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Introduction: Sheath blight caused by Rhizoctonia solani is one of the major

diseases of rice, causing widespread crop losses. The use of semi-dwarf rice

varieties in the ongoing nutrient-intensive rice cultivation system has further

accentuated the incidence of the disease. An ideal solution to this problem

would be identifying a stable sheath blight-tolerant genotype.

Material and methods: A multi-environment evaluation of 32 rice genotypes

against sheath blight infection was conducted over six seasons across two

locations (Agricultural Research Farm, Institute of Agricultural Sciences,

Banaras Hindu University (28.18° N, 38.03° E, and 75.5 masl), for four years

during the wet seasons (kharif) from 2015 to 2018 and two seasons at the

National Rice Research Institute (20°27’09” N, 85°55’57” E, 26 masl), Cuttack,

Odisha, during the dry season (rabi) of 2019 and the kharif of 2019, including

susceptible and resistant check. Percent disease index data were collected over 4

weeks (on the 7th, 14th, 21st, and 28th day after infection), along with data on

other morphological and physiological traits.

Result and discussion: The resistant genotypes across seasons were the ones

with a higher hemicellulose content (13.93-14.64) and lower nitrogen content

(1.10- 1.31) compared with the susceptible check Tapaswini (G32) (hemicellulose

12.96, nitrogen 1.38), which might explain the resistant reaction. Three different

stability models—additive main effect and multiplicative interaction (AMMI),
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genotype + genotype x environment (GGE) biplot, and multi-trait stability index

(MTSI)—were then used to identify the stable resistant genotypes across six

seasons. The results obtained with all three models had common genotypes

highlighted as stable and having a low area under the disease progress curve

(AUDPC) values. The ideal stable genotypes with low disease incidence were IC

283139 (G19), Tetep (G28), IC 260917 (G4), and IC 277274 (G10), with AUDPC

values of 658.91, 607.46, 479.69, and 547.94, respectively. Weather parameters

such as temperature, rainfall, sunshine hours, and relative humidity were also

noted daily. Relative humidity was positively correlated with the percent disease

index.
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Introduction

Rice (Oryza sativa L., 2n=24), a member of Poaceae, is a staple

crop in South Asian countries and provides 50% of the world’s

calories (Pareja et al., 2011). It also creates 3.5 million person-days

of employment, accounting for 10% of India’s agricultural GDP

(Singh et al., 2021). Rice is used in various ways and is a good source

of complex dietary carbohydrates, proteins, vitamins, and minerals

(Roy et al., 2008; Durgadevi and Shetty, 2014; Rohman et al., 2014).

India is the second-largest producer of rice after China, accounting

for 20% of global rice production (Singh et al., 2019). India’s total

rice production was 127.93 million metric tons in 2021-22

(www.indiastat.com). As an energy-giving food, rice consumption

was as high as 103.5 million metric tons in India in the crop year

2020-21 (www.fao.org/worldfoodsituation).

The cultivation of rice is challenged by several biotic stresses,

such as various diseases caused by fungi, bacteria, and viruses

(Persaud et al., 2019). Among them, the fungal diseases blast

(caused by Magnaporthe oryzae), sheath blight (caused by

Rhizoctonia solani), and brown spot (caused by Bipolaris oryzae)

are three of the prominent destructive diseases (Margani and

Widadi, 2018). Sheath blight, a ubiquitous destructive soil-borne

pathogen, is the most damaging disease in rice, second only to blast

(Savary et al., 2006; Singh et al., 2019). High-yielding semi-dwarf

cultivars with dense planting and high doses of nitrogenous

fertilizers accentuate the incidence of sheath blight in rice. Its

diverse host range and ability to remain dormant under

unfavorable conditions make the pathogen more difficult to

manage (Savary et al., 1995). The disease is also known as

oriental sheath, leaf, sclerotial, or banded blight. The infection

process of R. solani involves adhesion, penetration, and

colonization. The fungal hyphae penetrate the stomata and

produce lobate appressoria or infection cushions (Groth and

Nowick, 1992; Neelam et al., 2017). The appressorium formation

triggers the enzymatic degradation of cell wall components,

promoting colonization, and this ultimately results in necrotic

lesions, which later increase in length up to 2-3 cm and 1 cm in
02
width, with bleached middle and purple-brown borders (Rush,

1992; Srinivas et al., 2013). These lesions coalesce and extend

from leaf sheaths to leaf blades and panicles and eventually to

other tillers (Groth and Nowick, 1992; Srinivas et al., 2013). Yield

losses vary from 20% to 50% depending on the genotype, plant

growth stage, and environmental conditions (Prasad et al., 2020).

After harvesting the rice crop, sclerotia of R. solani from the infected

plants remain in the soil and survive up to 3 years and can act as a

source of disease infection for subsequent cropping seasons (Savary

et al., 1995). The monocropping system can be a big challenge for

farmers. To manage this, they may need to rotate crops with plants

that are not susceptible to the same diseases. Additionally, the

pathogen is difficult to manage due to its wide host range, long

persistence of sclerotia, and ability to adapt to different

environments (Singh et al., 2019). This pathogen often survives

on alternate hosts during hostile conditions, making the disease

very difficult to manage. Therefore, farmers must use fungicides to

integrate cultural practices into their crop management (Persaud

et al., 2019). However, the use of fungicides is known to pose various

ecological problems, ultimately affecting human health (Goswami

et al., 2019). Hence, developing resistant rice varieties is the best

solution to this problem.

The major hurdle in developing a stable resistant donor for

sheath blight is because of the complexity of the pathogen,

resistance being a polygenic and variable response of the rice

genotypes. Because of the non-availability of a stable resistant

donor, breeding for rice tolerant to R. solani has been

unsuccessful (Naveen kumar et al., 2022). The development of

cultivars resistant to R. solani is a major thrust area for rice research

and development across the globe, as this proposes an economically

and environment-friendly and sound strategy for managing sheath

blight (Dey et al., 2016). Genotypes with resistance reported thus

far, such as Jasmine 85 and Teqing, eventually become susceptible

(Dey et al., 2016; Naveen kumar et al., 2022). This may be due to the

pathogen’s acquired resistance or the absence of a stable genotype

against the pathogen R. solani (Naveen kumar et al., 2022).

Additionally, the role of certain biochemical parameters such as
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cellulose, hemicellulose content, lignin content, etc., need to be

studied to understand their relationship in the disease

manifestation. Many recent works have attributed the disease

development and severity to the phenolic content, lignin content,

cellulose content, and hemicellulose content (Taheri and Hofte,

2007; Zhang et al., 2013; Hapsari and Poromarto, 2020).

Developing a cultivar for a trait such as disease resistance

requires validation for stability across environments or seasons

with varying weather attributions. The instability of the plant’s

response in its disease reaction can be owed to genotype x

environment (G x E) interaction. The role of G x E is essential

for identifying and evaluating durable resistance sources (Singh

et al., 2020). G x E interaction studies might give an insight into

repeated field plots and greenhouse ratings in view of G x E. Several

G x E studies have been documented for various diseases in rice,

wheat, sorghum, and pearl millet crops (Mukherjee et al., 2013; Das

et al., 2019; Persaud et al., 2019; Kirtphaiboon et al., 2021; Sankar

et al., 2021). However, stability analysis and G x E for sheath blight

of rice have not been widely studied, and few reports are available

(Persaud et al., 2019). To assess G x E for resistance against sheath

blight of rice, we evaluated rice genotypes across six seasons to

assess the usefulness of testing environments and seasons. In order

to explore how different genotypes perform differently under

various environmental conditions, this study has used three

different multivariate stability models. Biplots are frequently used

to illustrate interaction patterns, identify similarly stable genotypes

across environments, and illustrate the links between genotype (G),

environment (E), and G x E. Among the biplot models, the most

popular are AMMI (additive main effects and multiplicative

interaction) and GGE (genotype + genotype x environment)

biplots. There have been many reports of stability analysis based

on these models (Silva et al., 2011; Thangavel et al., 2011; Lakew

et al., 2017; Persaud and Saravanakumar, 2018; Sandhu et al., 2019;

Yue et al., 2022). A new multivariate stability analysis model, the

multi-trait stability index (MTSI), is also employed in this study.

The need to consider multiple traits simultaneously to identify a

stable genotype necessitated the development of statistical

procedures such as MTSI (Olivoto et al., 2019). It is founded on

factor analysis, and the factorial scores for each ideotype are

constructed in accordance with desirable and undesirable traits.

In order to enable accession ranking, a spatial probability is
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calculated based on accession-ideotype distance. Since the

accession with the lowest MTSI is closest to the ideal, it performs

better on average and is more stable across all of the examined

factors. However, there are limited reports on the study of the

stability of sheath blight-resistant lines. The knowledge gathered

from this inquiry will provide benefits in choosing stable resistant

genotypes for the intended growing environments, as well as in

understanding the influence of G x E interaction and helping to

discover the environmental elements responsible for variation in

the amount of resistance. The inferences from each stability model

can also compare their robustness and the results’ similarities.

