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Enhanced wedelolactone
content in in vitro-raised
genetically uniform Wedelia
chinensis under the
influence of CuSO4
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and Humaira Farooqi1*

1Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New
Delhi, India, 2BD-JH FACS Academy, New Delhi, India
In the present study, we addressed the imperative for potent anticancer agents

through Wedelia chinensis, a medicinal plant abundant in the robust

antihepatotoxic and antitumor compound wedelolactone. Hindrances in

conventional propagation methods due to cross-pollination and habitat

degradation prompted us to pioneer in vitro rapid multiplication using plant

tissue culture. Optimal outcomes were attained employing Murashige and Skoog

(MS) medium supplemented with Indole-3-butyric acid (IBA) (0.5 mg/L) and

Kinetin (KN) (5.0 mg/L), yielding 97.67% shoot regeneration and 81.67% rooting

from nodal explants. Transplanted plantlets exhibited a 92% survival rate. We

established a wedelolactone extraction protocol using toluene:ethyl acetate:

formic acid (5:4:1) for High-performance thin-layer chromatography (HPTLC)

analysis, trailblazing wedelolactone quantification and 2C DNA analysis in W.

chinensis via flow cytometry. Experiments under heavy metal stress with CuSO4

unveiled physiological responses, with peak wedelolactone content [193.90 mg/g
dry weight (dw)] in vitro at 75 mMCuSO4, surpassing in vivo levels (89.95 mg/g dw)

by 116%. By pioneering successful in vitro rapid multiplication and enhanced

wedelolactone content, we bridge a critical gap in the conservation and

production of this medicinal plant. Our findings not only offer a sustainable

means of propagation but also present a viable strategy for elevating the yield of

potent bioactive molecules like wedelolactone, holding immense promise for

the development of novel therapeutic interventions and addressing the pressing

healthcare challenges of our time.
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1 Introduction

Wedelia chinensis, commonly known as Pilabhangra, is a well-

known medicinal plant of Asteraceae (Sunflower family). It is

found in India, Sri Lanka, China, Indonesia, Japan, Philippines,

and Malaysia (Pratap et al., 2012). W. chinensis is used

traditionally as a remedy for liver disorders (Mishra et al., 2009;

Naveen and Sree, 2012), osteoporosis of the knee (Nomani et al.,

2013), dermatological disorders (Koul et al., 2012), inflammation

(Manjamalai and Grace, 2012), multiple sclerosis (Nithin

Manohar et al., 2017), rheumatic fever, and most importantly

cancer (Lin et al., 2007; Tsai et al., 2009; Manjamalai and Grace,

2013). It contains wedelolactone (coumestan derivative)

possessing potent antihepatotoxic and antitumor activity against

various types of cancer cell lines like prostate (Lin et al., 2007; Tsai

et al., 2009), lung (Manjamalai and Grace, 2013), and breast

(Benes et al., 2011; Xu et al., 2014; Hsieh et al., 2015). The

increasing problem of cancer in today’s era also needs more

anticancerous and effective drugs. To circumvent this problem,

W. chinensis could be a good source.

This plant can be grown with seeds and vegetative stem cuttings.

However, because of cross-pollination, the germinated seedlings are

not true to type, and multiplication via this way is not trustworthy

because of low viability (Agarwala et al., 2010). Moreover,

indiscriminate collection, habitat loss, urbanization, and increasing

demand for wedelolactone may lead to the extinction of this plant

from its natural environment. Previously, in vitromass multiplication

through different explants, such as nodal segments (Bhuyan et al.,

2000; Agarwala et al., 2010; Rahman and Bhadra, 2011), axillary buds

(Martin et al., 2003; Islam et al., 2009), shoot tips (Islam et al., 2009;

Agarwala et al., 2010), and young leaf explant (Tsai and To, 2021) has

been reported. However, no effective transplantation and hardening

procedures were reported. Furthermore, no such reports of extraction

and quantification of wedelolactone are reported in the literature. To

overcome this situation, in the present report, in vitro rapid

multiplication and transplantation for the conservation of the

germplasm of W. chinensis and commercial production of

wedelolactone from this important medicinal plant have

been demonstrated.

In addition, plant growth regulators used in tissue culture not

only provide high production of biomass but also contribute to the

enhancement of secondary metabolites. Auxin and cytokinin fortified

into the culture medium have a marked influence on the production

of secondary metabolites by increasing cell metabolism (Al-Qudah

et al., 2011). In Teucrium polium, the amount of b-caryophyllene was
reported high when grown in vitro on Murashige and Skoog (MS)

medium supplemented with 6-Benzylaminopurine (BA) and

Naphthaleneacetic acid (NAA) than that grown on hormone-free

MS medium (Al-Qudah et al., 2011). Similarly in Stevia rebaudiana,

the combination of BA with Gibberellic acid (GA3) and Indole-3-

Acetic Acid (IAA) strongly affects the accumulation of secondary

metabolites and results in the enhancement in the yield of bioactive

polyphenolics (Radić et al., 2016).
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Regeneration of plants through plant tissue culture is the best

technique to produce true-to-type plants (Ali et al., 2017). However,

the genetic stability of in vitro-grown plants can be altered by

mutation and error in cell division, which results in the formation of

genetically and genomically variant cells (Naing et al., 2014).

