf

dataset is 2048×1365. To preserve image features as much as

possible, we resize it to 512×512, but this still brings a

considerable amount of computational overhead. It is worth

noting that even though all models have significant complexity

differences, there is no noticeable difference in the time consumed

by all models when training for only 15 epochs. If the training cycles
FIGURE 6

Parameters and test accuracy of identification models for apple disease identification.
TABLE 2 Recognition results under two pre-training methods.

Pre-train dataset Class Precision Recall F1-score Support

ImageNet

healthy 0.909 0.980 0.943 52

multiple 1.000 0.333 0.500 9

rust 0.968 0.984 0.976 62

scab 0.950 0.966 0.958 59

weighted avg 0.947 0.945 0.937 182

accuracy 0.945 182

Pl@ntNet-300K

healthy 0.962 0.980 0.971 52

multiple 0.800 0.444 0.571 9

rust 0.984 0.984 0.984 62

scab 0.952 1.000 0.975 59

weighted avg 0.958 0.961 0.957 182

accuracy 0.961 182
fr
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are increased, the differences in the time consumed by the models

will be further magnified. As can be seen from Table 4 and Figure 7,

the classification results of the “multiple” class have a significant

impact on the quality indicators of the model. Analysing the dataset

reveals that this phenomenon is caused by the uneven distribution

of categories in the FGVC7 apple leaf dataset. Among the 1821

images, there are only 91 in the “multiple” class. The limited

number of training samples and the presence of multiple disease

features always constrain the performance improvement of the

model. If the amount of data for this class is increased or some

advanced data augmentation methods (such as Generative

Adversarial Networks) are used to expand the multi-disease

category dataset, the overall performance of the model can be

further improved.
4.3 Experiments on the PlantVillage

To test the performance of the proposed method under different

disease conditions in different crops and to compare it with other

state-of-the-art methods, the proposed method is verified in this

work on the publicly available PlantVillage dataset. Ablation

experiments were performed using ImageNet and Pl@ntNet-300K

pre-trained MobileNetV3 Small to verify whether transfer learning

in similar domains is effective on the PlantVillage dataset. The two

pre-trained models were trained for 30 epochs each, and Figure 8

depic ts the per formance of the two models on the

PlantVillage dataset.

Figure 8 demonstrates that the performance difference between

MobileNetV3 pre-trained with ImageNet and Pl@ntNet-300K is

minimal. The pre-trained networks using these two methods

achieve 99.65% and 99.76% classification accuracy on the test set,
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respectively. The transfer learning method using similar domains

on the FGVC7 Apple Leaf dataset exhibited significant performance

gains, the reason for which is attributed to the fact that the two

datasets are too different. As shown in Figure 1, the PlantVillage

dataset was captured under controlled conditions without complex

backgrounds and multiple leaves, and the images contained only

individual plant leaves, so the models achieved similar performance

in both pre-training conditions. Comparison of the aforementioned

work leads to the conclusion that transfer learning on similar

domain datasets enhances the robustness of the model and can

fur the r improve the pe r formance o f p l an t d i s ea s e

diagnostic models.

To evaluate the performance of the method proposed in this

paper on PlantVillage, we also conducted comparative experiments

with the other five lightweight models mentioned earlier, which

obtained pre-trained weights from ImageNet. All networks were

trained for 30 epochs, and the performance of each network is

shown in Figure 9. Table 5 summarizes the accuracy, parameter

count, F1 score, FLOPs, memory size, and training time of all

models on the PlantVillage dataset.

From Figure 9 and Table 5, the method proposed in this paper

performs better when considering both performance and parameter

count. After 30 epochs of training, the proposed method achieves

the best accuracy of 99.80%. It can be observed that MobileNetV3,

with the smallest parameter count, has the shortest training time.

Comparing MobileNetV2 and the proposed method, it can be

concluded that the impact of small changes in parameter count

on training time is almost negligible. However, DenseNet-121,

which also has a relatively low parameter count, takes the longest

training time. The reason is that this network has a larger number of

FLOPs, resulting in a high computational load. In the design of

compact CNNs, not only the parameter count of the network
TABLE 4 The recognition results of different apple diseases.