Identifying stable genotypes will help develop tolerant varieties

through marker-assisted breeding programs and further genomic

dissection of these resistant lines.
Materials and methods

Planting materials

A total of 32 rice (Oryza sativa L.) genotypes (Supplementary

Table 1), which consisted of 26 popular varieties and landraces

along with susceptible (Pusa Basmati-1 and Tapaswini) and

resistant (Tetep, Jasmine 85, and Teqing) checks, were selected

for this study. These rice genotypes were obtained from the

Department of Genetics and Plant Breeding, Institute of

Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar

Pradesh, and ICAR-National Rice Research Institute (NRRI),

Cuttack, Odisha. To evaluate these genotypes against R. solani, a

field trial was managed at the Agricultural Research Farm, Institute

of Agricultural Sciences, Banaras Hindu University (28.18° N,

38.03° E, and 75.5 masl), Varanasi, for 4 years during the wet

season (kharif) from 2015 to 2018 and two seasons at NRRI (20°

27’09” N, 85°55’57” E, 26 masl), Cuttack, Odisha, during the dry

season (rabi) of 2019 and the kharif of 2019 (Table 1). The nursery

beds were prepared following the recommended package of

practices. The seeds of each genotype were sown in a row length

of 50 cm. Thereafter, the beds were covered with a thin film of

water. Irrigation was done at regular intervals to maintain sufficient

moisture in the nursery beds. The rice seedlings (25-30 days after

sowing) were uprooted carefully from the beds and transplanted
TABLE 1 Temperature, the status of rainfall, relative humidity, soil properties, latitude, altitude and code for each environment.

Season/
environment

Maximum
Temperature

(°C)

Minimum
Temperature

(°C)

Rainfall
(mm)

Sunshine
hours

RH (morning)
(%)

RH (Evening)
(%)

PDI
MEAN

kharif 2015 (E1) 33.4 22.1 0.0 8.4 83.0 54.4 25.21

kharif 2016 (E2) 31.9 25.6 6.9 4.2 87.3 77.7 28.62

kharif 2017 (E3) 33.5 25.5 1.0 6.4 89.8 68.6 20.19

kharif 2018 (E4) 33.0 20.2 0.0 NA 86.3 53.1 28.62

kharif 2019 (E5) 31.1 24.0 26.6 5.4 92.3 71.8 25.05

Rabi 2019 (E6) 36.6 25.2 7.8 6.3 87.4 60.5 28.08
fr
NA, not available.
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into the main field, which was divided into blocks. A row of 2.0 m

and plant-to-plant spacing of 20 cm was maintained for each

genotype. The experiment was performed in a randomized block

design with three biological replications.
Pathogen inoculation

A highly virulent strain (MTCC12227) of R. solani belonging to

the AG-1 IA group collected from the Department of Mycology and

Plant Pathology, Institute of Agricultural Sciences, BHU, was used

to inoculate the rice genotypes for screening study across six

seasons. This isolate was previously reported as a highly virulent

isolate by pathogenicity test in our previous study (Goswami et al.,

2019). The fungus was grown on a PDA medium at 25 ± 2°C for 72-

96 h. Five plants were selected from the middle for inoculation

when they were 45 days old. The inoculum was placed beneath the

third leaf sheath from the top by placing the 3- to 4-day-old

sclerotia beneath the rice leaf sheath and tying it with wet cotton

to provide sufficient moisture for the development of the fungus

(Singh et al., 2002).
Disease assessment

Disease severity in each genotype was recorded at weekly

intervals, at 7, 14, 21, and 28 days after inoculation based on

relative lesion height (RLH). This parameter was used to obtain

the exact percentage of infection and, using this RLH, a disease scale

(0-9) was given to each plant. RLH was calculated using the

following formula given by Sharma and Teng (1990):

RLH =
Maximum   height   at  which   lesion   appears

Plant   height   (cm)
� 100

Disease scoring (0-9 scale) was done using a standard evaluation

system (SES) to measure disease severity, where 0 = free from

infection, 1 = lesion limited to the lower 20% of the plant height,

3 = 20-30%, 5 = 31-45%, 7 = 46-65%, and 9 = more than 65% (IRRI

(International Rice Research Institute), 2013). Using a standardized

evaluation system can help to maintain a uniform and replicable

response from the test genotypes. Percent disease index (PDI) was

calculated using the formula reported by Wheeler (1969):

PDI =
Sum   of   all   ratings

Total   no :   of   observations�Maximum   rating   scale

� 100

However, the area under the disease progress curve (AUDPC)

was calculated based on the disease severity percentage of each

disease score taken four times using the formula given by Shaner

and Finney (1977):

AUDPC =o
n

i=1
½(Xi + 1   +  Xi)�=2   x   (ti + 1   –   ti)f g

where Xi is the disease index expressed as a proportion at the ith

observation, the time (days after planting) at the ith observation, and
Frontiers in Plant Science 04
n is the total number of observations. PDI was calculated to know

the prevalence of the disease, while the AUDPC was calculated to

determine disease progress from the date of inoculation and the

difference between genotypes in terms of their disease response.

Other morphological traits, such as plant height (cm), tiller

number, panicle length (cm), flag-leaf length (cm), flag-leaf width

(cm), internodal length (cm), culm thickness (mm), ligule color,

ligule shape, auricle color, basal leaf sheath color, and apiculus

color, were measured during the reproductive phase following the

SES for rice developed by the International Rice Research Institute,

Philippines (IRRI (International Rice Research Institute), 2013).

Straw was harvested from each replication, ground, and filtered

through 1-mm mesh. The sample collection and estimation of

quality were carried out using the method used by Subudhi et al.

(2020). The straw samples were evaluated at the International

Livestock Research Institute, Hyderabad center. The straw was

evaluated for cell wall components such as dry matter (DM), ash

content (AC), nitrogen (N), lignin (Li), silica (Si), digestibility (in

vitro organic matter digestibility, IVOMD), cellulose (Cl),

hemicellulose (HC), and digestibility (Di). Straw samples were

analyzed using calibrated near-infrared spectroscopy (NIRS)

(FOSS Forage Analyzer 6500 with software WinISI II). Details of

the calibration and optimization of NIRS for straw quality

estimation were published by Subudhi et al. (2020).

Analysis of variance and variability parameters were calculated

using “Prog for variability ver 01.12.2020” (Manivannan, 2014) and

descriptive statistics using the variability package in R (Gopinath

et al., 2021). Principal component analysis (PCA) was carried out

using the FactoMine R package (Lê et al., 2008), and correlation

among all the studied traits was analyzed using the corrplot

functions from the corrplot package (Wei and Simko, 2021) in R

4.0.3. Variance components were estimated, like heritability,

heritability of genotypic mean (h2mg), genotypic coefficient of

variation (CVg), and relative coefficient of variation (CVr),

following REstricted Maximum Likelihood (REML) using the

expectation-maximum algorithm (Dempster et al., 1977).

The AMMI model was applied, with additive effects for the 32

rice genotypes (G), six seasons of testing (environments = E), and

multiplicative term for G x E interactions. It makes use of the

standard ANOVA procedure to separate the additive variance from

the multiplicative variance (genotype x environment interaction).

Then, it uses a multiplicative procedure (PCA) to extract the pattern

from the G x E portion of the ANOVA. The result is the least square

analysis, which, with a further graphical representation of the

numerical results (biplot analysis), often allows a straightforward

interpretation of the underlying causes of G x E interactions. The

mathematical statement of the hybrid model is as follows:

Yge =  m  +  ag +be +oNlndgnhen +  qge

where g = genotype, e = environment, Yge = disease index of

genotype ‘g’ in environment ‘e’, m = grand mean, ag = the genotype

mean deviation, be = the environment mean deviation, N = the

number of IPCA (interaction principal component axis) retained in

the model, ln = the eigenvalue for IPCA axis ‘n’, dgn = the genotype

PCA scores for the IPCA axis ‘n’, hen = the environment PCA scores
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for IPCA axis ‘n’, and qge = the residuals. The GGE model was

calculated on the basis of the following formula:

Yge =  m  +  be +  oNlndgnhen +  qge

To estimate the multi-trait stability index (MTSI) (30), the

following equation was used:

MTSIi = of
j=1 : (Fij − Fj)2

h i
0:5

where MTSIi is the multi-trait stability index for the ith

genotype, Fij is the jth score of the ith genotype, and Fj is the jth

score of the ideotype. Therefore, the genotype with the lowest MTSI

is closer to the ideotype and has a high mean performance and

stability for all of the variables studied. Multi-environment trial data

stability analyses using MTSI and WAASB indices were conducted

using the metan package (Olivoto and Lúcio, 2020) of R

4.0.3 software.
Results

The study focused on measuring disease incidence parameters

along with morphological, physiological, and biochemical

attributes; identifying associations with disease symptom

development; and studying the stability of sheath blight resistance

in the genotypes tested. The mean performance of the traits was

studied from data collected across six seasons (Supplementary

Table 1). The mean plant height was 105.53 cm, the average tiller

number was 10.45, and the mean panicle length was 23 cm. The

mean value of flag-leaf length was 28.46 cm, the mean flag-leaf

width was 1.28 cm, and the mean internodal length was 28.81 cm.

