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Pest and disease damage to forests cannot be underestimated, so it is essential to

detect diseased trees in time and take measures to stop their spread. The

detection of discoloration standing trees is one of the important means to

effectively control the spread of pests and diseases. In the visible wavelength

range, early infected trees do not show significant color changes, which poses a

challenge for early detection and is only suitable for monitoring middle and late

discolor trees. The spectral resolution of hyperspectral restricts the improvement

of its spatial resolution, and there are phenomena of different spectral of the

same and foreign objects in the same spectrum, which affect the detection

results. In this paper, the method of hyperspectral and CCD image fusion is used

to achieve high-precision detection of discoloration standing trees. This paper

proposes an improved algorithm MSGF-GLP, which uses multi-scale detail

boosting and MTF filter to refine high-resolution data. By combining guided

filtering with hyperspectral images, the spatial detail difference is enhanced, and

the injection gain is interpolated into the difference of each band, so as to obtain

high-resolution and high-quality hyperspectral images. This research is based on

hyperspectral and CCD data obtained from LiCHy, Chinese Academy of Forestry,

Maoershan Experimental Forest Farm, Shangzhi City, Heilongjiang Province. The

evaluation framework is used to compare with the other five fusion algorithms to

verify the good effect of the proposed method, which can effectively preserve

the canopy spectrum and improve the spatial details. The fusion results of

forestry remote sensing data were analyzed using the vegetation Normalized

Difference Water Index and Plant Senescence Reflectance Index. The fused

results can be used to distinguish the difference between discoloration trees

and healthy trees by the multispectral vegetation index. The research results can

provide good technical support for the practical application of forest remote

sensing data fusion, and lay the foundation for promoting the scientific,

automatic and intelligent forestry control.

KEYWORDS

discolored standing trees, data fusion methods, forest remote sensing, hyperspectral
remote sensing, data processing
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1 Introduction

Forests play a vital role in terrestrial ecosystems, not only

promoting the carbon cycle but also mitigating global climate

change (Li et al., 2018). As the main regulators of water, energy,

and carbon cycles (Ellison et al., 2017), The forests play an

indispensable role. Therefore, the problem of forest health has

been widely concerned by ecologists around the world (Dash

et al., 2017). Simultaneously, recent advancements in technology

have facilitated the assessment of forest health (Estrada et al., 2023).

Pests and diseases can cause great damage to forest ecosystems. The

health of trees is infested by harmful pests, usually manifested as

changes in canopy condition (Stone and Mohammed, 2017).

Therefore, the state of the forest canopy is an indispensable

indicator in forest health assessment systems. The trees detected

with abnormal colors in the forest is an essential way to realize the

detection of forest pests and diseases. Meanwhile, Monitoring the

discoloring trees infected by pests and diseases is an essential means

to control the spread of epidemics (Ren et al., 2022). However, the

severity of its impact on pests and disease infection for forest

canopy can only be determined by biological physiological

sampling in the field until now, which its relies on human

participation, and the time cost is high in practical applications

(Hall et al., 2016). How to quickly and effectively detect forest pests

and diseases in the early stages has become a key problem in forest

health detection.

In recent years, with the rapid development of remote sensing

satellites and air-to-ground observation technology, it can obtain

multi-sensor and resolution data in the same area (Luo et al., 2022).

Among them, high-resolution CCD and hyperspectral images have

garnered significant attention in recent years.

Hyperspectral remote sensing images have been proposed due

to the advantages of a continuous spectrum, multi-band, etc., which

can obtain the spectral profile of the features while acquiring spatial

data, rich spectral information, and the ability to describe the

spectral characteristics of the ground cover in detail (Liao et al.,

2015). The properties of ground cover can be distinguished

according to different spectral characteristics. Forest diseases and

pests can be detected by analyzing vegetation reflectance changes

(Luo et al., 2022). However, its spatial resolution is relatively low

and identification accuracy is poor. At present, hyperspectral

remote sensing images have been widely used in forest vegetation

type recognition (Shen and Cao, 2017), forest carbon storage

estimation (Qin et al., 2021), and fire monitoring (Matheson and

Dennison, 2012).

High-resolution CCD data provides more and accurate detailed

texture features of forest trees as well as spatial detail information

due to its higher spatial resolution, which provides higher accuracy

in the identification of forest pests and diseases in the middle and

late stages (Eugenio et al., 2022). The primary obstacle to utilizing

this image for early-stage monitoring of forest pests and diseases lies

in the scarcity of spectral information. Only trees with significant

discoloration characteristics can be identified.

Through the above analysis, it can be found that the fusion

scheme of high-resolution CCD and hyperspectral data can enrich

the data source information, and the image obtained after fusion
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can have rich spectral information and high-resolution detail

information, which will greatly improve the effectiveness of image

data, which provide the possibility of monitoring forest pests and

diseases in an early stage.

These methods have been used in the field of hyperspectral

fusion (Yokoya et al., 2017). They can be mainly classified into

imaging model-based, Bayesian (Wei et al., 2015), panchromatic

sharpening (Loncan et al., 2015), and depth net-work-based

methods. The imaging model-based methods mainly include

hybrid image element decomposition as well as tensor

decomposition methods. For example, The coupled non-negative

matrix decomposition (CNMF) (Lanaras et al., 2015) has the

advantages of clear mathematical principles and efficient program

execution, but there are certain spectral distortions, and the fusion

results are easily affected by matrix initialization. Bayesian fusion-

based methods such as Maximum A Posteriori Probability

Estimation-Stochastic Mixture Model (MAP-SMM) (Eismann and

Hardie, 2005), The method is derived strictly according to

mathematical theory and has the ability of prior constraints.

