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Research progress on the roles
of actin-depolymerizing factor
in plant stress responses

Yongwang Sun*†, Mengmeng Shi †, Deying Wang, Yujie Gong,
Qi Sha, Peng Lv, Jing Yang, Pengfei Chu and Shangjing Guo

School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
Actin-depolymerizing factors (ADFs) are highly conserved small-molecule actin-binding

proteins found throughout eukaryotic cells. In land plants, ADFs forma small gene family

that displays functional redundancy despite variations among its individual members.

ADF can bind to actin monomers or polymerizedmicrofilaments and regulate dynamic

changes in the cytoskeletal framework through specialized biochemical activities, such

as severing, depolymerizing, and bundling. The involvement of ADFs in modulating the

microfilaments’ dynamic changes has significant implications for various physiological

processes, including plant growth, development, and stress response. The current body

of research has greatly advanced our comprehension of the involvement of ADFs in the

regulation of plant responses to both biotic and abiotic stresses, particularly with respect

to the molecular regulatory mechanisms that govern ADF activity during the

transmission of stress signals. Stress has the capacity to directly modify the

transcription levels of ADF genes, as well as indirectly regulate their expression

through transcription factors such as MYB, C-repeat binding factors, ABF, and 14-3-3

proteins. Furthermore, apart from their role in regulating actin dynamics, ADFs possess

the ability tomodulate the stress response by influencing downstreamgenes associated

with pathogen resistance and abiotic stress response. This paper provides a

comprehensive overview of the current advancements in plant ADF gene research

and suggests that the identificationof plantADF family genes across abroader spectrum,

thorough analysis of ADF gene regulation in stress resistance of plants, andmanipulation

of ADF genes through genome-editing techniques to enhance plant stress resistance

are crucial avenues for future investigation in this field.

KEYWORDS

actin-depolymerizing factor, microfilament, plant growth and development, biotic
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Introduction

Plants are sessile growth organisms that face various unfavorable biotic and abiotic

stresses during their life cycle (Verma et al., 2016). Biotic and abiotic stresses refer to

biological or environmental factors that are detrimental to the survival and growth of

plants at all phenological stages and can cause significant damage to agricultural
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production (Zhu, 2016; Li et al., 2019). Plants use numerous

physiological and biochemical mechanisms to mitigate the impact

of adverse conditions on their growth and survival (Hasanuzzaman

et al., 2013; Zhao et al., 2020).

The actin cytoskeleton is an essential component of the plant

cellular skeletal system. It not only maintains the shape of the cell by

providing it with a three-dimensional structure but also participates

in regulating various life activities, including cell motility, growth,

division, differentiation, organelle movement, endocytosis,

exocytosis, and responses to physiological and environmental

signals (Staiger, 2000; Pollard and Cooper, 2009; Henty-Ridilla

et al., 2013; Wang and Mao, 2019). In cells, actin exists in two

forms, i.e., globular actin (G-actin), which is generally present as a

monomer, and filamentous actin (F-actin), which exists as

polymerized filaments (also known as microfilaments). The latter

is the form that primarily performs biological functions (Staiger,

2000; Pollard, 2016). During microfilament formation, three G-

actin molecules initially aggregate to form a nuclei (called

nucleation), following which other G-actin molecules are

gradually added to the ends of the nuclei to elongate the filament

(called elongation) (Pollard and Cooper, 2009). The elongation

rates considerably differ between the two ends, with the faster-

elongating end termed the “barbed end” and the slower-elongating

end termed the “pointed end” (Li et al., 2015). Different

microfilaments subsequently crosslink to form a three-

dimensional network structure or align in parallel to each other

to form thicker bundles of microfilaments (Uribe and Jay, 2009).

In response to physiological or environmental signals, the two

cellular forms of actin constantly polymerize and depolymerize,

resulting in highly dynamic changes in microfilaments, ensuring a

rapid cellular response (Pollard and Cooper, 2009). The

microfilaments and their dynamic changes play an important role

in regulates plant stress tolerance (Li et al., 2015; Porter and Day,

2016; Wang et al., 2022). For example, when actin polymerization is

blocked with the inhibitor latrunculin B, plants are more susceptible

to pathogenic and nonpathogenic bacteria (Henty-Ridilla et al.,

2013), and numerous studies have also revealed that actin dynamics

correlated with the plant response to abiotic stress, such as cold

(Pokorna et al., 2004), heat (Müller et al., 2007; Malerba et al., 2010),

salt (Wang et al., 2010), and alkaline (Zhou et al., 2010).

Understanding the regulation of microfilament dynamics will

enrich our understanding of plant stress response.

Actin polymerization, depolymerization, crosslinking, and

bundling are processes regulated by a series of actin-binding

proteins (ABPs), and hundreds of ABPs have been discovered in

eukaryotes (Li et al., 2015; Porter and Day, 2016). In general, ABPs

interact with actin and regulate their dynamic changes, thereby

participating in various physiological activities of the cell (Pollard,

2016; Augustine et al., 2021). Actin-depolymerizing factor (ADF) is a

small-sized (15-22 kDa) and highly conserved ABP ubiquitously exist

in eukaryotic cells (Maciver and Hussey, 2002). The first ADF was

isolated from chicken embryo brain cells, and the authors found that

the isolated protein is distinct from other ABPs in its isoelectric point

and has the capacity to depolymerize F-actin (Bamburg et al., 1980).