All of these traits followed a normal distribution, as verified by

Kolmogorov–Smirnov (K-S) and K-S modified tests.

The biochemical parameters of the stem, such as dry matter

content, nitrogen content, neutral detergent fiber, acid detergent

fiber, silica content, cellulose, hemicellulose, and digestibility,

followed a normal distribution. Ash content and acid detergent

lignin did not follow a normal distribution, as per the K-S modified

test. The mean nitrogen was 1.23, the mean hemicellulose content

was 12.65, and the mean cellulose content was 46.63. The other

studied traits such as culm thickness, ligule color, auricle color,

ligule shape, basal leaf sheath color, and apiculus color didn’t follow

a normal distribution as per both the K-S test and K-S modified test.

The disease reaction-measuring traits PDI 7th, PDI 14th, PDI

21st, and PDI 28th day had an increasing trend, with mean values of

12.08, 17.95, 31.72, and 42.23, respectively. The mean PDI over the

4 weeks was 25.94, with a range of 16.34 to 25.66, and the mean

AUDPC value was 748.71, ranging from 479.68 to 1261.42. PDI

14th day and PDI 28th day did not follow a normal distribution and

were rejected by the K-S modified test. In the case of PDI 14th day,

the data were skewed toward the right (2.19), with a kurtosis peak at

7.55 (Supplementary Table 2). The skewness of the AUDPC was

1.59 (skewed right) and the kurtosis peak was at 6.13. The CV for all

the disease (as mentioned above) reaction-measuring traits was

within 20%, except for PDI 14th day, which had a Coefficient of

variation (CV) of 28.79%. This indicates the variability in the
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intensity of infection by the 14th day across locations/seasons.

The mean AUDPC was 748.71 across locations, while it was

highest in 2019 rabi (830.14) and lowest in 2017 kharif (590.87)

(Table 2). The mean PDI on the 7th day was 12.08 across seasons.

The rate of increase of infection was highest from the 14th day to

the 21st day. The PDI mean of all four observations taken on the

7th, 14th, 21st, and 28th day was 25.94. The highest PDI mean was

in 2018 kharif (28.61) and the lowest was in 2017 (20.19). The CV

was within 20% for all the traits except for tiller number and PDI on

the 14th day. The K-S test proved that the data observed followed a

normal distribution for all the traits.
Association between traits and principal
component analysis

Correlation analysis among the studied traits showed that the

PDI values scored on the 7th day (0.57), 14th day (0.94), 21st day

(0.95), and 28th day (0.95) had a significant positive correlation

with AUDPC and a negative correlation with plant height (-0.40)

(Figure 1). Correlation analysis suggested an association of AUDPC

with tiller number (0.37), internodal length (-0.34), and PDI mean

(0.98). Flag-leaf length and flag-leaf width significantly negatively

correlated with PDI 7th day (i.e., -0.56 and -0.60, respectively)

(Supplementary Table 3). There was an absence of any significant

association of plant disease estimating traits with traits other than

those mentioned above. The weather parameters, namely maximum

temperature, minimum temperature, rainfall, sunshine hours, and

relative humidity (RH) in the morning and evening were analyzed

for study correlation with the PDI mean (Supplementary Table 4).

The PDI mean had a significant negative correlation for minimum

temperature (-0.91) and maximum temperature (-0.54). A positive

correlation of relative humidity was recorded in the morning with

the PDI mean (0.74).

Principal component analysis was done to visualize the highest

contributing traits to the variability recorded in the population. The

eigenvalues of nine PCs were more than unity (Supplementary

Table 5). The PDI mean, PDI 21st day, and AUDPC traits had the

highest contribution to the variability in the whole population.

Apart from the disease measuring traits, tiller number also

contributed in a major way to the variability existing in the

population. The susceptible check Tapaswini is placed in the first

quadrant (group 2), opposite the one with the tolerant check Tetep

(group 4) (Figure 2). Thus, the cluster of genotypes in the quadrant

with Tapaswini can be regarded as susceptible, with high values of

AUDPC, PDI 14th day, PDI 21st day, PDI 28th day, and PDI mean

(Figure 2). The cluster formed with Tetep (the tolerant check)

consists of test genotypes such as IC 283139 (G19), IC 260917 (G4),

IC 256613 (G2), and IC 279355 (G14), among others, which have

low mean values for AUDPC.
G x E interaction and stability analysis

The results from the variability studies, correlation, and PCA

helped in identifying the important traits that play a role in disease
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280321
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Panda et al. 10.3389/fpls.2023.1280321
development in rice plants; these were AUDPC, plant height, tiller

number, panicle length, PDI 7th day, PDI 14th day, PDI 21st day,

PDI 28th day, and PDI mean. The 32 rice genotypes, including the

resistant and susceptible check, were evaluated via the AMMI

model to identify the stable sheath blight-resistant genotypes. The

pooled ANOVA of sheath blight reaction on the test genotypes was

analyzed via AUDPC values (calculated from the PDI values on the

7th, 14th, 21st, and 28th day). The combined analysis of the

variance of the test genotypes across the six seasons highlighted
Frontiers in Plant Science 06
variations due to genotype (G) and genotype x environment (G x E)

as significant (P<0.001) (Table 3). The effect of G and G x E was

significant, while the effect of environment (E) was non-significant.

The relative contribution was calculated for each source: the

environment factor contributed 11.02%, the G x E factor

contributed 24.67%, whereas the genotype factor contributed

25.67% of the total sum of squares. In AMMI analysis, the

variance of G x E interaction was partitioned into five principal

components (PC), of which PC1, PC2, and PC3 were significant
TABLE 2 Mean AUDPC values of 32 rice genotypes across six different seasons, standard deviation (SD), and coefficient of variation (CV).

Genotype
Environment/season

Mean SD CV
2015 2016 2017 2018 2019 rabi 2019 kharif

IC 277237 (G1) 697.52 918.51 437.50 700.00 1008.56 934.06 782.69 212.43 27.14

IC 256613 (G2) 707.28 761.52 460.83 700.00 699.65 624.17 658.91 106.45 16.16

IC 256616 (G3) 744.06 841.74 761.25 1061.67 1052.40 77.77 756.48 360.22 47.62

IC 260917 (G4) 600.88 657.94 430.21 670.83 706.19 578.69 607.46 98.59 16.23

IC 264141 (G5) 763.35 776.73 801.11 1081.11 890.03 490.58 800.49 192.23 24.01

IC 274377 (G6) 730.88 698.11 488.06 855.56 889.61 1245.05 817.88 252.88 30.92

IC 274408 (G7) 597.69 739.04 459.86 696.11 772.47 760.22 670.90 121.22 18.07

IC 277248 (G8) 788.14 1060.33 476.39 855.56 864.61 575.56 770.10 212.09 27.54

IC 277261 (G9) 704.76 781.13 437.50 700.00 701.67 563.89 648.16 124.83 19.26

IC 277274 (G10) 694.10 698.60 449.17 700.00 685.69 500.69 621.38 114.71 18.46

IC 277284 (G11) 654.60 824.65 511.39 855.56 801.21 591.11 706.42 140.87 19.94

IC 277290 (G12) 717.68 775.81 505.56 738.89 762.69 831.25 721.98 112.82 15.63

IC 277332 (G13) 529.20 756.43 595.00 816.67 755.44 873.06 720.96 132.19 18.34

IC 279355 (G14) 713.48 837.66 460.83 700.00 718.28 655.90 681.03 123.65 18.16

IC 280478 (G15) 589.40 700.60 587.22 972.22 755.72 752.50 726.28 141.97 19.55

IC 280504 (G16) 702.24 856.81 797.22 832.22 1054.52 777.85 836.81 119.14 14.24

IC 280564 (G17) 688.52 903.52 624.17 980.00 902.87 605.09 784.03 163.40 20.84

IC 281508 (G18) 786.97 891.93 511.39 855.56 857.22 917.78 803.47 149.72 18.63

IC 283139 (G19) 476.96 519.63 402.50 653.33 475.69 350.00 479.69 104.45 21.77

IC 282460 (G20) 728.25 855.89 733.06 948.89 923.78 991.67 863.59 112.00 12.97

IC 282812 (G21) 603.54 844.54 447.22 505.56 872.08 1239.26 752.03 295.32 39.27

IC 282815 (G22) 707.88 853.94 666.94 544.44 778.27 643.60 699.18 108.03 15.45

IC 283204 (G23) 638.27 731.23 505.56 972.22 833.41 637.78 719.75 164.94 22.92

IC 277267 (G24) 610.21 983.94 446.25 688.33 851.69 521.11 683.59 203.28 29.74

IC 277275 (G25) 581.84 1093.15 597.43 686.39 1061.21 768.86 798.14 226.56 28.39

IC 283206 (G26) 753.98 957.45 453.06 762.22 836.50 668.89 738.68 170.10 23.03

CO 39 (G27) 869.70 884.39 698.06 1088.89 779.23 627.41 824.61 162.74 19.73

Tetep (G28) 663.10 482.01 489.03 602.78 568.74 482.01 547.94 75.98 13.87

Pusa Basmati-1 (G29) 853.14 981.85 634.38 1312.50 1023.50 981.85 964.54 222.07 23.02