HySure method, it gives better results in preserving edges while

being able to smooth noise in homogeneous regions. The methods

based on matrix factorization and Bayesian have a strong

dependence on the spatial-spectral degradation model, and the

degradation relationship of the spatial-spectral degradation model

is not necessarily applicable to the actual situation, which affects the

fusion performance of matrix factorization method and Bayesian

method in practical applications, and there is spatial-spectral

distortion in some practical situations. Component substitution,

and multi-resolution analysis are used in panchromatic sharpening

methods. Component substitution approaches are commonly used

with the principal component analysis (PCA) algorithm, GS (Gram

Schmidt), The advantage lies in the high-fidelity spatial details

exhibited by the final fused result. However, a limitation of the

component replacement method is its inability to capture local

differences between images, leading to significant spectral

distortions (Thomas et al., 2008). The main multi-resolution

analysis (MRA) methods are Generalized Laplace Pyramid (Aiazzi

et al., 2006) (GLP) and others. Multi-resolution analysis methods

have the advantage of preserving spectral characteristics and can

effectively solve practical problems, but there is still the problem of

loss of spatial details.

Therefore, based on the GLP algorithm, this paper uses the

multi-scale detail boosting to enhance the details of the high-

resolution data, and combines the MTF filter to down-sample and

interpolate the high-resolution data, and obtains the high-

resolution detail image by processing the completed image and

the detail enhanced high-resolution data. Guided filtering is used to

obtain the spatial detail difference between the enhanced high-

resolution image and each band, and the injection gain is generated.

The corresponding difference is inserted into each band of the

interpolated hyperspectral image to obtain the high-resolution

detail-enhanced hyperspectral image.

The main innovative work of this aper is as follows:

(I) MSGF-GLP(Multi Scale Guided Filter - Generalized Laplace

Pyramid): A new method for the fusion of high-resolution CCD and

hyperspectral images is proposed, which uses a multi-scale detail
frontiersin.org
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boosting combined with MTF filters based on the GLP algorithm and

introduces guided filtering techniques. It is verified through fusion

experiments that the method has the advantage of maintaining

spectral as well as spatial characteristics in image fusion.

(II) The proposed fusion of high-resolution CCD with

hyperspectral images for detecting forest discolored standing trees

can improve visualization/feature recognition performance and can

be used for early forest pest and disease detection and

health monitoring.

(III) The fused images are proposed to apply NDWI and PSRI

vegetation indices to form data with enhanced information for

monitoring discolored standing trees. It is a new solution for the

early detection of discolored trees, and this method enhances the

ability to monitor potential threats promptly and has practical

applications in the early control of forest pests and diseases.

The rest of the paper is organized as follows: in Section II, the

study area, image data, preprocessing steps, and an introduction to

the improved algorithm are presented, and in Section III, the results

of the fusion algorithm and the performance of the algorithm are

analyzed. In section IV discusses that in the subsequent research,

the data collected by the ground base station can be combined to

detect and analyze the tree crown characteristics through multi-

source data fusion, so that the collected canopy abnormal spectrum

is more accurate, the abnormal spectral feature extraction is more

real and reliable, and the application ability of the fusion algorithm

in pest and disease, forest control and other aspects can be

improved. The conclusions are presented in Section V.
2 Materials and methods

2.1 Airborne data

The data set used in this study is from the LiCHy airborne

observation system of The Chinese Academy of Forestry (CAF),

which has multiple data acquisition capabilities. It includes

simultaneous acquisition of Hyperspectral images, LiDAR data,

and CCD images.

Hyperspectral images were collected using the AISA Eagle II

(Spectral Imaging Ltd., Oulu, Finland) hyperspectral sensor for the

LiCHy system. It is a push broom imaging system that covers the

VNIR spectral range from 400 nm to 1000 nm. A medium-format

airborne digital camera system (DigiCAM-60) was selected as the

CCD sensor with a spatial resolution of 0.2 m. The Table 1 shows

the equipment parameters of the adopted hyperspectral data with

high resolution CCD data (Pang et al., 2016).

The data used in this study contained hyperspectral data, as well

as CCD images. The coverage area is the Maoershan Experimental

Forestry Field (127°36′E, 45°21′N) in Maoershan Town, Shangzhi

City, Heilongjiang Province. The feature types are mainly man-made

buildings and vegetation. The forest farm has a total area of 26,496

hectares, with an average forest coverage rate of 95% and a total forest

stock of 3.5 million m³. Due to the discrete distribution of forest pests

and diseases at varying degrees and diverse terrain conditions, there is

a high risk of infection in this area. To effectively control the spread of

forest pests and diseases and minimize losses, it is crucial to identify
Frontiers in Plant Science 03
discolored standing trees within this forest region promptly.

Therefore, the Maoershan experimental sample site has been

identified as one of the most suitable areas for acquiring image

data on discolored standing trees. Typical surface features such as

roofs and soil exhibit high reflectance in visible and near-infrared

bands while being associated with low biomass levels. Healthy green

trees display higher near-infrared reflectance but lower red-band

reflectance. As chlorophyll content decreases, red band reflectance

increases while near-infrared reflectance decreases accordingly. These

distinct spectral differences between visible-near-infrared bands

enable the detection of discolored standing trees, providing a solid

theoretical foundation for our study. Additionally, the selected

sample site exhibits evident abnormal discoloration in wood

specimens along with accurate ground features within the

experimental area that facilitate precise data registration and

enhance experiment accuracy. The study area is shown in Figure 1.
2.2 Image preprocessing

Given that the quality of airborne remote sensing images is

influenced by various factors, including terrain conditions, flight

status, and weather conditions, it becomes imperative to preprocess

the acquired remote sensing data prior to data fusion. This

preprocessing consists of two aspects: hyperspectral data and

high-resolution CCD data.

The preprocessing of the hyperspectral data consists mainly of

radiometric calibration, geometrical corrections, and atmospheric
TABLE 1 The sensor parameters of the LiCHy system (Pang et al., 2016).