Subsequently, ADF genes have been cloned from various eukaryotes,

including fungi, animals and plants (Maciver and Hussey, 2002;
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Inada, 2017). ADF can bind both G-actin and F-actin and regulate

remodeling of microfilament framework via its specialized

biochemical activities (Hussey et al., 2002; Andrianantoandro and

Pollard, 2006). Initially, ADF was found to severs or depolymerizes F-

actin into shorter fragments or G-actin monomers, which provides

new sites for actin filament initiation and supplies additional actin

monomers for further polymerization (Bamburg et al., 1980; Maciver

et al., 1991; Carlier et al., 1997). Subsequently, the biochemical activity

of ADF was found to depend on the local concentration in cells

(Andrianantoandro and Pollard, 2006). Low concentrations of ADF

favor severing or deploymerizing whereas high concentrations favor

actin nucleation as well as accelerate Pi release from ADP-Pi subunits

in filaments and dissociation of branches formed by actin-related

protein2/3 complex (Blanchoin and Pollard, 1999; Blanchoin et al.,

2000; Andrianantoandro and Pollard, 2006). This range of

biochemical activities makes ADF an important factor for

regulating dynamic changes in actin filaments, which involves in

most of the cellular processes of eukaryotes (Staiger, 2000; Pollard,

2016). Hence, ADFs widely participates in numerous plant growth

and development processes, including flowering (Burgos-Rivera et al.,

2008), pollen development and pollen tube growth (Chen et al., 2002;

Daher and Geitmann, 2012; Zheng et al., 2013), cell elongation and

secondary cell wall formation (Wang et al., 2009a), and responses to

various biotic and abiotic stresses (Huang et al., 2012; Tang et al.,

2016; Inada, 2017; Zhang et al., 2017).

Previous studies have reviewed plant ADF family genes in terms of

evolutionary classification, expression profiles, transcriptional

regulation, biochemical activity, and biological function (Hussey

et al., 2002; Maciver and Hussey, 2002; Inada, 2017). However, there

are many papers published and significant progress has been made

since then, especially those regarding the molecular mechanisms

underlying its involvement in signal responses to stress conditions.

Recently, the publication of new plant genome sequences has led to the

systematic reporting of ADF gene families from a dozen plant species

(Feng et al., 2006; Ruzicka et al., 2007; Huang et al., 2012; Khatun et al.,

2016; Huang et al., 2020; Xu et al., 2021; Sun et al., 2023). Furthermore,

research on plant ADF genes and their involvement in stress responses

has gradually received more attention, with significant progress being

made in recent years. In this paper, we reviewed the research progress

of the responses and molecular regulatory mechanisms of plant ADF

genes to different forms of biotic and abiotic stresses. This review aims

to provide a thorough understanding of the role played by ADF genes

in plant stress responses and the molecular regulatory mechanisms that

underlie them, and offers suggestions for future research directions in

this field.

Expression profiles and biochemical
activity diversification of plant
ADF genes

Varying numbers of ADF genes in
different species

Although ADF genes exist in all eukaryotes, the number of these

genes considerably varies among species. Single-cell eukaryotes and
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animal genomes contain no more than three members of the ADF

family. For example, yeast (Saccharomyces cerevisiae), roundworm

(Caenorhabditis elegans), and the alga Chlamydomonas reinhardtii

all have only one ADF gene (Gunning et al., 2015). Three ADF

members are present in the genomes of zebrafish (Danio rerio),

jungle fowl (Gallus gallus), and humans (Homo sapiens) (Gunning

et al., 2015). Conversely, land plants possess an expanded ADF gene

family. For example, eleven ADF genes have been identified in

Arabidopsis thaliana (Feng et al., 2006; Ruzicka et al., 2007), rice

(Oryza sativa; Feng et al., 2006; Huang et al., 2012), and tomato

(Solanum lycopersicum; Khatun et al., 2016) each; eight in cucumber

(Cucumis sativus; Liu et al., 2016) and Antarctic hairgrass

(Deschampsia antarctica; Byun et al., 2021) each; nine in common

bean (Phaseolus vulgaris; Ortega-Ortega et al., 2020); ten in pigeon

pea (Cajanus albicans; Cao et al., 2020); thirteen in maize (Zea

mays; Huang et al., 2020); fourteen in poplar (Populus trichocarpa;

Roy-Zokan et al., 2015); eighteen in soybean (Glycine max; Sun

et al., 2023); twenty-five in wheat (Triticum aestivum; Xu et al.,

2021); twenty-seven in banana (Musa acuminata; Nan et al., 2017);

and thirty-seven in upland cotton (Gossypium hirsutum; Sun et al.,

2021). In contrast to single-cell eukaryotes and animals, plants

exhibit a multitude of distinct and functionally specialized actin

filament systems, alongside a larger actin gene family (McDowell

et al., 1996; Zhang et al., 2010; Gunning et al., 2015). Likewise, an

increased number of genes has been observed in numerous ABP

gene families, such as profilin, formin, and villin (Bao et al., 2011;

Gunning et al., 2015; Duan et al., 2021; Zhou et al., 2023). The

diverse members within these extensive gene families, believed to

have originated from gene duplication events, are presumed to be

expressed in a highly differential manner, specific to tissues,

environmental conditions, and temporal factors (McDowell et al.,

1996; Bao et al., 2011). This expression pattern enables plants to

dynamically restructure the actin cytoskeleton in response to

evolving requirements throughout their growth and development

processes (Gunning et al., 2015). Regarding plant ADF genes, the

expansion of the gene family may facilitate their expression in

intricate biological profiles, enabling differentiation into various

biological functions, as elucidated in numerous subsequent articles.
Expression profiles of ADF
genes in Arabidopsis

Among all land plants, the expression characteristics and biological

functions of ADF genes in Arabidopsis have been the most extensively

studied. Phylogenetic analysis reveals that the elevenAtADF genes can be

divided into four groups (I–IV), with group II further divided into

subgroups II-a and II-b (Feng et al., 2006; Ruzicka et al., 2007). Within

each group, AtADF genes demonstrate comparable tissue-specific

expression patterns, although notable disparities in expression

characteristics exist among members across distinct groups. Group I

comprises four genes: AtADF1, AtADF2, AtADF3, and AtADF4. These

genes are stably expressed at high levels in all plant tissues/organs except

in pollen. Overall,AtADF3 exhibits the highest expression level. Group II
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comprises four genes:AtADF7,AtADF8,AtADF10, andAtADF11, which

are preferentially expressed in cell types demonstrating polarized growth

characteristics. AtADF7 and AtADF10 are members of the subgroup II-a

and are specifically expressed in mature pollen grains and pollen tubes,

whereasAtADF8 andAtADF11 (subgroup II-b) are specifically expressed

in root hairs and root epidermal cells that can differentiate into root hairs.