Jasmine-85 (G30) 655.87 561.26 715.56 738.89 672.69 561.26 650.92 75.49 11.60

Teqing (G31) 871.33 916.27 820.56 676.67 955.49 916.27 859.43 100.74 11.72

Tapaswini (G32) 1297.65 1124.39 1503.70 1464.81 1053.59 1124.39 1261.42 190.86 15.13
fro
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(P<0.01). PC1 and PC2 contributed significantly to the total

variability (i.e., 53% and 23%, respectively) and PC3 explained a

variation of 13.80%. The coefficient of determination (R2
ge) value

was low to moderate for all the traits studied; the highest was 0.31

for AUDPC (Table 4). Heritability was moderate for PDI 7th day

and plant height, whereas it was low for all other traits. The

genotypic selection accuracy ranged from 0.67 (PDI 7th day) to

0.94 (plant height) and 0.92 (PDI mean). The highest CVg was

recorded for PDI 14th day, whereas the lowest was for PDI 7th

day (Table 4).
AMMI biplots

The AMMI 1 biplot represents sheath blight AUDPC values

and the abscissa shows differences in main effects and the ordinate

differences in interaction patterns (Figure 3A). IPCA scores for both

genotype and environment main effect were plotted against the

AUDPC values for sheath blight. The AMMI 1 biplot captures 53%

of the variability due to AUDPC in the test population (Figure 3A).

Tapaswini (G32) had the highest mean AUDPC value

(undesirable), whereas Tetep (G28), IC 277274 (G10), and IC
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283139 (G19) are the genotypes that displayed lower values of

AUDPC. The 2016 and 2019 rabi vectors were placed close to zero,

showing a high positive association. The AMMI 2 biplot is

represented in Figure 3B, with the environmental scores drawn to

the origin and the distant points all connected to form a polygon.

The polygon had vertices with G6 (IC 274377) representing 2019

kharif; G32 (Tapaswini) representing 2017, 2018, and 2015; and G3

(IC 256616), G25 (IC 277275), and G21 (IC 282812) representing

2016 and 2019 rabi (Figure 3B). The 2015 season had the shortest

vector; environments with short vector lengths exerted weak

interactive force. Hence, the highest interactions appeared in 2019

kharif and 2016. PC1 and PC2 explained G x E interaction

accounting for 76% of the total variability in the AMMI 2 biplot.

The angle between the vectors of 2015, 2017, and 2018 was less and

represented a positive association among them. But the angles

between 2018 and 2019 rabi, 2018 and 2016, and 2019 rabi and

2019 kharif displayed a negative association. The genotypes lying

closer to the point of origin (preferably on the right-hand side)

showcase stability, with less variation in AUDPC value and less

interaction with the environment. Such genotypes closer to the

origin are G22 (IC 282815), G15 (IC 280478), G4 (IC 260917), and

G14 (IC 279355). However, the stability of these genotypes is only
FIGURE 1

Pearson correlation for morphological, physiological, and biochemical parameters related to sheath blight disease resistance in rice of pooled mean
over season. Color (green, positive correlation; brown, negative correlation) intensity and circle size are proportional to the correlation coefficient.
(N2, nitrogen content; Dry_mt, dry matter; PH, plant height; Leaf_Sh-color, leaf sheath color; deter_fiber, detergent fiber; H_cellulose,
hemicellulsose; Flag_leaf_lth, flag-leaf length; Flag_leaf_wth, flag-leaf width; T_No, tiller number; PL, panicle length; PDI_7, 14, 21, and 28 and m,
percent disease index recorded on 7th, 14th, 21st, and 28th days and the mean, respectively).
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TABLE 3 Analysis of variation of AMMI for 32 rice genotypes against sheath blight infection across six seasons.

Source DF SS MSS F value PR (>F) Contribution to variation (%)

Environment 5 2900639 580128 4.13 0.0568 11.03

Replication (ENV) 6 842941 140490 9.24 7.33E-09 3.20

Genotype (GEN) 31 6754793 217897 14.33 1.12E-34 25.68

GEN : ENV 155 6489661 41869 2.75 2.98E-11 24.67

PC1 35 3438420 98241 6.46 0 53.00

PC2 33 1490867 45178 2.97 0 23.00

PC3 31 893325 28817 1.90 0.005 13.80

PC4 29 477570 16468 1.08 0.366 7.40

PC5 27 189480 7018 0.46 0.990 2.90

Residuals 186 2827695 15203

Total 538 26305390 48895
F
rontiers in Plant Science
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8
SS, sum of squares; MSS, mean sum of squares.
FIGURE 2

PCA for sheath blight disease resistance-related traits of the pooled mean over seasons explained by two axes. Together, the two PC axes explained
41% of the total variation. The transparency of the vector indicates the contribution to the variation in the dataset, ranging from 2% (lightest) to 6%
(darkest). The direction and length of the vector represent the trait contribution to the first two components of the PCA. Group 2 (solid algae tone)
and Group 3 (solid cyan tone) were found to be susceptible to sheath blight disease, with high AUDPC values. Group 1 (solid red tone) was
moderately resistant and Group 4 was resistant against sheath blight (solid purple tone), sharing low values for AUDPC and PDI mean. The closed
circle dots represent 32 genotypes used in the study. The genotype and corresponding numbers can be seen in Supplementary Table 1. Resistant
check (Tetep)-28, Susceptible check (Tapaswini)- 32. N2, nitrogen content; Dry_mt, dry matter; PH, plant height; Leaf_Sh-color, leaf sheath color;
deter_fiber, detergent fiber; H_cellulose, hemicellulsose; Flag_leaf_lth, flag-leaf length; Flag_leaf_wth, flag-leaf width, T_No, tiller number; PL,
panicle length; PDI_7, 14, 21, and 28 and m, percent disease index recorded on 7th, 14th, 21st, and 28th days and the mean, respectively).
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useful if the AUDPC values are reliable and lower than those of the

susceptible check.
GGE biplot pattern for elucidation of
multivariate analysis

In the assessment of multi-environment trials, the effects of

genotype and G x E interactions are the major sources of variation

(Yan et al., 2000). An ideal genotype is selected based on its mean

performance and level of interaction with its environment. The

GGE biplots were created to identify the most tolerant line out of

the genotypes tested against sheath blight infection. The biplots are

constructed using two axes: PC1 denotes the magnitude of the trait

under study and PC2 measures the stability. Three different

graphical patterns can infer the GGE biplot: (a) “which-won-
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where” pattern, (b) mean vs. stability performance, and (c)

discriminativeness vs. representativeness of the test environment

for genotype evaluation.

Which-won-where model
The polygon view of the GGE biplot, which depicts the “which-

won-where” pattern of a multi-environment dataset, is the most

efficient and concise method of summarizing the genotype and G x

E interaction (Figure 4) (Bishwas et al., 2021). The environmental

indicators were placed in two sections of the biplot for AUDPC,

with different genotypes winning in each segment. Based on the 32

genotypes and six environments, the GGE biplot was divided into

four fan-shaped sections. Five of the six seasons (2015, 2016, 2107,

2018, and 2019 rabi) were clustered within one sector, whereas the

2019 kharif was placed in an adjacent sector. Lower AUDPC values

were observed on the opposite side of the sector, with genotype IC
A B

FIGURE 3

(A) AMMI 1 biplot for AUDPC values using the genotypic and environmental scores, (B) AMMI 2 biplot for AUDPC values showing the interaction of
PC1 vs. PC2 loadings of 32 rice genotypes (G) and six environments.
TABLE 4 Genetic parameters for nine traits of 32 rice genotypes in response to sheath blight infection across six seasons.

Traits s2p Heritability r2GEI h2mg Accuracy rge CVg CVr CV ratio

AUDPC 43205 0.34 0.31 0.808 0.899 0.467 16.2 16.5 0.982

Plant height 756 0.50 0.30 0.883 0.94 0.598 18.5 11.7 1.58

Tiller number 15.9 0.42 0.18 0.868 0.932 0.302 24.7 24.4 1.01

Panicle length 15.8 0.40 0.23 0.852 0.923 0.377 10.9 10.6 1.03

PDI_7th day 6.34 0.07 0 0.455 0.674 0 5.31 20.1 0.264

PDI_14th day 63.8 0.35 0.15 0.842 0.918 0.226 26.4 31.5 0.839

PDI_21st day 80.5 0.31 0.30 0.795 0.892 0.407 15.8 18.1 0.875

PDI_28th day 140 0.35 0.17 0.834 0.913 0.265 16.5 19.4 0.85

PDI_mean 44 0.39 0.23 0.848 0.921 0.383 16 15.7 1.02
fr
s2p, phenotypic variance; r2GEI, the coefficient of determination for GEI effects; h2mg, heritability of the genotypic mean, rge, association among genotypic values across environments CVg and
CVr are the genotypic and variation coefficients of variation, respectively.
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283139 (G19) at the vertex. IC 283139 (G19) had a low AUDPC

value (479.69) but was placed away from the origin, thus being

deemed inconsistent in its reaction over the seasons (with a CV of

21.77) vis-à-vis those that were placed in proximity to the origin. IC

260917 (G4), Tetep (G28), IC 277274 (G10), and IC 256613 (G2)

were nearer to the origin, indicating consistency in reaction over the

seasons along with a low AUDPC value. Additionally, Tetep (G28),

IC 260917 (G4), and IC 277274 (G10) were nearer to the vertex with

IC 283139 (G19) and displayed lower AUDPC values (547.94 (CV

13.87), 607.46 (CV 16.23), and 621.38 (CV 18.46), respectively) and

comparatively more stability. Moreover, the nitrogen, cellulose, and

hemicellulose levels in these genotypes varied from 1.10 to 1.28,

45.37 to 48.45, and 11.53 to 14.64, respectively, which might explain

the source of resistance. On the contrary, Tapaswini (the susceptible

check) (G32) was located in the vertex of the sector exactly opposite

IC 283139, with the highest AUDPC value for sheath blight. The

nitrogen, cellulose, and hemicellulose levels in Tapaswini were 1.32,

45.42, and 12.96, respectively.