CCD: DigiCAM-60

Frame size 8956×6708 Pixel size 6 μm

Imaging sensor size
40.30

mm×53.78
mm

Bit depth 16bits

FOV 56.2° Focal length 50mm

Ground resolution
@1000 m altitude

0.12 m

Hyperspectral: AISA Eagle II

Spectral range 400–970 nm Spatial pixels 1024

Focal length 18.1 mm Spectral resolution 3.3 nm

FOV 37.7° IFOV 0.037°

Maximum bands 488 Frame rate
160

frames/s

Bit depth 12bits

View zenith angle
range of

5-55°
multi-angular
module (MAM)

Ground resolution
(cross-track)

0.68m
@1000 m altitude, nadir

view
fron
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corrections. The raw AESA-Eagle hyperspectral data were

judiciously resolved and calibrated using the CaligeoPRO

software. Simultaneously, in combination with the calibration files

of the AISA Eagle II sensor, the images were calibrated for the

radiometry presented in this paper. The energy received by the

sensor is not completely reflected from the ground due to

atmospheric absorption and scattering of electromagnetic waves

during propagation. In this paper, Using the ATCOR4 software and

apply the MODTRAN model to remove atmospheric perturbations

and obtain true reflectivity. High-resolution CCD data was pre-

processed, including image cropping and accurate registration with

hyperspectral images, to ensure the quality and effectiveness of

data fusion.
2.3 MSGF-GLP fusion method

The fused data is designed to have both high spatial resolution

as well as high spectral resolution, the effect of which is shown

in Figure 2.
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Due to the indistinct details in the original image, a multi-scale

detail boosting (MSDB) (Kim et al., 2015) was applied to process the

high-resolution CCD data image, comprehensively enhancing its

details. The processing procedure is shown in Figure 3 as follows:

B1 = G1 * C,  B2 = G2 * C,  B3 = G3 * C

D1 = C − B1,  D2 = B1 − B2,  D3 = B2 − B3

D* = (1 − w1 � sgn(D1))� D1 + w2 � D2 + w3 � D3

Cm = D* + C

8>>>>><
>>>>>:

For the original image C, three images B1, B2 and B3 with

different fine scales obtained by different Gaussian filters,

respectively. Where G1, G2 and. G3 are Gaussian kernel functions,

and their standard deviations are taken as =1, s2 =2 and s3 =4,

respectively. Then, the filtered images B1, B2 and B3 were used to

generate three detailed images D1, D2 and D3 with different levels of

fineness. Finally, the three detail images are merged to generate the

final detail-boosting image. During this process, w1, w2, and w3 s1

are chosen to be 0.5, 0.5, and 0.25, respectively, to enhance detail

while suppressing saturation. Finally, the original image C is added
B

C D

A

FIGURE 1

Study area location map. (A) Location of Heilongjiang Province in the map of China. (B) high-resolution CCD data of the study area. (C) Location of
the study area in the map of Heilongjiang Province. (D) Hyperspectral images of the study area.
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to the overall detail image D* to obtain the image Cm after detail

enhancement.

Cɡ
m = expandr((Cm*hLP) ↓ r)

Where hLP represents the Gaussian filter matching the

hyperspectral band MTF, ↓ represents the convolution down-

sampling, and the image after filtering is performed with r times of

convolution down-sampling, r is the down-sampling factor, which is

8 in this paper. expandr is the interpolator, which convolutional

upsample the image and interpolates it to finally obtain the image Cɡ
m.

Upsampling: The proportion of a low-resolution Hl image that is

upsampled to a CCD image. The resulting image is denoted by Hl
u.

Each band of the original hyperspectral image is interpolated in turn

for each band of the image. Where H is the low-resolution

hyperspectral image and Hl
u is the l band of the interpolated

hyperspectral image. Hl is the lth band of the low-resolution

image. The spectral data pixels of the original hyperspectral image

pixels are transferred to the corresponding sub-pixels in the same

way. Bicubic interpolation was used to upsampling the hyperspectral

images.

Hl
u =↑ Hl
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Guided filter (He et al., 2013) is a kind of low-pass filter. The

structure transfer property of the filter can transfer the structural

details of the guided image to the input image and can eliminate the

edge occlusion effect due to upsampling of the image to the

maximum extent. While preserving the spectral feature

information of the input image, the spatial details and texture

structure of the pilot image are transferred to the output image to

obtain a hyperspectral image with enhanced spatial details, which

can effectively improve the quality of hyperspectral image fusion.

For the input image p, the guided image I is used as the guided

filter, and the output image q is obtained after filtering. For the pixel

at position i, the filtered output is a weighted average, and the

guided filter is expressed by the following formula:

qi =o
j
Wij(I)pj

Wij is the filter kernel associated only with the guided image I.

For an input image p, the output image is q after filtering using

the bootstrap image I of the bootstrap filter. The bootstrap filter

assumes that the output image and the bootstrap image I satisfy a

linear relationship.

qi = akIi + bk,∀ i ∈ wk
FIGURE 2

Schematic representation of the fusion result.
FIGURE 3

Algorithm block diagram.
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where Ii and qi denote the value of the i th pixel in the guide

image and the output image, respectively. wk is a local window of

size (2r+1) × (2r-1) with coefficients ak and bk as its linear

coefficients, which are considered to be constant within wk. the

radius of wk is r. Minimization of the serial port wk by the cost

function.

E(ak, bk) = o
i∈wk

((akIi + bk − pi)
2 + ea2k)

where ϵ is an adjustable regularization parameter and ak and bk
can be found by a linear regression equation.

ak =
1
wj joiϵwk

(Iipi−mi�pk)

s2
k +e

bk=�pk − akmk

8<
:

where and are the mean and variance of the corresponding

bootstrap image in wk, respectively, is the number of all pixel points

contained in wk, and is the mean value of image p in wk.