Moreover, genetic alterations may be affected by the age of the

culture (Samarina et al., 2019), the composition of the culture

medium, and specifically the different combinations and

concentrations of plant growth regulators (Gantait and Vahedi,

2015). Furthermore, the influence of genetic disturbance can also

result in a change in ploidy level, and elevated ploidy among

regenerants plays a vital role in changing the phenotypic

characteristics and formation of genetically manipulated plants

(Jing et al., 2016). All of these parameters can diminish the

commercial value of in vitro-raised plants (Oh et al., 2007). Thus,

it is necessary to access genetic stability to preserve the desirable

features in in vitro-raised plants. The investigation of the genetic

stability of W. chinensis was done using Random Amplified

Polymorphic DNA (RAPD) markers (Kundu et al., 2017). Despite

the various advantages, RAPD has a drawback of reproducibility.

Flow cytometric technique these days proved to be a key to reveal

not only the genetic fidelity but also helping to check the ploidy level

of regenerated plants and genome size (Malik et al., 2020).

Pharmaceutically important secondary metabolites are

produced in response to various biotic and abiotic stresses and

help the plant survive under unfavorable conditions. The heavy

metal stress influences the production of secondary metabolites by

triggering multiple signaling pathways. The accumulation of

polyamines is also reported in numerous plant species under

stress conditions (Jankovska-Bortkevič et al., 2022).

This present study aimed to develop an improved and efficient

in vitro mass multiplication protocol and to check the genetic

stability and genome size determination of in vitro-grown

plantlets using flow cytometry. The present study also inspected

the quantification of wedelolactone content in in vitro-raised and

field-grown plants as well as under the influence of CuSO4 stress

plantlets through HPTLC.
2 Materials and methods

2.1 Plant material and surface sterilization

Nodal segments of W. chinensis were collected from the

Herbal Garden of Jamia Hamdard, New Delhi. The explants

were cut into 3–4-cm single nodes and washed three times with

running tap water. The washed explants were sequentially surface-

sterilized with 0.2% cetrimide (5 min), 0.25% streptomycin sulfate

(10 min), 0.5% Bavistin (7 min), 0.1% mercuric chloride (5 min),

and finally with 70% alcohol for 1 min. The sterilized nodal

segments were finally transferred to sterile double-distilled water

(ddH2O). The sterile explants were trimmed at both ends before

the inoculation.
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2.2 Medium preparation and
culture conditions

For regeneration through nodal segments, MS medium

(Murashige and Skoog, 1962) with different concentrations and

combinations of auxin (IBA/NAA) with cytokinin (BA/KN) was

prepared. MS medium devoid of growth regulators served as

control. Each medium was supplemented with 3% (w/v) sucrose.

For the semisolid medium, 0.63% agar was used. However, for

better root proliferation, a liquid MS medium supplemented with

IBA (0.5 mg/L) and KN (5.0 mg/L) was prepared. For the support of

plantlets in liquid medium, two layers of glass beads were formed in

a 100-mL flask. The pH of both the semisolid and the liquid MS

medium was adjusted to 5.69 using 1 N NaOH/1 N HCl and

subsequently poured into 100-mL flasks. The medium was

autoclaved at 121°C at 15 psi for 15 min. The efficiency of the

explant was analyzed based on parameters like percent

regeneration, number, and length of shoots and roots. In vitro-

grown plantlets were subcultured every fourth week. The cultures

were maintained in the culture room at 25°C ± 2°C with 50% ± 5%

relative humidity and 16/8 h photoperiod.
2.3 Ex vitro acclimatization and
transplantation in the field

Plantlets with well-developed thick roots were washed with

sterile ddH2O and transferred to pots containing Soilrite and soil

(1:1) and covered with transparent polyethylene bags with small

holes. The plants were irrigated with half strength of MS liquid basal

medium every 7 days. These pots were transferred and maintained

in growth chambers at 25°C ± 2°C for 16 h of illumination. After 1

month of acclimatization, covers were withdrawn and the plants

were transferred to the greenhouse for adaptation, irrigated with tap

water, and finally transferred to the field.
2.4 Phytochemical screening

2.4.1 Extraction of wedelolactone
In vivo, in vitro-grown plants raised on different media and

transplanted plantlets were harvested for wedelolactone estimation.