Group III comprises only two genes, AtADF5 and AtADF9, which

exhibit lower expression levels in vegetative tissues but are highly

expressed in cells undergoing rapid growth or differentiation, including

callus tissues, young leaves, and meristematic regions. Group IV only

contains one gene, AtADF6, which is stably expressed in all tissues,

including pollen (Ruzicka et al., 2007). In a study by Dong et al. (2001),

ADF gene promoter–GUS fusions were employed for genetic

transformation in Arabidopsis, and the authors found that AtADF1

and AtADF6 were expressed in the vascular tissues of all organs, while

AtADF5 was only expressed in the root apical meristem.

Immunocytochemical analysis further revealed that proteins encoded

by group I genes are localized to the nucleus and cytoplasm

simultaneously, while proteins encoded by group II genes are mainly

localized to the cytoplasm of pollen tubes and the apical regions of root

hairs (Ruzicka et al., 2007). These results indicate that the expression and

localization of ADFs are precisely regulated, and different ADFs are

required to function in distinct tissue types and subcellular locations.
Expression profiles of ADF genes in
several crops

Previous studies have reported that ADF genes in other plants

exhibit tissue-specific expression characteristics similar to those

found in Arabidopsis. Here we take the expression patterns of ADF

genes in several crops, including rice, maize, wheat, cotton, tomato,

and soybean, as examples. OsADF2, OsADF4, OsADF5, and

OsADF11 are persistently expressed in the roots, stems, leaves,

sheaths, spikelets, and seeds of rice, while OsADF9 is specifically

expressed in spikelets during the heading stage (Huang et al., 2012).

ZmADF3, ZmADF4, ZmADF5, ZmADF6 and ZmADF10 showed

relatively higher expression in all tissues of maize, whereas

ZmADF1, ZmADF2, ZmADF7, ZmADF12, and ZmADF13 showed

high expression levels in reproductive organs such as tassel, anther,

and pollen (Huang et al., 2020). Of the twenty-five TaADF genes in

wheat, nine of them exhibit anther-specific expression, while the

others are diversely expressed in different tissues (Xu et al., 2021). In

upland cotton, GhADF6 and GhADF8 are predominantly expressed

in petals while GhADF7 is highly expressed in anthers (Li et al.,

2010). Among the nine SlADF genes in tomato, SlADF1, SlADF3

and SlADF10 are predominately expressed in flowers and

specifically in the stamen compared to other parts (Khatun et al.,

2016). In soybean, our lab used genome-wide identification

techniques to show that the soybean ADF gene family displays

tissue-specific expression patterns very similar to those found in

Arabidopsis (Sun et al., 2023). In short, GmADF genes in groups I

and IV are expressed throughout the soybean plant, those of group

II are specifically expressed in flowers, while the expression level of
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genes in group III is lower than that in groups I and IV (Sun

et al., 2023).
Biochemical activity diversification
of plant ADFs

The expansion and diversification of the expression patterns of

ADF gene family members in land plants imply that their

biochemical activities or biological functions may have been

differentiated during evolution (Ren and Xiang, 2007; Tholl et al.,

2011). Biochemical experiments have shown that nine AtADF

members in groups I, II, and IV of Arabidopsis can sever or

depolymerize F-actin, with the four members of group I being the

most active (Nan et al., 2017). The two AtADF members in group

III do not show severing or depolymerizing activities, but instead

have the ability to promote F-actin bundling (Tholl et al., 2011; Nan

et al., 2017). Three crucial amino acid alterations were confirmed to

be responsible for these divergent biochemical activities. Taking

AtADF9 from the group III as an example, the 3rd Leu, 4th Lys, and

18th Lys (the corresponding amino acid residue in AtADFs from

other three groups are Met, Ala, Leu/Thr, respectively) are

necessary for its F-actin bundling activity (Nan et al., 2017). By

comparing variations in the amino acid sequences of the

Arabidopsis protein and its homologs in other plants, Nan et al.

(2017) suggested that this biochemical activity divergence may be

widely present in angiosperms.
Frontiers in Plant Science 04
Function of plant ADF genes
in biotic stress

Biological stress of plants refers to the inhibition of their

growth, development, and survival caused by biological factors

such as pests, bacteria, fungi, viruses, etc. (Verma et al., 2016;

Jiang et al., 2017). These harmful animals or microbes attack

numerous agricultural crops, causing devastating effects on plant

productivity and yield (Leonard et al., 2017). Increasing studies

showed that plant ADF genes and actin cytoskeleton dynamics are

widely involved in plant responses to biotic stress (Table 1).

Understanding the biological function and the regulatory

mechanism of these ADFs is essential for the development of

biotic stress-tolerant crops. In this section, we will summarize the

research progress of ADF gene in plant response to biotic stress.
Pest resistance

Resistance to root-knot nematode
The root-knot nematode (Meloidogyne incognita) is a highly

specialized and polyphagous plant-pathogenic nematode. Its

second-stage juveniles can penetrate plant root apical meristems

via stylets. Thereafter, they migrate within the plant and establish

parasitic relationships with vascular tissues, leading to the

formation of giant cells and production of galls (Fuller et al.,

2008). Moreover, the cytoskeletal system of giant cells undergoes
TABLE 1 ADF genes involved in biotic stress whose functions have been elucidated.