In this paper, GFe ,r(G, P) stands for guided filtering processing,

G and P represent the guiding image and the input image

respectively, and the parameter r and the orthogonalization

parameter ϵ represent the radius and blur degree of the filtering

window, respectively. The parameters are set to r =20 and e =10-6.

Hl
ɡ = GFe ,r Hl

u, (Cm − Cg
m)

� �

Dl
ɡ = Cm − Hl

ɡ

Multiresolution methods obtain spatial details by decomposing

high spatial resolution CCD images at multiple scales. The

upsampling hyperspectral bands will be incorporated through

injection. proportionally to the CCD image size. After

subsampling the CCD image using the MTF filter, the

interpolation calculation is performed, and then the detail image

is calculated by subtracting the obtained low-resolution CCD image

from the original CCD image. Guided filtering is performed on the

detail image and the hyperspectral to transfer the structural details

to the hyperspectral to obtain the filtered result. The hyperspectral

filtered detail image is calculated by subtracting it from the original

CCD image. Finally, these detailed images are added to the original

hyperspectral bands to obtain high-resolution hyperspectral images.

HSIlFU = Hl
u + ɡl(Cm − Hl

ɡ)

ɡl =
Hl

u
1
NoN

l=1H
l
u

for l = 1,2,…, where l HSI represents the lth band of the

fused image.
2.4 Comparison experiment

MAP-SMM (Hardie et al., 2004) uses maximum a posteriori

estimation method and random mixture model to improve the

spatial resolution of hyperspectral images with the assistance of
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high-resolution CCD images-Sharpening Spectral. The method

enhances CCD images with a high spatial resolution by

sharpening them. In the experiment, hyper-spectral data was used

as input for low spatial resolution, while CCD served as input for

high spatial resolution. Resampling was set to cubic convolution.

CNMF (Yokoya et al., 2012) estimates endmembers and high-

resolut ion abundance maps by alternat ing unmixing

hyperspectral and high-resolution CCD images via nonnegative

matrix factorization NMF (Lee and Seung, 1999). The hyperspectral

data is initialized by unmixing the hyperspectral images using VCA

(Nascimento and Dias, 2005). The final high-resolution

hyperspectral data are obtained by the product of spectral

features and high-resolution abundance maps. HySure (Simoes

et al., 2015) to formulate the fusion problem as a convex set

minimization problem involving two quadratic terms and an

edge-preserving term.

In the method requiring PSF, a Gaussian filter with an FWHM

of GSD was used based on the FWHM provided in the data (Yokoya

et al., 2017). HySure used the PSF estimation method described in

(Simoes et al., 2015). The non-negative least squares method was

used for estimation in the method requiring SRF (Finlayson and

Hordley, 1998).

Six fusion methods are used in the experiments, including

CNMF, HySure, MAP-SMM, PC-Spectral sharpening, GLP, and

the improved algorithm proposed in this paper. The fusion

experiment involves preprocessing high-resolution CCD data and

hyperspectral data to obtain enhanced high-resolution CCD images

and corrected hyperspectral data, which serve as inputs for the

algorithm. Simultaneously, experimental parameters are set, and

ultimately the fusion results of each algorithm are obtained. The

results are evaluated using qualitative and quantitative indicators.
2.5 Quality evaluation

The evaluation of the effects of hyperspectral fusion images is a

crucial step in fusion processing, encompassing two primary

aspects: qualitative assessment and quantitative analysis (Dong

et al., 2022). Qualitative evaluation needs to be combined with

quantitative evaluation for a more accurate and reasonable

assessment of the results of hyperspectral remote sensing

fusion images.

2.5.1 Qualitative evaluation
The qualitative assessment of remote sensing fusion data is

conducted through direct visual inspection by the reader to discern

its strengths and limitations. Visual interpretation can be used to

assess the quality of fusion, but it is greatly affected by the individual

knowledge of the observer, which is subjective and incomplete.

However, it can provide an intuitive visual sense of the spatial

resolution and sharpness of the image.

The qualitative evaluation mainly includes detecting whether

there is ghost and distortion in the image, whether the fusion results

are effectively preserved and enhanced in the spatial detail

expression, the colour brightness and texture features of the
frontiersin.org
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ground objects, and whether the sharpness of the image after fusion

is improved.

2.5.2 Quantitative evaluation
The quantitative evaluation index of the fusion image can only

represent the quality evaluation results of the fusion image in one

aspect. The advantages and dis-advantages of various fusion

algorithms can be found by comparing and analysing the changes

in the image before and after fusion with some technical indexes.

Therefore, in this study, (Spectral Angle Mapping)SAM (Alparone

et al., 2007),which is used to assess the degree of spectral distortion

during fusion. (Error Relative Global Adimensionnelle de

Synthesse)ERGAS (Du et al., 2007),which is used to measure the

global spectral quality of fused images. (Correlation Coefficient)CC

(van der Meer, 2006) is reflects the degree of correlation between

the fused image and the reference image. Entropy is an evaluation

index of how much information the image contains. (Root Mean

Square Error) RMSE is the proximity between the fused result

image and the reference image, and other indicators were used to

compare the images before and after fusion. The reference data are

the resampled raw hyperspectral data.

2.5.3 PSRI, NDWI vegetation index
and canopy spectral

In addition to the above qualitative and quantitative

evaluations, this paper selects PSRI, NDWI vegetation index, and

tree canopy spectral curves to analyse the fused results from the

spectral level. To a certain extent, they can reflect the difference

between the original hyperspectral data and the fusion results and

present the spectral fidelity more intuitively.