The samples were oven-dried at 50°C and ground to a fine powder

with the help of mortar and pestle. Dried powder (5 g) was dissolved

in methanol and kept in a shaker overnight. Thereafter, sonication

of extract was done for 30 min at 60°C. Thereafter, the extract was

boiled in a water bath for 10 min and filtered through a Whatman

filter paper (No. 42). The filtrate was kept in a water bath for solvent

evaporation, and the residue obtained was kept in the oven

overnight. The dried residue was again suspended in ddH2O and

partitioned with ethyl acetate (three times). Ethyl acetate fractions

were collected and evaporated to dryness in a water bath. The dried

residue was dissolved in 5 mL methanol [High-performance liquid

chromatography (HPLC) grade] and used for HPTLC analysis.
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2.4.2 Determination of the solvent system and
absorption maxima of wedelolactone

A stock solution of standard (wedelolactone) was prepared by

dissolving 1.0 mg standard in 1.0 mL of HPLC-grade methanol, and

further dilutions were made. Different combinations of organic

polar (ethyl acetate, formic acid, methanol, acetone, and acetic acid)

and nonpolar (toluene, chloroform, and diethyl ether) solvents were

used in the Thin-layer chromatography (TLC) for the

determination of the solvent system. The absorption maxima for

the standard wedelolactone were determined using both UV

spectroscopy and HPTLC.

2.4.3 HPTLC analysis
HPTLC of the methanolic extract of different samples was

performed using CAMAG, Switzerland. Plant extracts were

applied with a 100-mL syringe on precoated silica gel 60 HPTLC

plates (10 cm × 10 cm) after activation at 120°C with a band length

of 6 mm and a track separation of 10 mm using Linomat V

application device. The chromatograph was developed in a twin

trough chamber using a solvent system and scanned in scanner III

at 366 nm using UV lamp in absorption mode.

The wedelolactone was detected based on the Rf value of

standard wedelolactone (99.9%) (Sigma). For quantitative

analysis, peak areas were used to calculate the amount of

wedelolactone present in the tissues, and these were compared

with the standard. The standard sample was used to construct a

calibration graph by plotting the peak area vs. the amount of

wedelolactone.

Y  =  15:663     +    9:168 *X

Here, Y = Area of peak, X = Concentration of wedelolactone.

The concentration of wedelolactone was calculated from the

above formula. The samples were analyzed in triplicate.
2.5 Flow cytometry-based acquisition and
analysis of in vitro and in vivo samples

All of the flow cytometric analyses were carried out by using a

BDFACS Verse flow cytometer (Becton Dickinson, 8-color

configuration). Firstly, BD DNA QC beads (Cat. No.-349523)

were run containing the chicken erythrocyte nuclei (CEN) and

calf thymocyte nuclei (CTN) fluorescent particles to set the

instrument photomultiplier tube (PMT) voltages, amplifier gains,

and providing information regarding instrument linearity

and resolution.

Unstained blood samples were used to gate the main population

within the side scatter area linear scale (SSC-A-lin) vs. the forward

scatter height area scale (FSC-A-lin) and to determine the correct

voltage and gain settings. Propidium iodide area linear (PI-A) vs.

propidium iodide width linear (PI-W) plots were made to

distinguish the singlet cells and to simultaneously adjust the gain

settings of the cytometer to position the 2C peak at channel 100 in

the histogram plot (PI-A vs. count). The statistics of the positive
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population are determined by the BDFACS Suite software from a

total of 10,000 cells. For the internal reference standard, Pongamia

pinnata was taken (2C = 2.51 pg DNA) (Choudhury et al., 2014).

Determination of nuclear DNA content of field-grown, in vitro-

regenerated 4-month-old plantlet and 6-month-old transplanted

regenerants of W. chinensis was done. Here, 20 mg of young leaf

segments of W. chinensis and P. pinnata were finely chopped using

a sharp razor blade in 0.5 mL Galbraith buffer of pH 7 [45 mM

MgCl2, 20 mM MOPS, 30 mM sodiucitrate, 0.1% (v/v) Triton X-

100] on ice. The nuclear suspensions were filtered through a 40-mm
nylon mesh cell strainer (HIMEDIA) followed by the addition of 0.5

mL of stock solution of PI/RNase staining buffer (BD

Pharmingen™, BD Biosciences, USA). The suspension was kept

for half an hour of incubation with continuous vortex in every 5-

min interval before being analyzed in the flow cytometer. The

samples were processed by following the protocol (Doležel et al.,

2007). The genetic stability of the nuclear suspension was examined

by comparing the median of 2C peak of histogram (PI-A vs. count)

of plants regenerated through tissue culture (4-month-old plantlet

and 6-month-old transplanted regenerant) and field-grown W.

chinensis. The 2C DNA content of W. chinensis was determined

using the below formula:

2C DNA content of  W :   chinensis

=   2:51�  
Median position of G0=G1 peak of W : chinensis
Median position of G0=G1 peak of P : pinnata
2.6 CuSO4 stress tolerance in regenerants

For the cultivation of metal-tolerant plants, shoots regenerated

from the in vitro-raised plantlets were cut into 4–5-cm-long pieces

and transferred to MS medium supplemented with IBA and KN

(0.5 + 5.0 mg/L) additionally supplemented with various levels (25,

50, 75, 100, and 125 mm) of CuSO4. One set of cultures maintained

on a medium without any heavy metal served as a control. Shoot

fresh weight (fw), shoot dry weight (dw), protein content, proline

accumulation, chlorophyll, carotenoid content, and wedelolactone

yield were monitored after 12 weeks.