Gene Organism Inducing
factor

Function Upstream regulator or down-
stream target

Reference

AtADF2 Arabidopsis Root-knot
nematode

Downregulation of AtADF2 enhances plant
tolerance of nematodes

Not given (NG) Clément et al.,
2009

AtADF3 Arabidopsis Green peach aphid Required for limiting green peach aphid
infestation

Positively regulate PAD4 expression Mondal et al.,
2018

AtADF4 Arabidopsis Powdery mildew Negative regulator of plant resistance to
powdery mildew

NG Inada et al., 2016

AtADF6 Arabidopsis Powdery mildew Negative regulator of plant resistance to
powdery mildew

Inhibit the function of RPW8.2 Wang et al.,
2009b

HvADF3 Barley Powdery mildew Negative regulator of plant resistance to
powdery mildew

NG Miklis et al., 2007

AtADF4 Arabidopsis Pseudomonas
syringae (Pst)

Positive regulator of Pst resistance Positively regulate RPS5 expression Tian et al., 2009

GhADF6 Cotton Verticillium wilt Negative regulator of Verticillium wilt
resistance

NG Sun et al., 2021

PvADFE Common
bean

Rhizobia Negative regulator of Rhizobium inoculation NG Ortega-Ortega
et al., 2020

GmADF2 Soybean Soybean mosaic
virus

Negative regulator of SMV resistance Interacts with SMV-P3 Lu et al., 2015

TaADF3 Wheat Stripe rust Negative regulator of Stripe rust resistance NG Tang et al., 2016

TaADF4 Wheat Stripe rust Positive regulator of Stripe rust resistance NG Zhang et al., 2017

TaADF7 Wheat Stripe rust Positive regulator of Stripe rust resistance NG Fu et al., 2014
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rearrangement during its altered development (Jammes et al., 2005).

The expression levels of five ADF genes (i.e., AtADF2–AtADF6)

were higher in the galls of infected roots compared with those of an

uninfected control. Of these genes, AtADF2 exhibited a nearly

three-fold increase in expression 2–3 weeks following nematode

infection, and its expression was concentrated in giant cells.

Moreover, AtADF2 knockdown in Arabidopsis increased the

bundling of actin filaments, resulting in delayed giant cell

development and decreased nematode reproduction. Thus, these

findings imply that AtADF2 positively regulates plant resistance to

root-knot nematodes (Clément et al., 2009). Similarly, in cucumber

five of eight CcADF genes demonstrated increased expression in

nematode-induced galls, suggesting that CcADF genes may facilitate

nematode feeding on cucumber roots (Liu et al., 2016).

Resistance to aphids
Aphids (Hemiptera: Aphididae), a diverse family of ~250

different species, are pests who feed on plants and affect plant

growth and productivity via removing nutrients from sieve

elements, altering source–sink relationships, and spreading viral

diseases (Goggin, 2007). Arabidopsis atadf3 mutants were more

susceptible to green peach aphids (GPAs; Myzus persicae Sülzer)

infestation compared with wild type plants. GPAs fed faster and for

a longer duration on atadf3 mutants, and their populations could

therefore reproduce more quickly. Introducing AtADF3 into atadf3

mutant plants rescued the resistance to GPAs, indicating that

AtADF3 has a critical role in limiting GPAs infestation (Mondal

et al., 2018). By monitoring aphid feeding behavior, the authors

found that the AtADF3 expression hinders with the ability of GPAs

to find and feed from sieve elements. PAD4 (phytoalexin-deficient

4) is an important regulatory factor in Arabidopsis defense against

peach aphids, negatively regulating aphid feeding and fecundity

(Louis et al., 2010). Further research confirmed that PAD4 is a

critical downstream player of the AtADF3-dependent defense

mechanism (Mondal et al., 2018).

Resistance to corn borer
The corn borer is a major maize pest in many regions of the

world, where it severely affects its yield by feeding on organs such as

leaves, stems, and male and female inflorescences (Meihls et al.,

2012). A recent genome-wide association analysis revealed that

ZmADF4 is significantly associated with resistance to the

Mediterranean corn borer (Sesamia nonagrioides) in the stem

(Samayoa et al., 2015). The biological function of ZmADF4 in

maize resistance to corn borer is worth further exploration.
Fungal stress

Resistance to powdery mildew
Powdery mildew is a obligate biotrophic fungal pathogen that

seriously threatening over 10,000 plant species, including crops,

vegetables, trees, and ornamental plants (Hirose et al., 2005;

Hückelhoven and Panstruga, 2011). ADF genes from different

plants have been found to play different roles in regulating
Frontiers in Plant Science 05
powdery mildew resistance. In Arabidopsis, the four Group I

AtADF genes have been found to play a negative regulatory role

regarding resistance to Golovinomyces orontii (G.orontii), with

AtADF4 exhibiting the most significant effect. In atadf4 mutants

and atadf1-4 quadruple knockdown plants, researchers identified

an accumulation of hydrogen peroxide and cell-specific death at the

sites of G.orontii infection. In addition, they also found an increase

in the abundance of microfilaments, and the plants show enhanced

resistance against powdery mildew (Inada et al., 2016). RPW8.2

(resistance to powdery mildew 8.2) is an atypical mildew resistance

protein found in Arabidopsis (Xiao et al., 2001). Overexpression of

AtADF6 (belongs to group IV) inhibited its localization to the

membrane surrounding the powdery mildew fungal haustorium,

which is required for inducing resistance against powdery mildew.

Thus, this evidence indicates that AtADF6 may play a negative role

toward powdery mildew resistance (Wang et al., 2009b). In contrast,

the overexpression of AtADF5 (belongs to group III) had no effect

on RPW8.2 localization, implying the existence of functional

diversification among ADF members in plant response to

powdery mildew (Wang et al., 2009b). It is reasonable to presume

that the functional diversification between AtADF5 and AtADF6

may resulted from their difference in biochemical activity (Nan

et al., 2017) or expression profile (Dong et al., 2001). Ectopic

expression of HvADF3 in barley (Hordeum vulgare) epidermal

cells was found to disrupt the integrity of the actin cytoskeleton

in cells. This in turn enhanced fungal entry and lead to increased

susceptibility to the barley pathogen Blumeria graminis f. sp. hordei

(Bgh) (Miklis et al., 2007). Moreover, transient overexpression of

AtADF1, AtADF5, AtADF6, AtADF7, and AtADF12 was found to

significantly increase the entry rate of Bgh in barley, while the

overexpression of AtADF2, AtADF3, AtADF4 and AtADF9 had no

significant effect.

Resistance to stripe rust
In wheat, stripe rust caused by Puccinia striiformis f. sp. tritici is

a widespread and devastating disease (Hovmøller, 2007). Different

wheat ADF genes were found to exhibit varied response patterns

against different physiological races of this pathogen, and may

therefore play different roles in regulating stripe rust resistance.