Class Precision Recall F1-score Support

healthy 0.963 1.000 0.981 52

multiple 1.000 0.667 0.800 9

rust 1.000 1.000 1.000 62

scab 0.967 0.983 0.975 59

weighted avg 0.979 0.978 0.977 182

accuracy 0.978 182
fr
TABLE 3 Experimental results of the proposed method and existing models on the Apple dataset.

Method Test Accuracy (%) F1-score (%) Parameters (M) GFLOPs Size(MB) Time (h)

MobileNetV2 93.92 92.77 2.2 25.0 8.74 00:07:45

MobileNetV3 94.48 93.73 1.5 5.04 5.93 00:07:44

EfficientNet-B3 94.48 93.78 10.7 80.2 41.3 00:07:51

Xception 95.58 94.40 20.8 386.3 79.6 00:07:53

DenseNet-121 95.03 94.10 6.9 236.8 27.1 00:08:00

Proposed method 97.80 97.65 2.5 12.8 9.80 00:07:48
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should be considered, but also the computational complexity of the

network should be given attention. Interestingly, Xception, which

has more parameters and FLOPs, has a shorter training time than

DenseNet-121. The reason is that DenseNet-121 uses standard

convolution, while Xception uses depthwise separable

convolution, which reduces the number of multiplications and

additions required, thus shortening the training time.

Furthermore, it can be seen that the difference in test accuracy

between the method proposed in this paper and other lightweight

baseline models is not significant, and almost all models achieve

excellent test accuracy on the PV dataset. As we mentioned earlier,

the PV dataset was created in a laboratory environment, with each

sample image having a complex background removed and centered

in the frame, which also results in a high similarity in the

distribution of samples within the same class in the dataset. This

is precisely why we want to test our method on the apple dataset,

which has a more complex outdoor background and stronger

random distribution. Combined with Table 3, our method has

stronger robustness and achieves the best prediction accuracy in

field tests. In the proposed method, due to the addition of skip

connections, the higher layers of the network obtain richer features

with a smaller increase in network parameters. Using the bias

function instead of the traditional cross-entropy loss function

further reduces the impact of redundant features on compact

networks during the learning process.
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Table 6 summarizes the existing research results on the

PlantVillage dataset. Compared to other current advanced

methods, the proposed method achieves the highest accuracy of

0.998 and performs equally well in other evaluation metrics

characteriz ing l ightweight models . Among them, the

performance of CACPNET is closest to our method. CACPNET

further reduces the model’s complexity and memory size based on

channel pruning (Chen et al., 2022b). Channel pruning is a highly

challenging task that requires calculating the weights of each

channel and sorting them, as well as a certain degree of manual

adjustment to achieve the desired performance. Moreover,

CACPNET has the longest training cycles among all methods.

Other methods are trained for about 30 epochs, while CACPNET

requires 200 epochs of training. Our method can be simply

understood as expanding based on a small model, with easy

operations and the ability to easily generalize to other smaller

lightweight models. In addition, the T-CNN model achieves

similar classification accuracy with a much larger parameter

count. The reason is that integrating multiple models can

indeed easily improve classification accuracy, but at the same

time, it also increases the overall parameter count of the model

(Wang et al., 2021). It is worth noting that although the accuracy

of the L-CSMS model is not as high as other methods, the resource

consumption of this network is extremely low, making it a more

viable option in extreme situations (Xiang et al., 2021).
BA

FIGURE 8

Performance of MobileNetv3 on PlantVillage dataset using different pre-training methods. (A) ImageNet and (B) Pl@ntNet-300K.
BA

FIGURE 7

Confusion matrix of different apple diseases. (A) number of classes and (B) probabilities of classes.
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5 Conclusion

The research on lightweight models with fewer parameters,

lower complexity, and higher accuracy can further promote the

popularization of automatic crop disease diagnosis methods. This

study proposes a novel lightweight convolutional neural network

for plant disease recognition, which has low parameter count and

high accuracy. This is achieved by embedding skip blocks in the
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front end of the feature extraction network and optimizing the

weight parameters in the skip connections using the improved

whale algorithm. Bias loss replaces the traditional cross-entropy

loss, reducing the negative impact of redundant data in limited

features on the model learning process. At the same time, pre-

training the proposed model on a plant species dataset further

enhances the model’s performance and robustness. Experimental

results show that, compared to the traditional transfer learning
TABLE 5 Experimental results of the proposed method and existing models on the PlantVillage dataset.