2.6.1 Shoot fresh and dry weight
Shoots grown on different CuSO4 concentrations and control

were harvested after 12 weeks, and fw was done. The shoots were

kept in an oven at 50°C, and the shoot dw was calculated.

2.6.2 Protein estimation
Soluble protein content was estimated by following the method

of Bradford (1976). Fresh tissue (100 mg) was homogenized in 1 mL

of 0.1 M phosphate buffer with the help of a mortar and pestle,

precooled, and kept in ice. The homogenate was centrifuged at

6,000 rpm for 10 min at 4°C. An equal amount of chilled 10%

Trichloroacetic acid (TCA) was added to the supernatant and

incubated for 20 min, which was again centrifuged at 3,300 rpm

for 10 min.
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The supernatant was discarded, and the pellet left was washed

with acetone. It was then dissolved in 1 mL of 0.1 N NaOH. Here,

0.1 mL from the solution was kept in a centrifuge tube, and 0.5 mL

of Bradford’s reagent was added, vortex-mixed, and kept for 10 min

for optimal color development. The absorbance was then recorded

at 595 nm on a UV-Vis spectrophotometer (Lambda Bio 20, Perkin

Elmer). The soluble protein concentration was quantified with the

help of a standard curve prepared from bovine serum albumin. The

amount of protein was expressed as mg/g fw.

2.6.3 Proline content
Proline content in the leaves was determined by the method of

Bates et al. (1973). For proline determination, the fully expanded

leaves were detached from the plants after the CuSO4 treatment.

Here, 1.0 g of leaf samples were homogenized in 10 mL of

sulfosalicylic acid (3%) using mortar and pestle followed by

centrifugation at 10,000 rpm for 10 min at room temperature.

After centrifugation, 2 mL of supernatant was taken in a test tube,

and 2 mL of glacial acetic acid and 2 mL of ninhydrin reagent were

added to it. The reaction mixture was boiled in a water bath at 100°

C for 30 min. The reaction was stopped by keeping it at a low

temperature. After that, 4 mL of toluene was added in the mixture

and vortexed. The absorbance was recorded at 520 nm in a

spectrophotometer against toluene as blank. The concentration of

proline was estimated by referring to a standard curve of proline.

2.6.4 Chlorophyll and carotenoid content
The chlorophyll content of the biological sample was

determined by the Hiscox and Israelstam (1979) method. For

this, 0.1-g plant leaves were weighed and incubated in 10 mL

DMSO for 1 h at 65°C, and the Optical Density (OD) of the

supernatent was measured at 480 nm, 510 nm, 645 nm, and 663 nm.

Chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid (mg/

g fw) contents were then calculated from the following formula:

Chlorophyll a (mg=g fw)                

=  
½12:3 (OD 663)  +  0:68 (OD 645)� X V

(d X 1000 X W)

Chlorophyll b (mg=g fw)  =  
½19:3 (OD 645)  −  3:6 (OD 663)� X V

(d X 1000 X WÞ

Total Chlorophyll (mg=g fw)  =   ½20:2 (OD 645) + 8:02 (OD 663)� X V(d X 1000 X W)    

Carotenoid(mg=g fw) =  
½7:6 (OD 645)  +  1:49 (OD 663)� X V

(d X 1000 X W)

where d = Distance traveled by the light path.

W = Weight of the leaf material taken.

V = Volume of the extract.
2.6.5 Wedelolactone quantification
Shoots grown on regeneration medium along with different

CuSO4 concentrations and control were harvested after 12 weeks.
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The extraction and quantification were done by the above

mentioned protocol.
2.7 Statistical analysis

The data on the effect of growth hormones on direct

regeneration from nodal segments and proliferation along with

the quantified wedelolactone using HPTLC were expressed as mean

± standard error. Each tissue culture experiment was conducted in

replicates of 8 and was repeated thrice. However, in HPTLC, three

replicates were used from three sets of the same experiment. The

flow cytometry analysis was piloted by selecting plants randomly

from in vivo- and in vitro-grown plants on BDFACS Verse. The

mean values of each experiment were separated on SPSS software

using Duncan’s multiple range test (DMRT) at a significance of p =

0.05 (Duncan, 1955). Determination of the median and CV of the

gated single cell population was done using BDFACS Suite software.
3 Results

3.1 Direct regeneration and proliferation

In the present study, a lower concentration of auxin along with a

higher concentration of cytokinin is better in terms of regeneration

efficiency of the nodal segment. Among the phytohormones used,

the combination of IBA and KN was found best for mass

multiplication of this plant from nodes under in vitro conditions.