For example, the avirulent race CYR23 strongly induced the

expression of TaADF4 and TaADF7 in wheat, while the virulent

race CYR31 induced their expression to a lesser extent. Silencing

TaADF4 and TaADF7 in wheat lines inoculated with CYR23 led to

significant changes in microfilament structures, reduced

accumulation of reactive oxygen species (ROS), and weakened

hypersensitive reactions. Taken together, these effects indicate

that TaADF4 and TaADF7 positively regulate wheat resistance

against non-adapted races of stripe rust by modulating

microfilament dynamics (Fu et al., 2014; Zhang et al., 2017). In

contrast to the response patterns of these genes, TaADF3 showed

elevated expression levels upon CYR31 induction but showed

significantly decreased expression levels following CYR23

inoculation. Silencing TaADF3 enhanced wheat resistance

to CYR31 while reducing both ROS accumulation and

hypersensitive reactions (Tang et al., 2016).
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Resistance to verticillium wilt
Verticillium wilt is mainly caused by Verticillium dahliae or

Verticillium alboatrum, two soil-borne vascular fungal pathogens

that severely affect cotton production (Klosterman et al., 2009).

After infection by Verticillium dahliae, the expression of GhADF6, a

gene homologous to AtADF6 found in upland cotton (Gossypium

hirsutum), was downregulated in root epidermal cells. Silencing of

GhADF6 increased the abundance of microfilaments in root

epidermal cells, and the plants showed enhanced resistance to

Verticillium dahlia. Thus, GhADF6 likely plays a negative

regulatory role with respect to cotton verticillium wilt resistance

(Sun et al., 2021). Taken together, these findings highlight the

complex regulatory roles of ADF genes regarding plant defense

against fungal diseases.
Bacterial stress

Participation in Innate immunity caused by
bacterial MAMP

Innate immunity is the first line of host defense against

microbial invasion and is evolutionally conserved in all

multicellular organisms, which is activated by pattern-recognition

receptors (PRRs) that recognize microbe-associated molecular

patterns (MAMPs) (Deng et al., 2020). MAMPs mediated

microfilament rearrangement, as featured by increased abundance

and remodeling of microfilament, plays an important role in plant

innate immune signal transduction (Henty-Ridilla et al., 2014).

Within minutes of treatment with a bacterial MAMP, elf26 (a

conserved 26-amino acid peptide from bacterial elongation factor),

a dose- and time-dependent increase in actin filament abundance

was detected in epidermal cells throughout the Arabidopsis

hypocotyl. However, actin architecture and dynamics in an atadf4

mutant fail to respond to elf26 treatment, suggested that AtADF4

plays a key role in modulating actin dynamics by participating in

innate immune signal transduction caused by bacteria in plants

(Henty-Ridilla et al., 2014).

Resistance to Pst DC3000 expressing AvrPphB
Pseudomonas syringae pv tomato (Pst) is a hemibiotrophic

bacterial pathogen. The Arabidopsis mutant atadf4 shows

abnormal microfilament dynamics and increased susceptibility to

that of Pst DC3000 expressing the incompatible effector AvrPphB,

but not to strains expressing AvrRps2 or AvrB. Moreover, a

transgenic experiment showed that AtADF4 is able to restore the

resistance that is compromised in the atadf4 mutant, thereby

indicating that AtADF4 is required for the resistance to Pst

DC3000 expressing AvrPphB (Tian et al., 2009). RPS5 (resistance

to Pseudomonas syringae 5) is a gene that encodes a resistance

protein capable of recognizing AvrPphB and activating downstream

defense signals in Arabidopsis (Chisholm et al., 2006). Subsequent

studies have reported that the increased susceptibility of atadf4

mutant to Pst DC3000 expressing AvrPphB is associated with

decreased RPS5 expression, suggesting that AtADF4 may regulate

plant resistance to Pst DC3000 expressing AvrPphB via the
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coordinated regulation of microfilament dynamics and R-gene

transcription (Porter et al., 2012).

Participation in interaction with rhizobia
Rhizobia is a class of gram-negative soil bacteria that includes

Rhizobium, Bradyrhizobium, Sinorhizobium, and Azorhizobium.

These bacteria can form symbiotic nitrogen-fixing nodules with

leguminous plants and increase nitrogen fixation in arable fields by

as much as 30% (Mus et al., 2016). PvADFE is one of the nine ADF

genes found in common bean, primarily expressed in roots and

nodules inoculated with Rhizobium tropici (Ortega-Ortega et al.,

2020). In addition, PvADFE silencing increases the number and size

of nodules and enhances nitrogen fixation activity. Conversely, the

overexpression of this gene resulted in the opposite phenotype. In

addition, the expression levels of two genes related to nodulation

development and signaling, NIN and ENOD2, were significantly

decreased in the roots of plants overexpressing PvADFE, thereby

indicating that PvADFE plays a negative regulatory role in rhizobial

infection and nodulation of common bean (Ortega-Ortega

et al., 2020).
Viral stress

Viruses are molecular parasites that complete the entire life

cycle by utilizing the resources of host cells. Many crucial functions

of plants are affected by viruses, including nutrient absorption,

nutrient translocation, photosynthesis, growth, and development

(Gergerich and Dolja, 2006). In an infected plants, virus-encoded

movement proteins and cellular factors allow viruses to move

within infected cells (local movement) and long distances through

the vascular system (systemic movement) (Garcia-Ruiz, 2018). A

great deal of attention is given to understanding the fundamental

mechanism of viral infections as well as factors involved in

gene regulation during viral infections (Garcia-Ruiz, 2018).

Microfilament has been reported to play an important role in the

process of virus infection (Chen et al., 2010; Tilsner et al., 2012;

Porter and Day, 2016).