Method Test Accuracy (%) F1-score (%) Parameters (M) GFLOPs Size(MB) Time (h)

MobileNetV2 99.56 99.56 2.2 9.58 8.90 00:57:25

MobileNetV3 99.65 99.65 1.5 1.95 6.06 00:57:00

EfficientNet-B3 99.67 99.67 10.7 30.76 41.5 01:39:19

Xception 99.74 99.74 20.8 147.1 79.9 01:13:47

DenseNet-121 99.71 99.69 6.9 90.6 27.4 01:57:25

Proposed method 99.80 99.80 2.5 2.47 9.93 01:00:57
fr
TABLE 6 Comparison with other current state-of-the-art methods in the literature.

literature Model Parameters (M) GFLOPs Size(MB) Accuracy (%)

Mohanty et al. (2016) GoogleNet 5.0 – – 99.35

Wang et al. (2021) T-CNN 91.1 – – 99.60

Xiang et al. (2021) L-CSMS 0.79 0.12 – 97.90

Thakur et al. (2022) VGG-ICNN 6 45.7 23.2 99.16

Chen et al. (2022b) CACPNET 4.7 1.267 18.0 99.70

This study MS-Net 2.5 2.47 9.93 99.80
The bold values means that they have achieved the best performance metric results.
FIGURE 9

Parameters and test accuracy of multiple disease identification models.
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method, the proposed pre-training method improves the prediction

accuracy on the apple leaf dataset by 1.6%. Compared to the original

model, the prediction accuracy of the proposed method is increased

by only 3.32% and 0.15% on the FGVC7 apple leaf dataset and

PlantVillage dataset, respectively. The method proposed in this

paper has strong robustness and achieves better performance on the

apple leaf dataset with complex outdoor backgrounds, reaching the

highest test accuracy with lower resource requirements. Compared

to recent advanced techniques, the method proposed in this paper

has lower parameter count, FLOPs, memory size, and higher

recognition accuracy. Our research is beneficial for plant disease

diagnosis in resource-constrained scenarios, low-resource, high-

accuracy models can reduce the cost of hardware equipment and

promote the development of automatic crop disease diagnosis

solutions in the agricultural field. It should be noted that our

method still has some shortcomings. Compared to other

advanced methods, the FLOPs performance of the model is not

outstanding. For the future research, we plan to analyse the training

efficiency of the model, reduce the computational resources of the

network, and develop a portable handheld device for plant disease

diagnosis, deploying the proposed model on the device for practical

applications in automatic plant disease diagnosis scenarios.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://zenodo.org/record/5645731#.

YeGDOdvjKWh (Pl@ntNet-300K), https://github.com/

spMohanty/PlantVil lage-Dataset/tree/master/raw/color

(PlantVillage), https://www.kaggle.com/competitions/plant-

pathology-2020-fgvc7/data (FGVC7 Apple Leaf).
Frontiers in Plant Science 13
Author contributions

JW: Conceptualization, Funding acquisition, Writing – review

& editing. SQ: Conceptualization, Methodology, Supervision,

Visualization, Writing – original draft. ZJ: Methodology,

Supervision, Writing – review & editing. MY: Investigation,

Methodology, Software, Writing – review & editing. QX: Data

curation, Investigation, Methodology, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Science and Technology Innovation 2030 -