Shoot regeneration efficiency of nodal explants in the presence of

MS medium containing auxins (IBA or NAA: 0.5 mg/L, 1.0 mg/L,

and 2.0 mg/L) along with higher concentrations of cytokinins (BA

or KN: 1.0 mg/L, 2.0 mg/L, and 5.0 mg/L) has been tested. However,

nodes inoculated on MS basal medium failed to regenerate even

after 12 weeks. Among different concentrations of IBA with BA,

71.07% shoot regeneration with an average of 1.5 shoots of 6.16 cm

per explant was obtained in the presence of MS containing IBA (0.5

mg/L) and BA (2.0 mg/L). On increasing the concentrations of

either IBA or BA in the medium, the regeneration percentage

declined. Furthermore, the use of KN as a cytokinin gave better

regeneration efficiency. The IBA along with KN combinations was

found to be best for shoot regeneration. Maximum 97.67% explants

regenerated after 12 weeks in the presence of MS medium

supplemented with 0.5 mg/L of IBA along with 5.0 mg/L of KN.

This combination produced an average of 2.52 shoots of 8.65 cm

within 12 weeks (Figures 1A–C). Figure 1D shows the maximum

shoot multiplication on this medium. Furthermore, MS medium

containing NAA and BA was found to be the least effective for shoot

regeneration among all combinations used. Shoot regeneration

efficiency was 67.67% with 0.73 shoots of 4.23 cm obtained in the

presence of MS medium enriched with NAA (0.5 mg/L) along with

BA (2.0 mg/L). However, NAA in combination with KN has better

regeneration efficacy as compared with BA. An average of 84.90%

shoot regenerated with 1.75 shoots/explant with an average length

of 7.26 cm attained in the presence of MS medium with higher

cytokinin (KN at 5.0 mg/L) and lower auxin (NAA at 0.5 mg/L)
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(Figure 2). All combinations of growth regulators resulted in callus

formation at the basal cut end of the node. The detailed results are

given in Table 1.
3.2 Root induction and acclimatization

In vitro-regenerated 4.0–5.0-cm shoots rooted on all media

containing auxins and cytokinins (Table 2). Here, 74% rooting was

observed in cultures grown in the presence of MS medium

containing IBA (0.5 mg/L) along with BA (2.0 mg/L) within 12

weeks and 40.17% rooting in the presence of NAA (0.5 mg/L) + BA

(2.0 mg/L)-containing medium. A higher concentration of KN (5.0

mg/L) with NAA (0.5 mg/L) resulted in 74.43% rooting with 1.39

roots of 2.68 cm after 12 weeks. Of all the concentrations and

combinations of growth regulators tried, MS medium containing

IBA (0.5 mg/L) and KN (5.0 mg/L) was found to be best (Figure 3).

The shoots showed 81.67% rooting efficacy with an average of 1.94

roots of 3.23 cm within 12 weeks. However, the rooted plantlets

when subcultured on MS liquid medium containing IBA + KN

(0.5 + 5.0) resulted in approximately a 2-fold increase in root (4.5

roots/shoot) as well as a 7-fold increase in root length (22 cm) as

compared with roots on semisolid same growth regulator

containing medium even in 4 weeks (Figures 1E, F). The

hardened plants transferred to the field showed 92% survival rate

and grew normally in outdoor conditions (Figures 4A–C).
3.3 Extraction and quantification
of wedelolactone

Growth hormone-enriched MS medium was also favorable for

enhancement in the yield of wedelolactone in W. chinensis. For

standardization of the solvent system, a standard of wedelolactone

was used. Out of the polar and nonpolar solvents used, toluene:ethyl

acetate:formic acid (5:4:1) was found to be best for the detection and

quantification of wedelolactone with an Rf value of 0.56 (Figures 5A, B).

The maximum wavelength at which wedelolactone absorbs the

maximum light is 366 nm.

The calibration graph was constructed by plotting the peak area

vs. the amount of wedelolactone loaded over a range of 50–250 ng

(Figure 5C). The standard curve was achieved with a regression

value of 0.99. Wedelolactone was estimated in the samples based on

the Rf value (0.56) of the standard compound. The concentration of

wedelolactone was calculated from the formula mentioned in the

Materials and Methods. Furthermore, for confirmation, spectral

comparison was done. The peak of sample overlapping with the

wedelolactone standard is authenticating the results (Figure 5D).