Soybean mosaic virus (SMV), which belongs to the Potyvirus

genus, is one of the most prevalent and destructive viral pathogens

in soybean cultivation regions around the world. Mosaic and

necrosis symptoms are common on the leaves of soybean plants

that are infected with SMV (Hill et al., 2007). The P3 protein of

SMV (SMV-P3) plays a major role in its replication and movement,

and also responsible for symptom development in SMV-infected

plants (Hajimorad et al., 2018). SMV-P3 exhibits strong variability

and complex functionality, which is consistent with the symptoms

of soybean mosaic disease (Hajimorad et al., 2018). By screening

soybean cDNA library, Lu et al. (2015) found that an ADF,

GmADF2, interacts with SMV-P3, and this interaction is further

confirmed using bimolecular fluorescence complementation assay.

Further experiments showed that the interaction between GmADF2

and SMV-P3 is occurred in both the cytomembrane and

cytoskeleton of plant cells, indicated the GmADF2 was trailed by

SMV-P3 (Lu et al., 2015). These results suggested that GmADF2 is
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an important host factor for SMV-P3 and may promote its

intercellular movement, thus plays a crucial role for the virus to

establish infection (Lu et al., 2015).
Role of ADF genes in abiotic stress
resistance

In addition to biotic stresses, abiotic stresses like cold, heat,

drought, salinity, flooding and nutrient deficiency are the major

limiting factors for crop yields (Saijo and Loo, 2020). Abiotic stress

factors can individually or collectively affect plant growth and

development (Zhu, 2016). Plant ADF genes are widely involved in

various abiotic stress responses (Figure 1). However, their modes of

response and functions vary among plant species and tissues

(Table 2). In this section, we will review the functions and

molecular regulatory mechanisms of plant ADF genes in

regulating abiotic stress in plants.
Temperature stress

Cold stress
Cold stress, including chilling (cold temperatures of above 0°C)

and freezing stress (below 0°C), causes plant growth to slow down,
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stagnate, and retrogress, thereby reducing the yield (Zhang et al.,

2019). Aside from membrane rigidification, ROS accumulation,

protein destabilization, and metabolic disequilibrium, cold stress

has also been reported to disrupt the microfilament of plant cells

and interfere with all cellular processes (Fan et al., 2015; Liu et al.,

2018). The expression profiles of AtADF genes in response to

temperature stress had been reported to diversely among different

groups. The expression levels of AtADF genes of Group I, III, and IV

have been found to be significantly induced by cold or heat stress,

with two group III ADF genes (i.e.,AtADF5 andAtADF9) responding

the most strongly (Fan et al., 2015; Fan et al., 2016). In Arabidopsis

plants exposed to cold stress, the survival rate of atadf5 mutants

significantly decreased relative to the wild type. Moreover, mutant

plants showed disordered actin cytoskeleton in root epidermal cells,

suggesting that AtADF5 plays an important role in mediating cold

stress tolerance in Arabidopsis (Zhang et al., 2021). In the face of cold

stress, plants depend on C-repeat binding factors (CBFs) as their key

molecular switches (Liu et al., 2018). CBFs can activate the expression

of AtADF5 by binding to CRT/DRE elements in its promoter, and

AtADF5 can in turn regulate dynamic changes in the actin

cytoskeleton to modulate the cold response of Arabidopsis plants

(Zhang et al., 2021). In freezing-tolerant wheat cultivars, the ADF

gene Wcor719 can be specifically induced by exposure to low

temperatures, while the expression levels of this gene do not

significantly change in freezing-sensitive cultivars. Moreover, its
FIGURE 1

Schematic of the involvement of Arabidopsis ADF genes in plant response to abiotic stress. Arrows represent positive regulation, and bar ends mean
inhibitory action.
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expression level is also insensitive to high temperature, salt stress,

mechanical damage, and abscisic acid (ABA) (Danyluk et al., 1996;

Ouellet et al., 2001). In contrast, wheat TaADF4 is induced by heat

stress, but its expression levels are significantly decreased in response

to low temperature or salt stress (Zhang et al., 2017). A genome-wide

analysis showed that 25 TaADF genes exist in the genome of the

“Chinese Spring” wheat cultivar, and that cold stress can affect the

expression levels of seven TaADF genes, six of which (i.e., TaADFs 13,

16, 17, 18, 21, and 22) are upregulated (Xu et al., 2021). In

Arabidopsis, the heterologous expression of TaADF16, the most

highly expressed and upregulated ADF gene in response to cold

stress, can enhance plant cold stress resistance by accelerating ROS

scavenging and by altering osmotic regulation in cells (Xu et al.,

2021). Moreover, the expression levels of seven cold stress-responsive

genes were found to be significantly higher in a TaADF16-

overexpressing line than in the wild type regardless of whether the

transgenic Arabidopsis plants were exposed to cold conditions. This

indicates that the overexpression of TaADF16 can generally induce

the expression of cold-related genes (Xu et al., 2021). Antarctic

hairgrass is the only monocotyledonous flowering plant in

Antarctica and its genome contains eight ADF genes. Cold stress

can induce the expression of five DaADF genes, with DaADF3

showing the most significant cold stress response (Byun et al.,

2021). In rice, plants that overexpress DaADF3 exhibit improved

cold stress resistance, as measured via survival rate, leaf chlorophyll
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content, and electrolyte leakage along with changes in microfilament

organization in the root tips (Byun et al., 2021).

Heat stress
Heat stress is commonly defined as the increase in temperature

beyond a specific threshold level for a duration that is adequate to

induce irreversible harm to the growth and development of plants

(Bita and Gerats, 2013). The effects of heat stress on plants and cells

are numerous. For example, high temperatures alter membrane

fluidity and denaturate proteins which impair enzyme function

(Malerba et al., 2010). Recently, ADF genes have also been found

to be involved in plant tolerance to high temperatures. For example,

AtADF1 expression was repressed by high temperatures, and atadf1

mutant seedlings exhibited greater actin filament stability and faster

growth than the wild type (Wang L. et al., 2023). Conversely, AtADF1

overexpression showed the opposite phenotype. Further experiments

revealed that AtADF1 transcription is regulated by AtMYB30, a key

transcription factor involved in responses to various forms of abiotic

stress, including heat (Liao et al., 2017). This finding indicates that

AtADF1 is a target gene in the AtMYB30-mediated plant response to

abiotic stress (Wang B. et al., 2023). Similarly, the authors found that

BrADF1 from Chinese cabbage (Brassica rapa), a gene that is highly

homologous to AtADF1, regulates F-actin dynamics and plant

tolerance to heat stress in a manner similar to that of AtADF1

(Wang L. et al., 2023).
TABLE 2 ADF genes involved in abiotic stress whose functions have been elucidated.