The vegetation index is defined as a dimensionless index,

commonly a ratio, linear or nonlinear combination of spectral

reflectance of two or more bands and is considered a sign of the

relative abundance and activity of green vegetation in terms of

radiance and is a comprehensive representation of chlorophyll

content and green biomass of green vegetation, which is intended

to diagnose the vegetation growth status and green vegetation

vigour, enhances a particular attribute or characteristic of the

vegetation (Munnaf et al., 2020).

The spectral reflectance changes of vegetation in the visible-NIR

band after being stressed by pests and diseases are a direct feature of

remote sensing of pests and diseases (Sankaran and Ehsani, 2011).

Such spectral responses caused by pests and diseases are widely used

in remote sensing monitoring and early stress diagnosis (Prabhakar

et al., 2011). When vegetation leaves are infected, it will be

accompanied by changes in chlorophyll and carotenoid content

and affect the canopy water content.

Therefore, two planting indices selected in this paper: PSRI

(Merzlyak et al., 1999) and NDWI (Gao, 1996), are selected to

synthesize the results of fusion, as indicators to reasonably evaluate

the fusion results from the spectral level as well as in

practical applications.

NDWI is a normalized water index, which is used to study the

water content of vegetation, and it can effectively extract the water

content of the vegetation canopy and can have a more obvious
Frontiers in Plant Science 07
response when the vegetation canopy is under water stress.

NDWI =
GREEN − NIR
GREEN + NIR

GREEN is the green band and NIR is the near-infrared band. In

this paper, the GREEN wavelength was selected as 525 nm and the

NIR wavelength was 956 nm.

PSRI is the plant senescence reflectance index, which is detected

using the ratio of carotenoids to chlorophyll. It can be used for

vegetation health monitoring, plant physiological stress ability

detection, etc.

PSRI =
(r680 − r500)

r750

The canopy spectral curves can reflect the physiological

properties of the features (Li et al., 2015), and comparing the

canopy curves before and after fusion allows for a reasonable

assessment of the actual performance of the fusion algorithm and

a comparison of the changes in the actual spectra.
3 Results and evaluation

3.1 Qualitative evaluation

3.1.1 Spatial detail evaluation
The following is the spatial detail evaluation after the fusion is

completed. As the Figure 4 shows the original CCD image, the false

colour image of the original hyperspectral data (R:666 nm; G:525

nm; B:434 nm). For the overall fusion results, there are certain

colour as well as brightness differences between different fusion

algorithms compared to the original data. However, the spatial

texture as well as the detailed features are somewhat preserved in

each fusion algorithm when compared to the local magnification.

The fusion result of HySure exhibits higher brightness than the

original CCD im-age, and the feature display effect has been

moderately enhanced. The fusion results from PC Spectral

Sharpening are relatively fewer sharp than the initial CCD data,

with lighter color tones in the vegetation parts, deviating from the

other results in terms of color fidelity. Nevertheless, spatial detail

information is partially preserved. The proposed algorithm

preserves spatial details while enhancing the sharpness of edges in

the fused image.

The MAP-SMM algorithm preserves the texture properties of

tree crowns for the description of color-changing tree crowns.

Although there are some differences with the original data, the

HySure algorithm is able to better preserve the optical texture and

features of the canopy, and the spatial features perform nicely,

making the edges of the canopy and additional surrounding trees

distinctly visible. In contrast, the CNMF algorithm does not

perform as well in terms of detail, but can still distinguish the

edge features of the discolored standing tree. The results of PC-

Spectral Sharpening fusion show that the color description of the

canopy of color-changing trees is not clear enough and does not

effectively distinguish normal trees from their boundaries. At the
frontiersin.org
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same time, the spatial details are insufficient. The GLP algorithm

improves the de-tailed information of tree crowns to some extent.

Overall, the proposed algorithm effectively preserves and

characterizes the complex and diverse details of the tree and its

surroundings, and accurately distinguishes normal from

abnormal conditions.

In summary, the spatial resolution of the above six algorithms is

effectively im-proved compared with the original hyperspectral

data, and the algorithm proposed in this paper, while improving
Frontiers in Plant Science 08
the spatial details, can portray the abnormal canopy of

discolored trees.

3.1.2 Spectral level evaluation
In order to be able to compare the fusion results of each method

more obviously from the visual effect, the following Figure 5 gives

the difference plots between the fused hyperspectral data of each

method and the reference hyperspectral with high spatial resolution

in turn.
B

C D

E F

G H

A

FIGURE 4

Fusion results: (A) CCD image (B) HSI data (C) HySure result (D) MAP-SMM result (E) CNMF result (F) PC Spectral sharpening result (G) GLP result
(H) Proposed result.
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The results of the fusion error maps show that the algorithms in

this paper show a low degree of spectral distortion and loss of spatial

details in most of the image regions. the results of MAP-SMM are

better, while CNMF, HySure, PC-Spectral Sharpening, and other

algorithms show different degrees of spectral distortion and loss of

spatial details. HySure can improve the spatial HySure can improve

the ability of spatial de-tail expression, but there are some

differences with the original data at the spectral level.

The following Figure 6 shows the spectral curves of the tree

canopy before and after fusion for each algorithm.

Based on the spectral curve of the fusion result, the following

result can be obtained.
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The fusion results of the MAP-SMM algorithm have good spectral

fidelity, small differences between them and the original data, and

similar trends in the spectral curves, which can preserve their valid

spectral information. In the visible band, the normal tree canopy

spectral curves differ slightly from the raw data. The fusion results of

the HySure algorithm can have a high degree of overlap with the

original hyper-spectral data in the NIR band, and the trends of the

spectral curves are similar. The CNMF algorithm has some differences

in the trends of its spectral curves with the original hyperspectral data

in the visible band, and the spectral curves fluctuate in the NIR band.

the PC Spectral Sharpening has more significant spectral differences

from the original data in the spectral curves of vegetation, and there is a
B

C D

E F

G

A

FIGURE 5

Error plot of the fusion result: (A): HySure result (B) CNMF result (C): MAP-SMM result (D): PC Spectral Sharpening result (E): GLP result (F): Proposed
result (G): Reference result.
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certain degree of spectral distortion with the same visual presentation

results, but it is able to retain the trend of the spectral curves in the

visible as well as near-infrared bands to some extent. The differences

between the GLP algorithm and the raw data in the canopy spectral

curves are smaller, the trends are similar, and there is some degree of

overlap in the spectral curves.