The wedelolactone content in in vivo-grown plants was detected at

89.95 mg/g dw. In in vitro-grown plants raised on the best

regeneration medium (MS supplemented with 0.5 mg/L IBA and

5.0 mg/L KN), 1.50-fold enhancement in wedelolactone content

(135.45 mg/g dw) was detected (Figure 6). The plantlets raised on

this medium upon transplantation showed more accumulation of

wedelolactone as compared with field-grown plants (Table 3).
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3.4 Genome size and genetic stability

This investigation also evaluated the influence of in vitro culture

conditions on the genetic stability of W. chinensis. The 2C DNA

content of 4-month-old regenerants raised via direct organogenesis,

6-month-old transplanted W. chinensis was compared with that of
Frontiers in Plant Science 06
field-grown plants. Singlet cell population of standard (P. pinnata)

and field- and in vitro-grownW. chinensis was gated at 100 position

on (PI-A vs. count) histogram, confirming the correct gating. The

discrete populations of cells are also easily visualized on contour

maps, further confirming the results (Figures 7A–D). The

Coefficient of variation (CV) of the histogram peaks of standard
FIGURE 1

Different stages of regeneration in W. chinensis, Nodal segments grown on MS medium augmented with IBA (0.5 mg/l) and KN (5.0 mg/l) - (A): 4-
week-old culture, (B): 8-week-old culture, (C): 12-week-old culture, (D): Shoot multiplication in 16-week-old culture, (E): Root proliferation in MS
(Liquid medium) containing IBA (0.5 mg/l) and KN (5.0 mg/l), (F): 7-fold increase in root length on liquid MS medium supplemented with IBA (0.5
mg/l) and KN (5.0 mg/l). Note the growth of roots obtained in (E).
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and test samples is below 3%, indicating the data with better

resolution, as both are inversely correlated. The 2C DNA content

of field-grown plants of W. chinensis was 2.80 pg. In vitro-raised 4-

month-old plantlets and 6-month-old transplanted plants showed

2.87 and 2.86 pg of 2C DNA content, respectively, conforming

similarity in genome size to field-grown W. chinensis (Table 4).

Therefore, no major alteration in genome size in in vitro-

regenerated plants was noted when compared with in vivo-grown

plants. Thus, the genetic integrity of the regenerated plants is

maintained during in vitro conditions as well as genome is stable

even after hardening and transplantation to field conditions.
3.5 Effect of CuSO4 on in
vitro-raised plantlets

In vitro-raised shoots were cut into 4–5-cm-long pieces and

transferred to a regeneration medium that is MS + IBA (0.5 mg/L) +

KN (5.0 mg/L) with different concentrations of CuSO4 (0–125 mM).

3.5.1 Effect of CuSO4 on shoot fresh and
dry weight

There was a significant variation in the fresh weight of shoots

among different concentrations of CuSO4 used. CuSO4 treatment

significantly reduced the fresh weight in all of the shoots. The fresh

weight varied from 0.39 g to 0.80 g (Figure 8). Similarly, the shoot

dry weight was reduced from 0.10 g (25 mM) to 0.04 g (125 mM) by

increasing the concentration of CuSO4 in the medium (Table 5).
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3.5.2 Effect of CuSO4 on total protein content
CuSO4 caused an enhancement in the total protein content

from 0.95 to 1.15 g-1 fw until 75 mM (Figure 9). On increasing the

CuSO4 concentration from 75 mM to 100 mM and 125 mM, protein

content reduced significantly (Table 6).
FIGURE 2

Shoot regeneration in W. chinensis through nodal segments after 12 weeks in the presence of different hormone combinations. Different lowercase
letters are representing significance at p = 0.05 according to Duncan’s multiple range test.
TABLE 1 Effect of plant growth regulators on shoot regeneration in W.
chinensis through nodal segments after 12 weeks.

MS
semisolid
+ PGR
(mg/l)

Percent
shoot

regeneration

Average no.
of shoots

Average
length of
shoots
(in cm)

IBA + BA

0.5+1.0
56.47 ± 1.07d 1.16 ± 0.046cd

3.30
± 0.1465de

0.5+2.0 71.07 ± 0.64a 1.50 ± 0.012a 6.16 ± 0.0455a

0.5+5.0 64.07 ± 0.61b 1.31 ± 0.038b 3.70 ± 0.0510c

1.0+1.0 49.60 ± 0.70e 1.04 ± 0.018d 3.08 ± 0.0615ef

1.0+2.0 60.77 ± 1.06c 1.39 ± 0.029ab 4.45 ± 0.0450b

1.0+5.0
53.57 ± 0.71d 1.18 ± 0.022c

3.52
± 0.0386cd

2.0+1.0 47.77 ± 0.79e 0.45 ± 0.012f 1.49 ± 0.0438g

2.0+2.0 53.80 ± 0.85d 0.91 ± 0.031e 2.78 ± 0.0450f

2.0+5.0 48.90 ± 0.97e 0.67 ± 0.026e 1.66 ± 0.0309g

(Continued)
frontiersin.org

https://doi.org/10.3389/fpls.2023.1281445
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Swami et al. 10.3389/fpls.2023.1281445
TABLE 1 Continued

MS
semisolid
+ PGR
(mg/l)

Percent
shoot

regeneration

Average no.
of shoots

Average
length of
shoots
(in cm)