Mean vs. stability: identifying stable genotypes
with desirable trait expression (GGE biplots)

The mean vs. stability biplot of the genotypes over six seasons is

graphically presented in Figure 5 through an “average environment
Frontiers in Plant Science 10
coordinates” view of the biplot. The single arrow line traversing the

biplot origin is the abscissa, which indicates the AUDPC value, and

the line perpendicular to the abscissa at the origin is the ordinate. The

length of the abscissa represents the AUDPC value (i.e., high disease

incidence on the right-hand side of the origin and vice versa). The

length of the ordinates on the abscissa estimates the corresponding

GEI (i.e., if the length is less, then it corresponds to higher stability).

The best-performing genotypes would be those with the lowest

AUDPC values (with higher negative projections) and high stability

(projection of genotypes on the abscissa that are close to 0). In the

AUDPC mean vs. stability biplot, PC1 explained 52.83%, and PC2

explained 25.83% of the variation due to the G + G x E variation. IC

283139 (G19) is a desirable genotype with a lower disease incidence

score than the tolerant check, Tetep (G28), and above-average

stability. Its AUDPC value across seasons was 479.69, with a CV of

21.77%. The genotypes plotted close to IC 283139 (G19) can be

treated as desirable in consideration of their Euclidean distances. The

other test genotypes, namely, IC 260917 (G4), IC 277274 (G10), IC

256613 (G2), and IC 277261(G9), can be considered desirable with

low AUDPC values (547.94, 607.46, 621.38, 658.91, and 648.16 across

seasons, respectively) and consistent performance over seasons with

less than 20% CV. The ranking biplot highlighted Tapaswini (G32)

with the highest AUDPC value with its nearness to the arrowhead
FIGURE 4

The “which-won-where” polygon view of the GGE biplot based on the G x E data of the 32 rice genotypes for AUDPC value against sheath blight of
rice. The data were not scaled (“Scaling = 0”) and were environment-centered (“Centering = 2”). The biplot was based on genotype-focused singular
value partitioning (“SVP = 1”) and, therefore, is appropriate for visualizing genotype similarities. It explained 78.6% of the total G + GE for the subset.
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and proximity to the center. In contrast, the more desirable genotypes

(with low AUDPC values) were present near the proximity of IC

283139 (G19), Tetep (G28), IC 260917 (G4), IC 277274 (G10), and IC

277261 (G9).

Evaluation of the environment
The discriminativeness (discrimination of genotypes) vs.

representativeness (representing all the test environments) biplot

tests the ideal test environment. This graph groups the test

environment into three types: type I has short vectors providing

little information regarding the genotypes and is not usually reliable

as a test environment, type II has long vectors and short angles with

the AEC abscissa and is, therefore, ideal for selecting superior

genotypes, and type 3 has long vectors and large angles with the

AEC abscissa. Among the six test seasons, 2019 kharif exhibited the

longest environmental vector (large angle with the AEC abscissa),

followed by 2018 and 2017 (Figure 6). In contrast, 2016 and 2019

rabi had medium-length projections. The AEC abscissa passing

through the origin had a smaller angle with 2019 rabi and 2016,

suggesting greater power of representation of the sheath blight

reactions on the test genotypes. Hence, these two seasons can be

regarded as representative test environments.
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Multi-trait stability index

The MTSI was employed to identify the stable resistant rice

genotypes against sheath blight infection considering the multiple

parameters in this study. The test for likelihood ratio indicated

significant G x E interaction for all the studied traits except

for PDI at 7 days (Tables 5, 6), suggesting the influence of the

variable effect of environments on the response of test genotypes.

Table 5 represents the factor analysis performed with the WAASBY

index. The first component (FA1) had an eigenvalue of more than

1 and accounted for 82.30%. FA1 accommodated all of the six

traits in this study and, after proper varimax rotation, the mean

commonality (h) was 0.82. The selection differential for the

WAASBY index was positive for all the traits under study,

indicating that the study method was proficient in identifying

stable genotypes with low disease reaction across six seasons.

Selection differentials quantify a population’s mean trait value

change between pre- and post-selection. The MTSI provided a

positive selection differential for four studied traits. The selection

differential ranged from 17.0 (PDI 28th day) to 22.9 (PDI 7th day).

The mean of the selected genotypes (Xs) was higher than the

original average (Xo). Genotypic values for the MTSI model with
FIGURE 5

The mean vs. stability pattern of GGE biplot illustrating the interaction effect of 32 rice genotypes under six seasons in two locations for AUDPC
values against sheath blight of rice. The data were not scaled (“Scaling = 0”) and were environment-centered (“Centering = 2”). The biplot was based
on genotype-focused singular value partitioning (“SVP = 1”) and, therefore, is appropriate for visualizing genotype similarities. It explained 78.6% of
the total G + GE for the subset.
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15% selection intensity were estimated using the six traits

(AUDPC, PDI 7th day, PDI 14th day, PDI 21st day, PDI 28th

day, and PDI mean). The genotypes highlighted in red were selected

as the ideal genotypes, as shown in Figure 7. Five genotypes

in the following order, IC 256613 (G2), IC 277274 (G10),

Tetep (G28), IC 260917 (G4), and IC 283139 (G19), were above

the cut point. The genotypes IC 256613 (G2) and IC 277274

(G10) were plotted outside but closer to the red circle and,
Frontiers in Plant Science 12
thus, are comparatively stable and more desirable for the traits

under consideration.
Discussion

Sheath blight is the second most devastating fungal disease in

rice, causing yield reductions of 20-50% depending on the severity
TABLE 5 Selection differential of the WAASBY index for six sheath blight traits.

VAR FA1

LRT

Communality Uniquenesses Xo Xs SD SD%Gen GxE

1 AUDPC -0.978 5.12e-12 5.77e-11 0.956 0.0445 67.3 86.4 19.1 28.4

2 PDI_7 -0.645 0.016 1.000 0.416 0.584 56.0 78.8 22.9 40.8

3 PDI_14 -0.942 5.20e-15 2.77e-03 0.887 0.113 74.8 92.6 17.9 23.9

4 PDI_21 -0.952 4.06e-11 2.12e-08 0.906 0.0938 60.9 81.8 20.9 34.3

5 PDI_28 -0.898 3.11e-14 4.10e-04 0.806 0.194 61.5 78.5 17.0 27.6

6 PDI_m -0.984 1.43e-15 1.65e-07 0.967 0.0325 65.6 83.8 18.2 27.8

Communality mean 0.823
frontie
FA, factor analysis; Xo, mean for WAASBY index of the original population; Xs, mean for WAASBY index of the selected genotypes; SD, standard deviation.
FIGURE 6

The discriminativeness vs. representativeness view of test locations is based on a GGE biplot of 32 rice genotypes across six seasons and two locations. The
biplot was based on genotype-focused singular value partitioning (“SVP = 3”). Data were centered by means of the environments (centering = 2) and,
therefore, are appropriate for visualizing the relationships among environments. This explained 78.6% of the total G + GE for the subset.
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of the infection (Mukherjee, 1978). It has recently grown to be a

serious problem, particularly in areas of intensive rice farming. The

primary causes of the dramatic increase in disease incidence are

believed to be the monoculture of high-yielding semi-dwarf rice

cultivars, high dosages of nitrogenous fertilizers, and the favorable

microenvironment owing to the crop’s density (Cu et al., 1996).

Although many cultural and chemical practices to control sheath

blight are available, building inherent resistance in cultivated

varieties can be a reliable solution for managing sheath blight

disease in rice. The scope of this study was to evaluate the

performance of 32 different rice genotypes across six seasons
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artificially inoculated with sheath blight pathogen R. solani,

simultaneously evaluated in comparison with the performance of

resistant (Tetep, Jasmine 85, and Teqing) and susceptible (Pusa

Basmati-1 and Tapaswini) checks. This study’s findings could help

farmers tackle sheath blight incidence with stable and tolerant

varieties across seasons, especially in areas with intensive paddy

cultivation. Such areas usually resort to monocropping and are

often prone to sheath blight attacks owing to their sclerotia

sustaining in the soil. In such situations, the only way out is to

develop a tolerant variety with stable performance over seasons

and environments.
FIGURE 7

Genotypes are arranged based on a multi-trait stability index considering 15% selection intensity (the genotypes highlighted in red outside the inner
circle are preferred for stability and ideal for selection).
TABLE 6 Selection gain (%) for the mean of six sheath blight traits.