The canopy spectral curve of this algorithm is slightly different

from the original data and has a high degree of overlap with the

original super-spectral data, which effectively preserves the

spectral information.

The aforementioned algorithms can all enhance spatial

resolution to some extent, while preserving their spectral

information to varying degrees. According to the spectral curve

results, the proposed algorithm can effectively preserve the canopy

spectral information in terms of spectral fidelity. The overall trend

of the spectra can be preserved and the difference between the pre-

and post-fusion spectra is relatively small.
3.2 Quantitative evaluation

The purpose of hyperspectral image fusion is to combine the

spatial information contained in high spatial resolution images with
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hyperspectral data to improve the spatial information in the final

fusion result. The reference data are the raw hyperspectral data after

resampling, and the strengths and weaknesses of the various fusion

algorithms are evaluated and validated according to the specific

metrics in Table 2.

The statistical metrics in the table were compared with the

original hyperspectral data to quantitatively evaluate the results,

and the fusion results were evaluated with quantitative metrics,

including SAM, RMSE, ERGAS, CC, Entropy, and Q.

It can be seen from the table that the algorithm proposed in this

paper performs well in the indicators SAM, CC, and Entropy. In

general, the MAP-SMM algorithm has better performance, but it is

not as good as the method proposed in this paper in the expression

of spatial information. From the spectral index level analysis, the

difference between CNMF and MSGF-GLP in terms of the spectral

information available in the fusion result and the reference image

sampled on the simulation of the original data is not significant, and

the spectral characteristics of the original data are effectively

preserved. The fusion results of MAP-SMM and HySure have

some spectral differences compared with the reference image, but

the difference is small. The difference between PC Spectral

sharpening and the reference image is the largest, and the spectral

distortion is more significant when combined with the qualitative
A

B

FIGURE 6

Spectral curves of trees: (A): discoloured trees (B): normal trees.
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evaluation result map. From the perspective of spectral loss, MAP-

SMM has the least spectral loss and has a better ability to retain

spectral in-formation. MSGF-GLP has less spectral distortion,

which can effectively retain the spectral information in

hyperspectral data and reduce the information loss in fusion. The

CNMF also has less spectral distortion. The fusion results of HySure

and GLP indicate some spectral loss. The PC Spectral sharpening

method has more serious spectral loss than other algorithms.

Image information entropy is used to represent the increased

degree of information of the fused image, and to measure the

richness between the fusion result and the original image. When the

information of high-resolution data is fused to hyperspectral data,

the information from six algorithms is improved compared with the

original data. Among them, the fusion result entropy of the

algorithm proposed in this paper is the highest, indicating that

the amount of information increases more, and the level of detail

expression is more abundant. Followed by HySure, MAP-SMM,

CNMF, and GLP, it shows that the fusion algorithm can improve

the information of the original image data. The PC Spectral

Sharpening algorithm improves the amount of information the

least, and its spatial information expression and detail description

have a certain lack compared with other algorithms. The correlation

coefficient of the proposed algorithm is the largest, followed by

CNMF and MAP-SMM algorithms, indicating that the fusion result

can better retain its Spectral characteristics. The correlation

coefficient of HySure and PC Spectral Sharpening with the

original image is relatively low, which indicates that there is a

certain difference between the original hyperspectral data and the

HySure and PC spectral sharpening.
3.3 NDWI and PSRI vegetation index

The fusion results were analyzed and evaluated at the spectral

level. The selected vegetation indices make the comparison of the

results clearer at the spectral level.

Sapes, Gerard, et al. (Sapes et al., 2022) demonstrated that

multispectral indices associated with physiological decline were able

to detect differences between healthy and diseased trees. In the

original high-resolution data, it was not possible to detect the wilted

trees using true-color images from which their specific infected
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status could be determined. Therefore, this paper selects two

different vegetation indices and extracts the spectral curves of the

features for a comprehensive analysis and comparison of the

fusion results.

Figure 7 shows the high-resolution data and raw hyperspectral

data for the experiments on marked trees according to NDWI and

PSRI vegetation indices. The experimental results show that the raw

hyperspectral data using the vegetation indices cannot distinguish

well the differences among the variegated standing trees.

Below Figure 8 shows the fusion results obtained by choosing

the vegetative index NDWI, which is based on the original

hyperspectral data, effectively preserving the spectral information

and improving the level of spatial detail expression. The MAP-

SMM algorithm improves the spatial information capability and

effectively preserves the spectral information of the tree canopy as

well as the spatial detail expression with good spectral fidelity. The

HySure algorithm is able to optimally preserve the shape features of

the canopy and can clearly distinguish between discoloured

standing trees and healthy trees, but there is a spectral distortion

in the parts around the canopy. The CNMF algorithm can portray

the general contour shape of the canopy and retain certain spectral

information. The PC spectral sharpening algorithm fails to portray

well the difference between the discoloured standing trees and the

healthy trees, which will have some spectral loss at the edges of their

canopy. The GLP results are able to retain the spectral information

in the tree canopy and lack some spatial details in the

characterization of the canopy profiles. The algorithm presented

in this paper characterizes the tree canopy at the level of spectral

analysis, clearly distinguishes between standing trees with

discoloration and healthy trees and can efficiently preserve

spectral components with less spectral distortion.