Major Project (No. 2022ZD0115802).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Abbas, A., Jain, S., Gour, M., and Vankudothu, S. (2021). Tomato plant disease
detection using transfer learning with C-GAN synthetic images. Comput. Electron.
Agric. 187, 106279. doi: 10.1016/j.compag.2021.106279

Abrahamyan, L., Ziatchin, V., Chen, Y., and Deligiannis, N. (2021). “Bias loss for
mobile neural networks,” in 2021 IEEE/CVF International Conference on Computer
Vision (ICCV)). 6536–6546. doi: 10.1109/ICCV48922.2021.00649

Ahmed, S., Srinivasu, P., Alhumam, A., and Alarfaj, M. (2022). AAL and internet of
medical things for monitoring type-2 diabetic patients. Diagnostics 12 (11), 2379.
doi: 10.3390/diagnostics12112739

Albattah, W., Javed, A., Nawaz, M., Masood, M., and Albahli, S. (2022a). Artificial
intelligence-based drone system for multiclass plant disease detection using an
improved efficient convolutional neural network. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.808380

Albattah, W., Nawaz, M., Javed, A., Masood, M., and Albahli, S. (2022b). A novel
deep learning method for detection and classification of plant diseases. Complex
Intelligent Syst. 8, 507–524. doi: 10.1007/s40747-021-00536-1

Amin, H., Darwish, A., Hassanien, A. E., and Soliman, M. (2022). End-to-end deep
learning model for corn leaf disease classification. IEEE Access 10, 31103–31115.
doi: 10.1109/ACCESS.2022.3159678

Atila, U., Ucar, M., Akyol, K., and Ucar, E. (2021). Plant leaf disease classification
using EfficientNet deep learning model. Ecol. Inf. 61, 101182. doi: 10.1016/
j.ecoinf.2020.101182

Bai, X., Cao, Z., Zhao, L., Zhang, J., Lv, C., Li, C., et al. (2018). Rice heading stage
automatic observation by multi-classifier cascade based rice spike detection method.
Agric. For. Meteorology 259, 260–270. doi: 10.1016/j.agrformet.2018.05.001
Barbedo, J. G. A. (2018). Factors influencing the use of deep learning for
plant disease recognition. Biosyst. Eng. 172, 84–91. doi: 10.1016/j.biosystemseng.
2018.05.013

Chen, J. D., Chen, W. R., Zeb, A., Yang, S. Y., and Zhang, D. F. (2022a). Lightweight
inception networks for the recognition and detection of rice plant diseases. IEEE
Sensors J. 22, 14628–14638. doi: 10.1109/JSEN.2022.3182304

Chen, J. D., Chen, J. X., Zhang, D. F., Sun, Y. D., and Nanehkaran, Y. A. (2020). Using
deep transfer learning for image-based plant disease identification. Comput. Electron.
Agric. 173, 105393. doi: 10.1016/j.compag.2020.105393

Chen, R., Qi, H., Liang, Y., and Yang, M. (2022b). Identification of plant leaf diseases
by deep learning based on channel attention and channel pruning. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.1023515

Chollet, F. (2017). “Xception: deep learning with depthwise separable convolutions,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Honolulu, HI, USA: IEEE). 1800–1807. doi: 10.1109/CVPR.2017.195

Deng, R. L., Tao, M., Xing, H., Yang, X. L., Liu, C., Liao, K. F., et al. (2021). Automatic
diagnosis of rice diseases using deep learning. Front. Plant Sci. 12. doi: 10.3389/
fpls.2021.701038

Elaraby, A., Hamdy, W., and Alruwaili, M. (2022). Optimization of deep learning
model for plant disease detection using particle swarm optimizer. Cmc-Computers
Materials Continua 71, 4019–4031. doi: 10.32604/cmc.2022.022161