Gene Organism Inducing
factor

Function Upstream regulator or down-
stream target

References

AtADF1 Arabidopsis Heat Negative regulator of heat tolerance Regulated by AtMYB30 Wang L. et al.,
2023

BrADF1 Chinese
cabbage

Heat Negative regulator of heat tolerance NG Wang B. et al.,
2023

AtADF5 Arabidopsis Cold Positive regulator of cold tolerance Regulated by CBF Zhang et al.,
2021

TaADF16 Wheat Cold Positive regulator of cold tolerance Induces expression of cold-related genes Xu et al., 2021

DaADF3 Antarctic
hairgrass

Cold Positive regulator of cold tolerance NG Byun et al.,
2021

AtADF1 Arabidopsis Salt Positive regulator of salt tolerance Regulated by AtMYB73 Wang et al.,
2021

SaADF2 Smooth
cordgrass

Salt and drought Positive regulator of salt and drought
stress tolerance

NG Sengupta et al.,
2019

AtADF4 Arabidopsis Osmotic stress Negative regulator of osmotic tolerance Regulated by 14-3-3k Yao et al., 2022

AtADF7 Arabidopsis Osmotic stress Positive regulator of osmotic tolerance Inhibits expression of VLN1 Bi et al., 2022

AtADF4 Arabidopsis Drought Positive regulator of drought tolerance Regulated by CKL2 Zhao et al., 2016

AtADF5 Arabidopsis Drought Positive regulator of drought tolerance Regulated by DPBF3 Qian et al., 2019

PeADF5 Populus
euphratica

Drought Positive regulator of drought tolerance Regulated by PeABF3 Yang et al., 2020

OsADF3 Rice Drought Positive regulator of drought tolerance NG Huang et al.,
2012
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Salt stress
Salt stress refers to the adverse effect of excessive soluble salts in

soil on plant growth and development, which has both osmotic and

ionic or ion-toxicity effects on cells (Zhu, 2016). More than one third

of the world’s irrigated lands are affected by salinization, a worldwide

problem that threatens the growth and yield of crops (Zhao et al.,

2020). In Arabidopsis, the expression levels of AtADF1 rapidly

increase in response to salt stress, and the survival rate of the

atadf1 mutant decreases significantly compared with the wild type

under salt stress. Moreover, mutant plants exhibit cytoskeletal

changes, including increased microfilament bundles in cells, while

AtADF1-overexpressing plants exhibit opposite macroscopic and

microscopic phenotypes. These results indicate that AtADF1

positively regulates plant salt tolerance by promoting actin

depolymerization (Wang et al., 2021). Moreover, AtMYB73 is a

negative regulatory factor for salt stress in Arabidopsis (Kim et al.,

2013), and further experiments have revealed that AtMYB73

negatively regulates AtADF1 expression (Wang et al., 2021).

Therefore, AtADF1 is likely an important player in the AtMYB73-

mediated salt stress response pathway (Wang et al., 2021). Smooth

cordgrass (Spartina alterniflora) is a perennial grass halophyte that

has adapted to salt and drought conditions owing to specific alleles

for genes involved in stress tolerance (Baisakh et al., 2008). The

SaADF2 of smooth cordgrass is homologous to the OsADF2 of rice.

Although the sequence similarity between their proteins exceeds 95%,

six amino acid differences (i.e. the 6th Ser, 19th Asp, 25th Leu, 118th

Gln, 132nd Pro and 133rd Thr in OsADF2 were substituted by Thr,

Asn, His, His, Ser and Ser in SaADF2, respectively) may responsible

for the substantial differences in their three-dimensional structures

(Sengupta et al., 2019). Biochemical analysis revealed that SaADF2

displays greater actin-binding affinity and can depolymerize

microfilaments more efficiently than OsADF2, which enhances

cellular actin dynamics in cells. In rice, SaADF2 overexpression

engenders greater drought and salt tolerance compared with that in

the wild type and OsADF2-overexpression lines (Sengupta et al.,

2019). A detailed biochemical investigation is required to determine

the specific amino acid(s) that play a critical role in ADF’s

biochemical activity. This knowledge could present an opportunity

to utilize genome-editing technology for performing site-specific

mutations, enabling the manipulation of ADF activity in crop

breeding practices for enhancing stress tolerance.

Osmotic stress
Osmotic stress, often caused by drought and high salinity,

occurs when soil contains excess soluble salt that prevents water

absorption of plants (Yoshida et al., 2014). Microfilament

cytoskeleton had been confirmed to participates, and plays a

crucial role, in responses to osmotic stress in plants (Wang et al.,

2010). In Arabidopsis seedlings subjected to osmotic stress,

expression level of AtADF4 considerably increased. In addition,

the survival rate of atadf4 mutants was higher than that of the wild

type, while the survival rate of AtADF4-overexpressing lines

decreased. Thus, these results indicate that AtADF4 plays a

negative regulatory role in the plant response to osmotic stress

(Yao et al., 2022). Further experiments demonstrated that a
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phosphopeptide-binding protein, 14-3-3k, acts as an upstream

regulator of AtADF4 to regulate the Arabidopsis response to

osmotic stress (Yao et al., 2022). Root hairs are important organs

for plants to absorb nutrients and water. Osmotic stress can induce

AtADF7 expression, which in turn is responsible for inhibiting the

expression of the actin-bundling protein VILLIN1 (VLN1) in root

cells, thereby reducing microfilament bundles in root cells and

promoting root hair growth. These findings indicate that the

AtADF7–VLN1 pathway is essential for root hair formation

under osmotic stress tolerance, and plays critical role in

enhancing plant osmotic stress tolerance (Bi et al., 2022).