Figure 9 below shows the fusion results obtained by choosing

the vegetation index PSRI. The results of the MAP-SMM algorithm

retain the spectral information in the original data and can be

combined with the information in the original high-resolution CCD

data for a considerably sharper result in the detailed

characterization of the canopy level. The fusion results of the

HySure algorithm can effectively preserve the spectral information

in the tree canopy and can resolve the spectral differences with the

tree canopy, improving the spatial detail expression, but there are

some spectral distortions around the tree canopy and the shaded
frontiersin.or
TABLE 2 Fusion results.

Title 1 SAM ERGAS CC RMSE Q Entropy

Reference 0 0 1 0 1 11.9569

CNMF 1.746 2.353 0.849 0.0721 0.8477 14.6223

PC Spectral Sharpening 6.763 3.532 0.836 0.0769 0.8268 11.9977

HySure 5.344 3.786 0.799 0.0974 0.7782 14.9207

MAP-SMM 2.852 1.548 0.922 0.5359 0.9205 14.7519

GLP 2.529 3.326 0.862 0.2485 0.7631 14.5832

Proposed 1.632 2.828 0.944 0.1495 0.8641 15.0819
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parts. The figure shows that the PC spectral sharpening algorithm is

less able to preserve the spectral information compared to the other

algorithms, while the spatial information is considerably improved.

However, it fails to better preserve its spatial expression in the

carving of canopy details. The GLP algorithm is able to reflect the

approximate details of the tree canopy, and the spectral information

is preserved to some extent. The proposed algorithm preserves the

spectral information while enhancing the spatial details, and the

spectral distortion around the tree canopy is minor.

In summary, the vegetation index can effectively analyse the

fusion results from spectral preservation and spatial detail

enhancement. The proposed algorithm effectively preserves spectral

information while enhancing spatial details and is able to preserve

canopy information of variegated standing tree canopies. Among the

different algorithms, MAP-SMM works best for canopy detail feature

carving, but with some spectral distortion, followed by HySure,

CNMF, and GLP algorithms, with PC Spectral Sharpening being

the least effective. All six algorithms described above are capable of

reconstructing the spatial and spectral information of the canopy of

variegated standing trees, which can be distinctly distinguished from

other healthy vegetation, based on raw hyperspectral data.
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4 Discussion

Each year, losses in forest resources and direct or indirect

economic losses due to forest diseases and pests are extremely

severe. With the rise of remote sensing monitoring technologies,

rapid and high-scale monitoring of forest diseases and pests has

become possible. CCD images obtained by remote sensing

surveillance techniques can clearly show spatial information of

decorated trees infected with diseases and pests. However, in

order to enable early monitoring of diseases and pests, it is

necessary to use hyperspectral images to analyse the changes in

their internal chemical properties and thus detect the occurrence of

diseases and pests in the early stages of tree infection. With the

development of forest pest monitoring technologies, traditional

detection methods have struggled to meet the demands of

detection resolution and identification accuracy. Therefore, in this

paper, we propose an image fusion algorithm based on Airborne

data that not only preserves the spectral information of the original

image but also effectively improves the spatial resolution of the

detection results, which has certain advantages for early detection

and recognition of forested trees.
B

C D
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FIGURE 7

(A) Raw hyperspectral data (B) Raw CCD data (C) NDWI result (D) PSRI result.
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4.1 Characteristics of forest pest and
disease data

4.1.1 CCD data characteristics
CCD data is a type of image data that can accurately and intuitively

show the occurrence and development of forest pests and diseases.

Pixel-scale colour analysis can detect anomalous colour changes, such

as brown, yellow, reddish-brown, grey, and other colours in CCD
Frontiers in Plant Science 13
image data when trees are affected by pests and diseases. In contrast to

hyperspectral techniques, CCD data detection is faster, high-resolution

image data acquisition is less difficult, and it is more widely used in

forest pest monitoring. How-ever, when significant changes in crown

colour are detected, the tree is already in the middle or late stages of

pest and disease and can only be managed by cutting and crushing.

Therefore, this paper combines hyperspectral data analysis to enable

early detection of discoloration in trees.
B
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FIGURE 8

NDWI results. (A) HySure result; (B) CNMF result (C) MAP-SMM result (D) PC Spectral Sharpening result. (E) GLP result (F) Proposed result.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280445
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1280445
4.1.2 Spectral data characterization
Hyperspectral data is a class of data that can be multi-band,

express spatial and spectral information, and capture the

continuum of the target. Hyperspectral data can detect minor

changes in the tree spectrum during discoloration, when there are

colour abnormalities in the canopy caused by an infestation of trees

with pests and diseases. In contrast to CCD data, hyperspectral data

can reflect the characteristics of each epoch from the spectral curve,

which is widely used in the field of early monitoring of forest pests

and diseases. However, the spatial resolution of the hyperspectral

images is not as excellent as that of the CCD images, and it is

difficult to distinguish tree crowns with similar colours, contours,
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and additional textures in the raw hyperspectral data. Therefore,

this paper combines CCD data analysis to enable early monitoring

of tree discoloration.

4.1.3 Fusing algorithm data features
The fused data can preserve the spatial detail texture

information of the CCD data, better preserve the coronal edge

characterization, and preserve the spectral information of the

hyperspectral data.

These fused data can be used not only to analyse the spectral

characteristics of the canopy but also to determine the internal stage

and extent of the disease. In addition, the fusion results additionally
B
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FIGURE 9

PSRI results. (A) HySure result; (B) CNMF result (C) MAP-SMM result (D) PC Spectral Sharpening result. (E) GLP result (F) Proposed result.
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improve the spatial resolution of the images, enabling the detection

of anomalous canopies with higher contrast and more pronounced

effects, clearer canopy textures and contours more appropriate for

the true onset of the disease, and the discrimination of anomalous

canopies with similar colours. In this way, the fused data have both

strong spatial and extreme spectral resolution. Serve as a valid

reference for further research.
4.2 Performance analysis of
fusion algorithms

Multisource data fusion algorithms are increasingly used in

remote sensing monitoring due to technological developments.