Garcin, C., Joly, A., Bonnet, P., Lombardo, J.-C., Affouard, A., Chouet, M., et al.
(2021). “Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-
tailed distribution,” in NeurIPS 2021 - 35th Conference on Neural Information
Processing Systems (Virtual: MIT Press). doi: 10.5281/zenodo.5645731
frontiersin.org

https://zenodo.org/record/5645731#.YeGDOdvjKWh (Pl@ntNet-300K)
https://zenodo.org/record/5645731#.YeGDOdvjKWh (Pl@ntNet-300K)
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color (PlantVillage)
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color (PlantVillage)
https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color (PlantVillage)
https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/data (FGVC7 Apple Leaf)
https://www.kaggle.com/competitions/plant-pathology-2020-fgvc7/data (FGVC7 Apple Leaf)
https://doi.org/10.1016/j.compag.2021.106279
https://doi.org/10.1109/ICCV48922.2021.00649
https://doi.org/10.3390/diagnostics12112739
https://doi.org/10.3389/fpls.2022.808380
https://doi.org/10.3389/fpls.2022.808380
https://doi.org/10.1007/s40747-021-00536-1
https://doi.org/10.1109/ACCESS.2022.3159678
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.1016/j.agrformet.2018.05.001
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.1109/JSEN.2022.3182304
https://doi.org/10.1016/j.compag.2020.105393
https://doi.org/10.3389/fpls.2022.1023515
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.3389/fpls.2021.701038
https://doi.org/10.3389/fpls.2021.701038
https://doi.org/10.32604/cmc.2022.022161
https://doi.org/10.5281/zenodo.5645731
https://doi.org/10.3389/fpls.2023.1276728
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Quan et al. 10.3389/fpls.2023.1276728
Garg, S., Zhang, L., and Guan, H. (2023). Structured pruning for multi-task deep
neural networks. Arxiv doi: 10.48550/arXiv.2304.06840

Gold, K. M. (2021). Plant disease sensing: studying plant-pathogen interactions at
scale. Msystems 6 (6), e01228-21. doi: 10.1128/mSystems.01228-21

Hassan, S. M., and Maji, A. K. (2022). Plant disease identification using a novel
convolutional neural network. IEEE Access 10, 5390–5401. doi: 10.1109/
ACCESS.2022.3141371

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV, USA: IEEE). 770–778. doi: 10.1109/CVPR.2016.90

Hinton, G., Vinyals, O., and Dean, J. (2015) Distilling the knowledge in a neural
network. Available at: https://arxiv.org/abs/1503.02531.

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L. C., Tan, M., et al. (2019).
“Searching for mobileNetV3,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) (Seoul, Korea: IEEE). 1314–1324. doi: 10.1109/
ICCV.2019.00140

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017)MobileNets: efficient convolutional neural networks for mobile vision applications
(Honolulu, HI, USA: IEEE). Available at: https://arxiv.org/abs/1704.04861.

Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (Honolulu, HI, USA: IEEE) 2261–2269. doi: 10.1109/
CVPR.2017.243

Hughes, D. P., and Salathe, M. (2015) An open access repository of images on plant
health to enable the development of mobile disease diagnostics. Available at: https://arxiv.
org/abs/1511.08060.

Jiang, Z. C., Dong, Z. X., Jiang, W. P., and Yang, Y. Z. (2021). Recognition of rice leaf
diseases and wheat leaf diseases based on multi-task deep transfer learning. Comput.
Electron. Agric. 186, 106184. doi: 10.1016/j.compag.2021.106184

Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A., and Menaka, R.
(2020). Attention embedded residual CNN for disease detection in tomato leaves. Appl.
Soft Computing 86, 105933. doi: 10.1016/j.asoc.2019.105933

Krishnamoorthy, N., Prasad, L. V. N., Kumar, C. S. P., Subedi, B., Abraha, H. B., and
Sathishkumar, V. E. (2021). Rice leaf diseases prediction using deep neural networks
with transfer learning. Environ. Res. 198. doi: 10.1016/j.envres.2021.111275

Lee, S. H., Goeau, H., Bonnet, P., and Joly, A. (2020). New perspectives on plant
disease characterization based on deep learning. Comput. Electron. Agric. 170, 105220.
doi: 10.1016/j.compag.2020.105220