Drought stress
Drought is an adverse environmental stress that hampers

normal growth, disrupts water relations, and decreases water-use

efficiency in plants. To adapt to drought stress, plants have

developed intricate mechanisms, one of which involves regulating

the opening and closing of stomata (Saradadevi et al., 2017).

Stomata are pores found on the epidermis of aerial parts of plants

and are responsible for absorbing carbon dioxide and releasing

water vapor (Jiang et al., 2012). The stomatal aperture is finely

tuned to prevailing environmental conditions by a pair of guard

cells surrounding each pore (Schroeder et al., 2001). Stomatal

movement mediated by ABA is particularly important for plant

adaptations to drought conditions. Microfilament dynamics play a

crucial role in regulating the opening and closing of the stomata,

involving the alteration of the radial orientation of the actin

filaments during open stomata changes to a longitudinal

orientation characteristic of closed stomata during stomatal

closure (Zhao et al., 2011).

In Arabidopsis, AtADF1 overexpression leads to disorganized

microfilament bundles in guard cells, in turn resulting in abnormal

stomatal closure following ABA treatment (Dong et al., 2001).

Arabidopsis casein kinase 1-like protein 2 (CKL2) plays an

important regulatory role in ABA- and drought-induced stomatal

closure. CKL2 can inhibit the depolymerization activity of AtADF4

via phosphorylation, thereby rendering the microfilament

cytoskeleton more stable in guard cells and regulating stomatal

opening or closing (Zhao et al., 2016). ABA and drought stress also

induce AtADF5 expression in Arabidopsis seedlings. Compared

with the wild type, an atadf5 mutant showed reduced

microfilament bundles in cells, delayed stomatal closure,

intensified leaf dehydration, and decreased survival rates under

drought conditions (Qian et al., 2019). Further biochemical

experiments demonstrated that DPBF3, an ABA-responsive

element-binding factor (ABF/AREB), can activate AtADF5

expression via ABA-responsive core elements in its promoter

region. AtADF5 regulates stomatal movement by modulating the

rearrangement of microfilament structures through its F-actin

bundling activity, which improves plants’ adaptability to drought

stress. Therefore, AtADF5 is an important player in the ABF/

AREB-mediated pathway facilitating plant responses to drought

stress (Qian et al., 2019). In Populus euphratica, PeABF3 is a

transcription factor involved in ABA signaling response and its

expression is induced by drought and ABA. PeABF3 can activate
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the expression of PeADF5, which facilitates ABA-induced stomatal

movement by promoting actin cytoskeletal rearrangement and

enhancing drought resistance (Yang et al., 2020). Furthermore, in

rice the exogenous application of ABA or various stress conditions

induces OsADF3 expression in the root tips and lateral roots.

Moreover, the heterologous expression of OsADF3 in Arabidopsis

enhanced its drought tolerance, as evidenced by improved

germination rate, primary root length, and survival rate. In

addition, several drought-tolerance responsive genes are

upregulated under drought stress, suggesting that OsADF3 may

exert regulatory effects upstream of these genes (Huang et al., 2012).

The above studies indicate that plant ADF genes are important

factors in regulating stomatal movement and play an important role

in enhancing plant drought resistance. Further exploration and

research on these drought resistant ADF genes and homologous

ADF genes in other plants, especially crops, will provide important

genetic resources for the cultivation of drought resistant crops.
Summary and future prospects

As an important type of actin-binding protein, ADFs are widely

involved in dynamic changes to the microfilaments of cells.

Accordingly, they play a crucial role in plant growth, development,

and stress response. In this study, we provide a systematic summary of

the involvement of ADFs in the regulation of both biotic and abiotic

stresses in plants. This includes the expression patterns ofADF genes in

response to various stresses, their regulatory role with respect to plant

stress responses, and the molecular mechanisms by which ADFs

regulate stress tolerance. Research suggests that stress conditions not

only directly regulate the transcription levels of ADF genes, but many

transcription factors (including members of the MYB, ABF, and CBF

TF families) are also involved in regulating the expression ofADF genes

in response to different forms of stress. Furthermore, ADFs not only

directly regulate the polymerization, depolymerization, and

arrangement of microfilaments in cells, but also indirectly affect plant

stress responses by influencing the expression of various other stress-

related genes. Taken together, these results indicate that ADF

participates in precise and complex mechanisms to regulate plant

stress responses.

However, to date our understanding of the role ofADF genes in the

regulation of plant stress responses remains insufficient. First, there is

currently limited systematic information regarding the ADF gene

family in plants, since data exists for fewer than 20 plant species.

Previous studies have shown thatADFs exist in land plants as members

of diversified gene families, and their expression patterns and

biochemical activities exhibit obvious inter-group specificity.

Genomic and transcriptomic studies provide a convenient way to

comprehensively identify and characterize the ADF gene family in

additional plant species. Moreover, systematic analysis of the plant

ADF gene family will provide important information for further

investigation of the biological functions of different ADF genes.

Second, previous studies have found that the expression levels of

many plant ADF genes change in response to stress, which suggests

that ADF genes play an important role in plant stress responses. At the

molecular regulation level of the ADF gene regulation of stress
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responses, Arabidopsis thaliana has received an overwhelming share

of the research attention and has made significant progress in

understanding ADF genes in this model system. However, there has

been limited research on other plants, especially on agriculturally

important crops, in which the specific functions and molecular

regulatory mechanisms of ADF genes remain largely unclear. This

hinders their application for crop improvement. Future in-depth study

of stress-related ADF genes in crop species is critical for molecular

breeding and genetic engineering.

Finally, studies of SaADF2 in salt- and drought-tolerant smooth

cordgrass suggest that some key amino acids in ADF influence its

biochemical activity, and can thereby be manipulated to exert

stronger regulatory effects on specific plant stress responses. This

study suggests that there may be beneficial ADF alleles in plant

species with strong stress resistances that may enhance crop

resilience. In the future, detailed investigation of these genes and

exploration of advantageous protein variant sites may make it

possible to use genome-editing techniques to modify ADF genes

for stress-tolerant crop breeding.
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