Fusion analysis of multi-source data can integrate the features

and strengths of different types of data and compensate for the

shortcomings of individual data. Moreover, the fusion algorithm

does not severely increase the computational cost and can

considerably increase the detection efficiency and effectiveness. In

this paper, we compare the improved fusion algorithm with

alternative algorithms and obtain better experimental results.

Therefore, the fusion algorithm combines CCD data and

hyperspectral data to detect standing trees with different colors in

the experimental region, which preserves the data characteristics of

standing trees and improves the resolution of the detection results.
4.3 Selection of evaluation indicators

The construction of a fusion quality evaluation system is an

important problem in image fusion. At present, most of them are

judged by qualitative and quantitative indicators (Pei et al., 2012).

In this paper, airborne remote sensing images are used as the

subject of study and the spectral fidelity and spatial resolution

between images can be evaluated using selected fusion algorithm

metrics. For the application level of forest remote sensing, models

for the corresponding evaluation schemes are constructed and

designed through the physiological features of different objects.

For each evaluation scheme, reasonable weights are assigned

according to the requirements of the actual application and the

relevant data sources, and finally, a comprehensive evaluation result

is obtained. Evaluation metrics can include both application level

and comprehensive analysis of the fusion results from a fusion

perspective. In this paper, we conduct an analysis and evaluation of

experimental results utilizing PSRI and NDWI vegetation metrics to

enhance the visual representation of fusion outcomes and assess the

applicability of fusion algorithms.
4.4 Quantitative and qualitative evaluation

Based on qualitative analysis, it is evident that each algorithm is

able to enhance the texture features of the original hyperspectral

data to some extent by integrating the results of the canopy detail
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images. However, the algorithm in this paper excels in de-tailed

description and edge preservation.

As can be seen from the error plots of the fusion results, each

algorithm has some error with respect to the reference image

sampled on the original hyperspectral, and the difference between

the proposed algorithm and the reference image is minor.

According to the analysis of the quantitative results, the proposed

algorithm performs nicely on SAM, CC, and Entropy metrics, and

can also perform at a strong level on other quantitative metrics. All

fusion algorithms can improve the spectral and spatial resolution of

the raw data. The proposed algorithm can effectively distinguish

between discolored and normal trees at the spectral level and

preserve the canopy details and spectral features of the tree

canopy. From the spectral curve level analysis, the fusion

algorithm is able to better preserve the trends of the spectral

curve and still have certain spectral features within a particular

band after fusion compared to the original data. Using a single

hyperspectral data for detection, there will be exotic objects with the

same spectrum and the same object with a different spectrum, and

tree crowns with similar texture profiles will be difficult to

distinguish. The use of single CCD data to detect discolored

standing trees makes it impossible to determine whether the trees

are infested with pests and diseases and at what stage of infection.

The final fusion results using a specific vegetation index can extract

tree crowns with better results than those obtained from a single

data source. Our experimental results show that the fusion

algorithm has some adaptability for the detection of standing

trees in forest discussions and has promising applications.
4.5 Prospects

In this paper, we use a fusion algorithm to fuse CCD data and

hyperspectral data to analyze the occurrence and development of

forest pests and diseases. Environmental factors such as

illumination and topography can have some influence on the

acquisition of image information during data acquisition, and the

effect of data acquisition directly affects the results computed by the

fusion algorithm. Therefore, in the subsequent research, the data

collected by the ground base station can be combined to detect and

analyze the tree crown characteristics by multi-source data fusion so

that the abnormal spectrum of the collected crown can be more

accurate, the abnormal spectral characteristics can be extracted

more real and reliable, and the application ability of the fusion

algorithm in the aspects of pest and disease and forest control can

be im-proved. In addition, there is a lack of a well-defined

vegetation index suitable for assessing the extent of early pest and

disease damage. An appropriate vegetation index can be designed

based on the spectral wavelength of a particular object, and the

fusion result can be effectively distinguished from the spectral

fidelity, which can be used as an essential evaluation metric for

the fusion result of forest remote sensing. At the same time, the

results of the vegetation index are also affected by light and other

relevant factors, and the influence of environmental factors should
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280445
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1280445
be considered in the future and differentiated according to the

actual situation.
5 Conclusions

It has been shown that the proposed fusion algorithm can be

used to perform fusion experiments using onboard remote sensing

data in the experimental sample area, and the fusion results verify

the effectiveness of the proposed method, which has some

application value. Comparison and evaluation of the proposed

algorithm with five additional fusion algorithms through various

evaluation metrics show that the pro-posed algorithm introduces

guided filtering based on multi-resolution analysis and improves

the spatial detail features while preserving the canopy spectrum.

The fusion results in a large spatial resolution as well as a large

spectral resolution. The research results can provide good technical

support for the practical application of forest remote sensing data

fusion, and lay the foundation for promoting the scientific,

automatic and intelligent forestry control.

The limitation of this study lies in the lack of comprehensive

analysis of experimental results using multi-source data. In the

future, effective integration of advantages from all parties, improved

efficiency in data utilization, and promotion of result analysis can be

achieved through cross-scale fusion of air and earth observation

data. Additionally, the qualitative evaluation method adopted in

this study has certain limitations that moderately affect result

accuracy. Therefore, it is necessary to consider extracting

abnormal spectral characteristics and designing corresponding

vegetation indices and evaluation criteria for different tree species

and infection stages to achieve varying levels of detection. This will

help enhance monitoring capabilities and address practical

application challenges.
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