Li, X. R., Yang, C. H., Huang, W. J., Tang, J., Tian, Y. Q., and Zhang, Q. (2020).
Identification of cotton root rot by multifeature selection from sentinel-2 images using
random forest. Remote Sens. 12 (21), 3504. doi: 10.3390/rs12213504

Li, L., Zhang, S., and Wang, B. (2021). Plant disease detection and classification by
deep learning—A review. IEEE Access 9, 56683–56698. doi: 10.1109/ACCESS.2021.
3069646

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., and Bochtis, D. (2018). Machine
learning in agriculture: A review. Sensors 18 (8), 2674. doi: 10.3390/s18082674

Liu, K., and Zhang, X. (2023). PiTLiD: identification of plant disease from leaf images
based on convolutional neural network. IEEE/ACM Trans. Comput. Biol. Bioinf. 20,
1278–1288. doi: 10.1109/TCBB.2022.3195291

Mirjalili, S., and Lewis, A. (2016). The whale optimization algorithm. Adv. Eng.
Software 95, 51–67. doi: 10.1016/j.advengsoft.2016.01.008

Mohanty, S. P., Hughes, D. P., and Salathe, M. (2016). Using deep learning
for image-based plant disease detection. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01419

Nandhini, S., and Ashokkumar, K. (2022). An automatic plant leaf disease
identification using DenseNet-121 architecture with a mutation-based henry gas
solubility optimization algorithm. Neural Computing Appl. 34, 5513–5534.
doi: 10.1007/s00521-021-06714-z
Frontiers in Plant Science 14
Pantazi, X. E., Moshou, D., and Tamouridou, A. A. (2019). Automated leaf disease
detection in different crop species through image features analysis and One Class
Classifiers. Comput. Electron. Agric. 156, 96–104. doi: 10.1016/j.compag.2018.11.005

Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J.,
Fedoroff, N. V., et al. (2021). The persistent threat of emerging plant disease pandemics
to global food security. Proc. Natl. Acad. Sci. U. S. A. 118 (23), e2022239118.
doi: 10.1073/pnas.2022239118

Saeed, F., Khan, M. A., Sharif, M., Mittal, M., Goyal, L. M., and Roy, S. (2021). Deep
neural network features fusion and selection based on PLS regression with an
application for crops diseases classification. Appl. Soft Computing 103, 107164.
doi: 10.1016/j.asoc.2021.107164

Sahu, S. K., and Pandey, M. (2023). An optimal hybrid multiclass SVM for plant leaf
disease detection using spatial Fuzzy C-Means model. Expert Syst. Appl. 214, 118989.
doi: 10.1016/j.eswa.2022.118989

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C. (2018).
“MobileNetV2: inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition). 4510–4520. doi: 10.1109/
CVPR.2018.00474

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., Mcroberts, N., and Nelson, A.
(2019). The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol.
3, 430–43+. doi: 10.1038/s41559-018-0793-y

Sharif, M., Khan, M. A., Iqbal, Z., Azam, M. F., Lali, M. I. U., and Javed, M. Y. (2018).
Detection and classification of citrus diseases in agriculture based on optimized
weighted segmentation and feature selection. Comput. Electron. Agric. 150, 220–234.
doi: 10.1016/j.compag.2018.04.023

Sileshi, G. W., and Gebeyehu, S. (2021). Emerging infectious diseases threatening
food security and economies in Africa. Global Food Security-Agriculture Policy
Economics Environ. 28, 100479. doi: 10.1016/j.gfs.2020.100479

Szegedy, C., Wei, L., Yangqing, J., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Boston, MA, USA: IEEE). 1–9. doi: 10.1109/
CVPR.2015.7298594

Tan, M., and Le, Q. (2019). “EfficientNet: rethinking model scaling for convolutional
neural networks,” in Proceedings of the 36th International Conference on Machine
Learning (Long Beach, CA, USA: PMLR). 97.