Traits Factor Xo Xs SD SD% h2 SG SG%

1 AUDPC FA1 749 594 -155 -20.7 0.808 -125 -16.7

2 PDI_7 FA1 12.1 11.1 -0.93 -7.7 0.455 -0.425 -3.5

3 PDI_14 FA1 18.0 13.0 -4.96 -27.6 0.842 -4.18 -23.3

4 PDI_21 FA1 31.7 25.2 -6.54 -20.6 0.795 -5.2 -16.4

5 PDI_28 FA1 42.2 33.4 -8.82 -20.9 0.834 -7.36 -17.4

6 PDI_m FA1 25.9 20.7 -5.26 -20.3 0.848 -4.46 -17.2
frontie
FA, factor analysis; Xo, mean for the trait of the original population; Xs, mean for traits of the selected genotypes; SG, selection gain; SD, standard deviation; h2, heritability.
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Plant morphological traits such as plant height, flag-leaf length,

flag-leaf width, tiller number, and panicle length followed a normal

distribution. This establishes the wide range of trait expression

present in the population under study and is, thus, a perfect group

for genetic improvement studies. The skewness values for these

traits also support a normal distribution. However, the kurtosis

showed heavy-tailed values for plant height and tiller number. The

coefficient of variation was considerable except for the tiller

number. AUDPC had high kurtosis values for disease reaction-

measuring traits, indicating heavy tails and a significant level of CV.

The AUDPC values recorded in this study were significantly

negatively correlated with the disease reaction.

PDI on the 7th day had significant negative associations with

plant height, flag-leaf length, and flag-leaf width. This shows that

initial infection and disease development depend on the shoot

biomass accumulated in the plant via plant height, flag-leaf

length, and flag-leaf width. However, the strength of this

correlation decreases in successive weeks. This is because

variations in the genotypic effect and physiological response

triggering in different genotypes might have a significant role in

the rate of disease reaction (Naveen kumar et al., 2022). The PCA

biplot displayed a cumulative variation of 40.99% contributed by

PC1 and PC2 in the population. The AUDPC, PDI 14th day, PDI

21st day, and PDI 28th day traits were clustered together, whereas

PDI 7th day was separate. This indicates that the expression of

disease reaction on the 7th day was preliminary and more uniform

in all the genotypes, which might be due to the initial epiphytotic

infection created artificially. However, the rate and intensity of

disease spread operated variably for PDI 14th day, PDI 21st day,

and PDI 28th day. The principal component analysis helped group
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the population into four clusters (Figure 8). Susceptible check

Tapaswini was placed in a cluster opposite Tetep’s cluster. These

groupings can help us to understand the trait expression associated

with these contrasting lines in response to disease infection. Traits

such as AUDPC, PDI 14th day, PDI 21st day, and PDI 28th day

displayed higher expression in the cluster with Tapaswini, whereas

their expression is low in the cluster with Tetep.

Weather parameters recorded on a daily basis across six seasons

were correlated with the PDI mean value, and the pooled

correlation results were studied. Maximum and minimum

temperatures were negatively correlated with the PDI mean,

whereas relative humidity was positively correlated with the PDI

mean (Supplementary Table 6). Relative humidity is involved in the

increased spread of the disease (Lenka et al., 2008; Shen et al., 2023).

Although temperature is inversely proportional to relative

humidity, the maximum and minimum temperatures are

negatively correlated with the PDI mean. The conducive

temperature for sheath blight infection is usually high, from 28 to

32°C, and relative humidity is approximately 97%, with disease

infection being at its minimum, at 85% to 88% (Bhukal et al., 2015;

Kaur et al., 2015).
Stability models for G x E

There have been multiple studies involving stability analysis

using different genotypes by environment datasets. The mean value

of a trait is sufficient to study the stability of a genotype as long as

there is an absence of G x E interaction (Yan and Kang, 2002). The

main aim of a stability model is to identify a genotype by
FIGURE 8

The PCA-based genotype grouping represented by PDI of 4 weeks. The PDI 28th day of group 2 (susceptible genotypes) touches the outer ring, and
group 4 exhibited a minimum PDI value.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280321
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Panda et al. 10.3389/fpls.2023.1280321
simultaneously considering the two sources of variation (G and G x

E interaction) relevant to the mega-environment, genotype, and test

environment evaluation (Yan et al., 2007). Multi-environment/

season data may exhibit crossover types of G x E that indicate a

change in the ranking of genotypes across the environment and

non-crossover types of G x E that define a constant ranking of

genotypes across the environment. Thus, the robustness of a model

can be determined with the above checklist. AMMI and GGE

biplots use these points and accurately represent G x E

interaction. This has been used in multiple studies involving

disease-resistant rice crops (Silva et al., 2011; Mukherjee et al.,

2013; Persaud and Saravana Kumar, 2018). However, the reliability

of AMMI analysis is considered higher or on par when compared to

GGE biplots (Gauch, 2006; Anandan et al., 2009a). On the other

hand, a newer approach, MTSI, has the advantage of simultaneously

analyzing the stability and performance of multiple traits for test

genotype selection as opposed to other stability analysis models that

consider one character at a time. Additionally, when G x E

interaction is high, it might affect selection efficiency; thus, a

robust selection model using WAASM and MTSI is necessary

(Abdelghany et al., 2021). This study is one of the first to analyze

a dataset from six seasons for sheath blight resistance in rice across

two diverse environments (Varanasi: 28.18° N, 38.03° E, and 75.5

masl, and Cuttack: 20°27’09” N, 85°55’57” E, 26 masl) via AMMI,

GGE biplot, and MTSI model. In our investigation, partition, and

interpretation were attempted using the AMMI stability technique,

GGE biplot method, and MTSI. This study enabled the

identification of a stable genotype across seasons for sheath blight

resistance and, at the same time, presents a comparison of the

results obtained from three different stability models.
Additive main effects and
multiplicative interaction

The AMMI model is one of the multivariate statistical

techniques that aim to explore multi-directionality aspects and

increase reliability. The significant sum of squares for genotypes

demonstrated the diversity of the population genotypes under

study, with differences in the genotypes accounting for the

majority of the variability in disease infection response vis-à-vis

the low sum of square values exhibited due to the environmental

factor. This is in contrast to the findings of Anandan et al. (2009b);

Mohammadi et al. (2018); Ngailo et al. (2019), and Bishwas et al.

(2021), for which the environments displayed a greater and more

significant sum of squares than the genotypes. This suggests the

predominant contribution of genotypes over the AUDPC trait

compared to the environment and G x E interaction factors. The

large sum of squares for genotypes showed that the genotypes were

diverse, and most variation in sheath blight resistance was due to

significant differences among genotypic means. The effect of

environment (E) was non-significant, implying that seasonal

differences spanning the six test environments did not pose any

significant difference in the expression of R. solani, causing sheath

blight disease in the test genotypes. However, a significant role was

played by the interaction between genotype and environment. In
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contrast, the mean AUDPC values calculated across seasons

highlighted variation in their levels, indicating a possible role of

G x E interaction.

In such studies, it is expected that test genotypes will have either

a crossover type of G x E interaction, which shows variation in

AUDPC values across seasons, or a non-crossover type of G x E

interaction, showing constancy in their AUDPC values. The AMMI

model partitioned this G x E interaction into five different principal

components, of which the first three were significant, making major

contributions for a total of 89.80% of the G x E interaction, implying

that the first three PCs are enough to explain the G x E interaction

effects of test rice landraces across six seasons.

The AMMI 1 biplot represents which-won-where information.

The abscissa indicates the G and E effects, whereas its IPCA1

represents stability. Any displacement along the abscissa denotes

an additive effect, whereas displacement in the ordinates denotes an

interaction effect. The genotypes that are grouped together are

assumed to be of similar adaptation. The genotypes with PC1

scores near zero indicate their suitability to all environments. The

genotypes on the far right-hand side of the biplot represent high

values of AUDPC (and hence are not desirable), whereas the ones

on the left-hand side displayed lower disease reaction or low

AUDPC values. Genotypes with IPCA values near zero are

considered stable across seasons, whereas genotypes with higher

IPCA scores, on either the negative or positive side, are suited only

to the corresponding environment.

Additionally, a season and a genotype with the same sign have a

positive interaction; when they are different, they show a negative

relation (Lakew et al., 2017). Tapaswini (G32), the susceptible

check, was on the far right-hand side with high values of AUDPC

and was placed away from the origin. This shows that the line is

highly susceptible and variable in its response across seasons. The

genotypes with the lowest values of AUDPC were plotted at the

right end of the x-axis: they were IC 283139 (G19) and Tetep (G28).