IBA+KN

0.5+1.0 70.00 ± 0.82d 1.20 ± 0.0211c 3.72 ± 0.0902d

0.5+2.0 83.78 ± 0.63c 1.60 ± 0.0471b 4.73 ± 0.0450b

0.5+5.0 97.67 ± 0.54a 2.52 ± 0.0237a 8.65 ± 0.0284a

1.0+1.0 59.33 ± 0.27f 0.75 ± 0.0109e 3.36 ± 0.0438e

1.0+2.0 67.10 ± 0.40e 0.90 ± 0.0127d 3.71 ± 0.0662d

1.0+5.0 87.85 ± 0.84b 1.12 ± 0.0318c 4.55 ± 0.0378c

2.0+1.0 37.17 ± 0.59h 0.52 ± 0.0314f 1.77 ± 0.0196h

2.0+2.0 44.89 ± 0.40g 0.69 ± 0.0227e 1.97 ± 0.0260g

2.0+5.0 52.50 ± 0.24e 0.98 ± 0.0191d 2.26 ± 0.0287f

NAA+BA

0.5+1.0 50.97 ± 0.495b 0.63 ± 0.0205b 2.91
± 0.02126c

0.5+2.0 67.67 ± 0.544a 0.73 ± 0.0339a 4.23
± 0.02373a

0.5+5.0 47.70 ± 0.759c 0.58 ± 0.0146bcd 2.89
± 0.01515c

1.0+1.0 50.57 ± 0.709c 0.55 ± 0.0094cde 2.62
± 0.02842e

1.0+2.0 53.33 ± 0.720bc 0.60 ± 0.0255bc 3.02
± 0.01886b

1.0+5.0 39.17 ± 0.936d 0.52 ± 0.0170de 2.42
± 0.01656f

2.0+1.0 34.30 ± 0.648e 0.44 ± 0.0054fg 2.01
± 0.02842g

2.0+2.0 43.37 ± 0.341d 0.51 ± 0.0119ef 2.75
± 0.00943d

2.0+5.0 29.37 ± 0.746f 0.40 ± 0.0125g 1.54
± 0.02944h

NAA+KN

0.5+1.0 70.33 ± 0.95d 1.39 ± 0.0283de 3.62 ± 0.0288d

0.5+2.0 77.53 ± 0.83b 1.52 ± 0.0223c 3.81 ± 0.0497c

0.5+5.0 84.90 ± 0.59a 1.75 ± 0.0120a 7.26 ± 0.0213a

1.0+1.0 63.03 ± 0.86fg 1.29 ± 0.0182e 3.11 ± 0.0438e

1.0+2.0 67.33 ± 0.91e 1.43 ± 0.0223cd 3.54 ± 0.0381d

1.0+5.0 73.83 ± 0.58c 1.64 ± 0.0299b 4.94 ± 0.0331b

2.0+1.0 58.87 ± 0.85h 1.07 ± 0.0410g 1.52 ± 0.0196h

2.0+2.0 61.67 ± 0.76gh 1.11 ± 0.0334fg 1.72 ± 0.0260g

2.0+5.0 65.70 ± 0.60ef 1.19 ± 0.0170f 2.74 ± 0.0163f
F
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Data in each column represents mean ± SE followed by different letters that are significantly
different at p = 0.05 according to Duncan’s multiple range test.
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TABLE 2 Effect of plant growth regulators on root induction in W.
chinensis through nodal segments after 12 weeks.

MS
semisolid
+ PGR
(mg/l)

Percent
root

induction

Average no. of
roots per shoot

Average
length of
roots
(in cm)