Tan Nhat, P., Ly Van, T., and Son Vu Truong, D. (2020). Early disease classification
of mango leaves using feed-forward neural network and hybrid metaheuristic feature
selection. IEEE Access 8, 189960–189973. doi: 10.1109/access.2020.3031914

Thakur, P. S., Sheorey, T., and Ojha, A. (2022). VGG-ICNN: A Lightweight CNN
model for crop disease identification. Multimedia Tools Appl 82 (1), 497-520.
doi: 10.1007/s11042-022-13144-z

Thapa, R., Zhang, K., Snavely, N., Belongie, S., and Khan, A. (2020). The Plant
Pathology Challenge 2020 data set to classify foliar disease of apples. Appl. Plant Sci. 8,
e11390. doi: 10.1002/aps3.11390

Uguz, S., and Uysal, N. (2021). Classification of olive leaf diseases using deep
convolutional neural networks. Neural Computing Appl. 33, 4133–4149. doi: 10.1007/
s00521-020-05235-5

Wang, D. F., Wang, J., Li, W. R., and Guan, P. (2021). T-CNN: Trilinear
convolutional neural networks model for visual detection of plant diseases. Comput.
Electron. Agric. 190, 106468. doi: 10.1016/j.compag.2021.106468

Xiang, S., Liang, Q. K., Sun, W., Zhang, D., and Wang, Y. N. (2021). L-CSMS: novel
lightweight network for plant disease severity recognition. J. Plant Dis. Prot. 128, 557–
569. doi: 10.1007/s41348-020-00423-w

Zhao, Y., Sun, C., Xu, X., and Chen, J. G. (2022). RIC-Net: A plant disease classification
model based on the fusion of Inception and residual structure and embedded attention
mechanism. Comput. Electron. Agric. 193, 106644. doi: 10.1016/j.compag.2021.106644

Zhu, D., Feng, Q., Zhang, J., and Yang, W. (2022). Cotton disease identification
method based on pruning. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1038791
frontiersin.org

https://doi.org/10.48550/arXiv.2304.06840
https://doi.org/10.1128/mSystems.01228-21
https://doi.org/10.1109/ACCESS.2022.3141371
https://doi.org/10.1109/ACCESS.2022.3141371
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1503.02531
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
https://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://arxiv.org/abs/1511.08060
https://arxiv.org/abs/1511.08060
https://doi.org/10.1016/j.compag.2021.106184
https://doi.org/10.1016/j.asoc.2019.105933
https://doi.org/10.1016/j.envres.2021.111275
https://doi.org/10.1016/j.compag.2020.105220
https://doi.org/10.3390/rs12213504
https://doi.org/10.1109/ACCESS.2021.3069646
https://doi.org/10.1109/ACCESS.2021.3069646
https://doi.org/10.3390/s18082674
https://doi.org/10.1109/TCBB.2022.3195291
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1007/s00521-021-06714-z
https://doi.org/10.1016/j.compag.2018.11.005
https://doi.org/10.1073/pnas.2022239118
https://doi.org/10.1016/j.asoc.2021.107164
https://doi.org/10.1016/j.eswa.2022.118989
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1038/s41559-018-0793-y
https://doi.org/10.1016/j.compag.2018.04.023
https://doi.org/10.1016/j.gfs.2020.100479
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/access.2020.3031914
https://doi.org/10.1007/s11042-022-13144-z
https://doi.org/10.1002/aps3.11390
https://doi.org/10.1007/s00521-020-05235-5
https://doi.org/10.1007/s00521-020-05235-5
https://doi.org/10.1016/j.compag.2021.106468
https://doi.org/10.1007/s41348-020-00423-w
https://doi.org/10.1016/j.compag.2021.106644
https://doi.org/10.3389/fpls.2022.1038791
https://doi.org/10.3389/fpls.2023.1276728
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	MS-Net: a novel lightweight and precise model for plant disease identification
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Dataset and pre-processing
	3.2 Lightweight model
	3.3 Transfer learning
	3.4 Whale optimization algorithm
	3.5 Proposed approach

	4 Results and discussion
	4.1 Experimental setup
	4.2 Experiments on the FGVC7
	4.3 Experiments on the PlantVillage

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