In comparison with Tetep (G28), which had an AUDPC value of

547.94, IC 283139 (G19) performed better (479.69) than the

susceptible check in sheath blight resistance but with a lower

stability than Tetep (G28). However, the genotypes IC 256613

(G2), IC 260917 (G4), and IC 277261 (G9) had IPCA scores near

zero and, thus, can be regarded as stable in their response toward

sheath blight disease resistance, although the AUDPC values

(658.91, 607.46, and 648.16, respectively) were higher than those

of the resistant check. The AMMI 2 biplot is a graphical

representation of the scores derived from PCs for explaining

multi-environment G x E interactions. The AMMI 2 biplot

accounted for 53% of the variation in PC1 and 23% of the

variation in PC2. The genotypes plotted close to the ordinate

express a general adaptation across seasons/environments, and

those that are placed further from the origin are regarded as

suitable for specific adaptation. Thus, the genotypes clustered

around the origin are similar in their response toward all the

environments. The environmental indicator with a shorter vector

represents less G x E interaction and more stability. The plants with

low AUDPC values and proximity to the origin can be regarded as

stable and useful. All the seasons/environments were connected to

the origin. Season 2015 had the shortest vector, thus exerting a weak
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interaction force, whereas 2019 kharif and 2016 exerted a strong

interaction force. The genotypes present near the vertex are more

responsive to specific environments. The two AMMI biplots helped

in identifying the genotypes IC 256613 (G2), IC 277261 (G9), IC

260917 (G4), IC 277274 (G10), Tetep (G28), and IC 264141 (G5) as

stable genotypes placed near the biplot origin and having low

AUDPC values. These genotypes showed 1.19% and 0.72%

increases in cellulose and hemicellulose, respectively, vis-à-vis

susceptible cultivars. Conversely, susceptible cultivars contain

0.15% higher nitrogen content. The higher percentage of cellulose

and hemicellulose with a lower amount of stem nitrogen might

enhance the innate immunity of the resistant accessions. Previous

reports documented that cellulose and hemicellulose of the host cell

wall play a significant role in the level of resistance against R. solani,

which degrades the host cell wall by cell wall degrading enzyme

(CWDE), which is a physical barrier of the plant immune system

(Zheng et al., 2013; Xia et al., 2017).
GGE biplot

GGE biplot analysis doesn’t create a distinct partition between

G and G x E; with this perspective, AMMI analysis is considered

superior (Gauch, 2006). However, the GGE biplot can efficiently

identify the G x E interaction pattern of the data and clearly

illustrate which genotypes perform better in multiple test

environments compared to AMMI (Yan et al., 2000).

The which-won-where polygon includes the furthest points

from the origin as its corners such that it accommodates all other

data points within the figure. The perpendiculars drawn from the

origin to each side of the polygon separate the biplot into several

vectors, with one genotype (located on the vertex) performing the

best in the respective season. The equality lines divided the biplot

into four sectors and environmental indices were placed in two of

these sectors. The genotypes placed under the respective

environments performed best in those sectors, while the

genotypes placed in a section of the biplot where there was no

environmental indicator indicated poorly performing genotypes

with respect to stability. This biplot helped in identifying

genotypes with high disease resistance across environments. The

susceptible genotypes with high AUDPC values were placed in the

sector with Tapaswini (susceptible check) (except 2019 kharif) but

were not desirable. The resistant check was placed in the opposite

sector without an environment index; thus, it can be considered

poor in stability. However, a few genotypes, such as IC 260917(G4),

IC 277274(G10), and IC 256613(G2), were found to have

comparatively low AUDPC values and were placed nearer the

origin, proving their stability. The mean vs. stability analysis plots

two straight lines: a vertical AEC abscissa and a horizontal AEC

ordinate. The single arrow-headed line points toward the greater

mean performance and, thus, the genotypes placed behind the

arrow were found to have low AUDPC values (higher resistance).

The vertical abscissa determines the stability of the genotypes such

that a genotype with zero projection from the horizontal axis is the

most stable. Accordingly, Tetep (G28), IC 260917 (G4), IC 277274

(G10), IC 256613 (G2), and IC 277261 (G9) were identified as
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desirable genotypes for further improvement as they had lower

AUDPC values and minimal projection from the horizontal axis.

Representativeness and discriminativeness biplots define the best-

suited environment for the test genotypes. The test environment is

better when the angle between the AEC abscissa and the test

environment vector is less than when bigger angles are generated.

An arrow indicates the direction of the AEC abscissa line and the

average value of the test environment is indicated by a small

concentric circle, with the discriminating ability being inferred

from the length of the test environment vector (Bishwas et al.,

2021). However, discriminativeness (the capacity of an

environment to differentiate genotypes) and representativeness

(the capacity of an environment to represent all other examined

settings) are two characteristics that indicate how good the tested

environments were (Oladosu et al., 2017). Based on the angle

between the vector and AEC abscissa as well as the length of the

vector, 2016 and 2019 rabi can be regarded as environments that

can ideally discriminate genotypes on the basis of their reaction

against sheath blight infection. The temperature range during 2016

was 25.6-31.9°C and the relative humidity was 77.7-87.3%.

Similarly, the temperature range during the 2019 rabi was 25.2-

36.6°C, as the temperature was high there, and the humidity was in

the range of 60.5-87.4%. In both seasons, the initial AUDPC values

were greatly influenced by relative humidity and temperature range,

thus establishing the role of G x E interaction. The PDI mean varied

from 11.3 to 12.9 on the 7th day after infection. The highest PDI

mean was 12.9 in 2019 kharif, with the highest RH (94.6%) across

all seasons and one of the lowest active sunshine hours (5.1 h). The

AUDPC value on the 28th day for 2016 was 48.2 and for 2019 rabi

was 43.6, with relative humidity ranging from 85.1% (evening) to

91.4% (morning) and 60.6% (evening) to 89.1% (morning),

respectively. Additionally, the number of sunshine hours in 2016

was 4.2 h, whereas in 2019 rabi, it was 6.3 h. The difference in

AUDPC values in these two test locations clearly shows them to be

influenced by relative humidity (Lenka et al., 2008; Thind et al.,

2008; Biswas et al., 2011; Pin et al., 2012) and active sunshine hours.

These weather regimes can play a substantial role in disease

establishment and spread and can consequently reveal the true

genetic potential of test genotypes. The study locations themselves

were significant factors accounting for total variation; similar results

were also reported by Krishnamurthy et al. (2021).

Multi-trait stability index
Selection procedures in crop improvement programs involve

simultaneously improving multiple traits and evaluating the

stability of such traits across seasons/environments. However,

stability models such as AMMI, Eberhart, Russell, etc., study G x

E interaction by treating each trait separately, as a result, the

effectiveness of determining a stable genotype across traits and

environments is reduced. The MTSI is a rather new approach that

aids in identifying a superior genotype with respect to multiple

traits at the same time and is more in use in recent times for various

crops (Broich and Palmer, 1980; Hussain et al., 2021; Koundinya

et al., 2021; Lima et al., 2022; Yue et al., 2022). It uses the genotype-

ideotype distance (Euclidean) using factor analysis scores (Olivoto

and Lúcio, 2020). The MTSI is predicated on the genotype-ideotype
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distance projected with factor analysis values. The most stable

genotypes with low AUDPC values for sheath blight (i.e., negative

selection differentials for AUDPC that needed to be reduced) were

revealed using the MTSI method. Given that it provides a robust

and easy-to-comprehend selection method, the MTSI might be

useful for plant breeders in selecting genotypes based on multiple

traits. The genotypes with lower values of MTSI are the ones with

higher stability based on the traits under consideration. In our

investigation, five traits were considered for MTSI analysis: PDI 7th

day, PDI 14th day, PDI 21st day, PDI 28th day, and PDI mean.

Genotypes IC 256613 (G2), IC 277274 (G10), Tetep (G28), IC

260917 (G4), and IC 283139 (G19) were considered the

most desirable.

Compared with the susceptible check, the identified stable lines

had low stem nitrogen and high hemicellulose content, which might

contribute to the low AUDPC values in the identified lines with

stability against sheath blight. Previous reports have confirmed that

high doses of nitrogenous fertilizer application have led to increased

infection, but decreasing the dose can hamper plant growth and

yield. Thus, the search must be for a genotype with higher nitrogen

use efficiency instead of accumulating nitrogen in the stem. In this

context, reports of ammonium transporters (belonging to the

OsAMT family) suggest that these transporters have helped

increase nitrogen assimilation and also have a role against sheath

blight in rice, thereby aiding both growth and defense (Pastor et al.,

2014; Wu et al., 2022). Similarly, hemicellulose has a role in plant

disease development by regulating cell wall composition (mainly

xyloglucan and xylan). Out of these four genotypes, IC 283139 has

been earlier identified as a promising line for sheath blight

resistance, and biochemical analyses have reported the presence

of higher polyphenol oxidase, peroxidase, total phenol,

phenylalanine ammonia-lyase, catalase, and superoxide dismutase

in resistant lines vis-à-vis susceptible ones (Naveen kumar et al.,

2022). Similarly to our previous study, we reported that these

resistant genotypes showed more defense (peroxidase, polyphenol

oxidase, phenylalanine ammonia-lyase, and total phenol) and

antioxidant (catalase and superoxide dismutase) enzymes than the

susceptible genotypes (Naveen kumar et al., 2022). These enzymes

might have enhanced the innate immunity of these resistant

genotypes. Our results were corroborated by those of

Bindschedler et al. (2006) and Marjamaa et al. (2009), who

reported that peroxidases can function to maintain the level of

H2O2 and play a major role in cell wall regeneration and thickening.
Conclusions

Rice not only satisfies the nutritional demand of most Asian

countries but also sustains their economic well-being. The changing

climate and life cycle of many pathogens negatively impact the

crop’s growth and yield. Sheath blight is one of the deadliest

diseases in rice, and limited work has been reported to date

concerning GxE interaction. This paper has identified sheath

blight tolerant genotypes simultaneously, compared the different

stability models, and employed a recently developed MTSI model.

The common genotypes that were identified as stable across six
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seasons in the three other stability models were IC 283139 (G19),

Tetep (G28), IC 260917 (G4), and IC 277274 (G10), with AUDPC

values of 658.91, 607.46, 479.69, and 547.94, respectively. Closer

study of the qualitative traits of these genotypes revealed that

nitrogen content (Savary et al., 1995; Slaton et al., 2003; Schurt

et al., 2016) and hemicellulose (Hapsari and Poromarto, 2020)

might have played a role in imparting resistance in the above

genotypes. This study has helped us identify promising stable

genotypes with low disease infection over six seasons and across

two locations. In the future, the identified stable genotypes could be

valuable in analyzing resistance mechanisms and their impact on

grain yield.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

SP: Writing – review & editing, Conceptualization, Formal

Analysis, Investigation, Methodology, Writing – original draft.

NR: Conceptualization, Formal Analysis, Investigation,

Methodology, Writing – original draft. LP: Conceptualization,

Formal Analysis, Investigation, Writing – review & editing. GS:

Formal Analysis, Investigation, Methodology, Writing – original

draft. PS: Methodology, Writing – review & editing. RS:

Methodology, Writing – review & editing. PV: Methodology,

Writing – review & editing. HS: Writing – review & editing,

Methodology. AM: Writ ing – review & edit ing. AA:

Conceptualization, Investigation, Project administration,

Supervision, Writing – original draft, Writing – review & editing.

JA: Funding acquisition, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This research

was funded by the Bill & Melinda Gates Foundation, which provided

a research grant as part of the Green Super Rice Project under ID

OPP1130530, and the Department of Agriculture, Philippines, which

provided funds to JA under the Next-Gen Project.
Acknowledgments

We gratefully acknowledge the support extended by the

Director, Institute of Agricultural Sciences, BHU, Varanasi, and

Director, NRRI, for providing field and laboratory facilities to carry

out the research activities. We extend special thanks to the

administrative staff of both institutes that supported this

experiment in official terms.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280321
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Panda et al. 10.3389/fpls.2023.1280321
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 18
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1280321/

full#supplementary-material
References
Abdelghany, A. M., Zhang, S., Azam, M., Shaibu, A. S., Feng, Y., Qi, J., et al. (2021).
Exploring the phenotypic stability of soybean seed compositions using multi-trait
stability index approach. Agronomy 11, 2200. doi: 10.3390/agronomy11112200

Anandan, A., Eswaran, R., Sabesan, T., and Prakash, M. (2009a). Additive main
effects and multiplicative interactions analysis of yield performances in rice genotypes
under coastal saline environments. Adv. Biol. Res. (Rennes) 3, 43–44.

Anandan, A., Sabesan, T., Eswaran, R., Rajiv, G., Muthalagan, N., and Suresh, R.
(2009b). Appraisal of environmental interaction on quality traits of rice by additive
main effects and multiplicative interaction analysis. Cereal Res. Commun. 37, 131–140.
doi: 10.1556/CRC.37.2009.1.15

Bhukal, N., Singh, R., and Mehta, N. (2015). Progression and development of sheath
blight of rice in relation to weather variables. J. Mycol. Plant Pathol. 45, 166–172.

Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., et al.
(2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for
pathogen resistance. Plant J. 47, 851–863. doi: 10.1111/j.1365-313X.2006.02837.x

Bishwas, K. C., Poudel, M. R., and Regmi, D. (2021). AMMI and GGE biplot analysis
of yield of different elite wheat lines under terminal heat stress and irrigated
environments. Heliyon 7, e07206. doi: 10.1016/j.heliyon.2021.e07206

Biswas, B., Dhaliwal, L. K., Chahal, S. K., and Pannu, P. P. S. (2011). Effect of
meteorological factors on rice sheath blight and exploratory development of a
predictive model. Indian J. Agric. Sci. 81, 256.

Broich, S. L., and Palmer, R. G. (1980). A cluster analysis of wild and domesticated
soybean phenotypes. Euphytica 29, 23–32. doi: 10.1007/BF00037246

Cu, R. M., Mew, T. W., Cassman, K. G., and Teng, P. S. (1996). Effect of sheath blight
on yield in tropical, intensive rice production system. Plant Dis. 80, 1103–1108. doi:
10.1094/PD-80-1103

Das, A., Parihar, A. K., Saxena, D., Singh, D., Singha, K. D., Kushwaha, K. P. S., et al.
(2019). Deciphering genotype-by-environment interaction for targeting test
environments and rust resistant genotypes in field pea (Pisum sativum L.). Front.
Plant Sci. 10, 825. doi: 10.3389/fpls.2019.00825

Dempster, A. P., Laird, N. M., and Rubin., D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38. doi: 10.1111/j.2517-
6161.1977.tb01600.x

Dey, S., Badri, J., Prakasam, V., Bhadana, V. P., Eswari, K. B., Laha, G. S., et al.
(2016). Identification and agro-morphological characterization of rice genotypes
resistant to sheath blight. Australas. Plant Pathol. 45, 145–153. doi: 10.1007/s13313-
016-0404-9

Durgadevi, M., and Shetty, P. H. (2014). Effect of ingredients on sensory profile of
idli. J. Food Sci. Technol. 51, 1773–1783. doi: 10.1007/s13197-012-0686-z

Gauch, H. G. Jr. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop
Sci. 46, 1488–1500. doi: 10.2135/cropsci2005.07-0193

Gopinath, P. P., Parsad, R., Joseph, B., and Adarsh, V. S. (2021). grapesAgri1:
collection of shiny apps for data analysis in agriculture. J. Open Source Software 6, 3437.
doi: 10.21105/joss.03437

Goswami, S. K., Singh, V., Kashyap, P. L., and Singh, P. K. (2019). Morphological
characterization and screening for sheath blight resistance using Indian isolates of
Rhizoctonia solani AG1IA. Indian Phytopathol. 72, 107–124. doi: 10.1007/s42360-018-
0103-2

Groth, D. E., and Nowick, E. M. (1992). Selection for resistance to rice sheath blight
through number of infection cushions and lesion type. Plant Dis. 76, 721–723. doi:
10.1094/PD-76-0721

Hapsari, L. L., and Poromarto, S. H. (2020). Characters of local varieties cv. Padi
Hitam and Srikiti as the moderate resistant rice to sheath blight caused by Rhizoctonia
solani. Ann. Agri Bio Res. 25, 54–60.
Hussain, T., Akram, Z., Shabbir, G., Manaf, A., and Ahmed, M. (2021). Identification
of drought tolerant Chickpea genotypes through multi-trait stability index. Saudi J.
Biol. Sci. 28, 6818–6828. doi: 10.1016/j.sjbs.2021.07.056

IRRI (International Rice Research Institute) (2013). Standard evaluation system for
rice. Int. Rice Res. Institute Philipp. p-19.

Kaur, A., Dhaliwal, L. K., and Pannu, P. P. S. (2015). Role of meteorological
parameters on sheath blight of rice under different planting methods. Int. J. Bio-
resource Stress Manage. 6, 214–219. doi: 10.5958/0976-4038.2015.00039.1

Kirtphaiboon, S., Humphries, U., Khan, A., and Yusuf, A. (2021). Model of rice blast
disease under tropical climate conditions. Chaos Solitons Fractals 143, 110530. doi:
10.1016/j.chaos.2020.110530

Koundinya, A. V. V., Ajeesh, B. R., Hegde, V., Sheela, M. N., Mohan, C., and Asha, K.
I. (2021). Genetic parameters, stability and selection of cassava genotypes between rainy
and water stress conditions using AMMI, WAAS, BLUP and MTSI. Sci. Hortic.
(Amsterdam) 281, 109949. doi: 10.1016/j.scienta.2021.109949

Krishnamurthy, S. L., Sharma, P. C., Sharma, D. K., Singh, Y. P., Mishra, V. K.,
Burman, D., et al. (2021). Additive main effects and multiplicative interaction analyses
of yield performance in rice genotypes for general and specific adaptation to salt stress
in locations in India. Euphytica 217, 1–15. doi: 10.1007/s10681-020-02730-7

Lakew, T., Dessie, A., Tariku, S., and Abebe, D. (2017). Evaluation of performance
and yield stability analysis based on AMMI and GGE models in introduced upland rice
genotypes tested across Northwest Ethiopia. Int. J. Res. Stud. Agric. Sci. 3, 17–24. doi:
10.20431/2454-6224.0302003
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