IBA + BA

0.5+1.0 40.67 ± 0.152c 0.63 ± 0.021b 1.37 ± 0.021b

0.5+2.0 74.00 ± 0.525a 0.92 ± 0.017a 1.73 ± 0.022a

0.5+5.0 42.73 ± 0.472b 0.60 ± 0.025bc 1.25 ± 0.014c

1.0+1.0 36.33 ± 0.237e 0.57 ± 0.028bcd 1.12 ± 0.018d

1.0+2.0 55.17 ± 0.260b 0.65 ± 0.019b 1.27 ± 0.012c

1.0+5.0 37.07 ± 0.321de 0.49 ± 0.010cde 1.06 ± 0.014e

2.0+1.0 18.83 ± 0.115g 0.47 ± 0.006de 0.99 ± 0.021f

2.0+2.0 40.63 ± 0.412d 0.59 ± 0.026bc 1.13 ± 0.017d

2.0+5.0 24.17 ± 0.144f 0.38 ± 0.026e 0.90 ± 0.011g

IBA+KN

0.5+1.0 58.22 ± 0.091c 0.96 ± 0.0319c 1.99 ± 0.0213c

0.5+2.0 66.44 ± 0.181b 1.32 ± 0.0327b 2.50 ± 0.0223b

0.5+5.0 81.67 ± 0.272a 1.94 ± 0.0236a 3.23 ± 0.0650a

1.0+1.0 37.44 ± 0.362f 0.54 ± 0.0141f 0.97 ± 0.0119f

1.0+2.0 45.80 ± 0.340e 0.70 ± 0.0170e 1.52 ± 0.0262e

1.0+5.0 58.13 ± 0.109c 0.83 ± 0.0223d 1.93 ± 0.0241d

2.0+1.0 27.11 ± 0.090h 0.39 ± 0.0218g 0.47 ± 0.0272h

2.0+2.0 34.70 ± 0.242g 0.44 ± 0.0236g 0.69 ± 0.0094g

2.0+5.0 45.17 ± 0.136d 0.55 ± 0.0177f 0.76 ± 0.0189g

NAA+BA

0.5+1.0 26.87 ± 0.381c 0.41 ± 0.012bc 1.34 ± 0.028b

0.5+2.0 40.17 ± 0.360a 0.53 ± 0.015a 1.64 ± 0.026a

0.5+5.0 23.22 ± 0.327d 0.50 ± 0.007ab 1.12 ± 0.019c

1.0+1.0 22.22 ± 0.181d 0.35 ± 0.017cde 0.96 ± 0.017d

1.0+2.0 31.89 ± 0.093b 0.47 ± 0.020ab 1.18 ± 0.017c

1.0+5.0 17.48 ± 0.236e 0.41 ± 0.019bc 0.85 ± 0.014e

2.0+1.0 14.55 ± 0.367f 0.29 ± 0.022e 0.74 ± 0.028f

2.0+2.0 23.18 ± 0.150d 0.43 ± 0.026bc 0.99 ± 0.027d

2.0+5.0 12.48 ± 0.236g 0.33 ± 0.012de 0.67 ± 0.009f

NAA+KN

0.5+1.0 63.10 ± 0.860c 0.75 ± 0.0027c 1.87 ± 0.0170c

0.5+2.0 67.17 ± 0.792b 0.94 ± 0.0227b 2.11 ± 0.0223b

0.5+5.0 74.43 ± 0.644a 1.39 ± 0.0247a 2.68 ± 0.0141a

1.0+1.0 59.40 ± 0.984d 0.48 ± 0.0258ef 1.22 ± 0.0166e

(Continued)
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3.5.3 Effect of CuSO4 on proline content
Enhanced proline content was observed in in vitro-raised

shoots grown on different concentrations of CuSO4. In the control,

shoots showed 13.88 mg/g fw proline content. On increasing the

concentration of CuSO4 in the medium from 25 mM to 125 mM,

proline content increased significantly (Figure 9). Shoots produced

maximum proline (41.27 mg/g) at 126 mM andminimum (16.96 mg/

g) at 25-mM CuSO4 concentrations (Table 7).
3.5.4 Effect of CuSO4 on chlorophyll and
carotenoid content

Chlorophyll and carotenoid contents are also affected by the

presence of CuSO4 in the medium. Shoots grown on control
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medium showed 1.93 mg/g fw and 0.46 μg/g fw of chlorophyll

and carotenoid, respectively. The content of both chlorophyll and

carotenoid was enhanced by the effect of CuSO4 and found

maximum at 75 mM concentration. After increasing the

concentration of CuSO4 in the medium, chlorophyll and

carotenoid contents declined. The maximum level of chlorophyll

and carotenoid content was observed on medium containing 75 mM
of CuSO4 (Table 8).

3.5.5 Effect of CuSO4 on wedelolactone content
The wedelolactone content extracted from the shoots grown on

different concentrations of CuSO4 containing regeneration medium

showed variation. Maximum wedelolactone was quantified at 75

mM (193.90 mg/g dw) and minimum (47.13 mg/g dw) was found at

125 mM CuSO4 (Figure 10). Here, 116% enhancement in

wedelolactone content was detected in regenerated shoots grown

on MS regenerated medium containing 75 mM CuSO4 as compared

to in vivo-grown plants (Table 9).
4 Discussion

With the prevalence of cancer escalating worldwide, the

demand for potent and effective anticancer agents is more

pressing than ever. W. chinensis, housing the bioactive compound

wedelolactone, presents a unique opportunity for therapeutic

exploration. Our study’s innovative approach, encompassing in

vitro rapid multiplication and heightened wedelolactone content,
TABLE 2 Continued

MS
semisolid
+ PGR
(mg/l)

Percent
root

induction

Average no. of
roots per shoot

Average
length of
roots
(in cm)

1.0+2.0 64.33 ± 0.272c 0.60 ± 0.0100d 1.56 ± 0.0166d

1.0+5.0 67.87 ± 0.891b 0.74 ± 0.0170c 1.85 ± 0.0141c

2.0+1.0 55.30 ± 0.953e 0.43 ± 0.0118f 1.14 ± 0.0027f

2.0+2.0 57.03 ± 0.830de 0.50 ± 0.0027e 1.22 ± 0.0119e

2.0+5.0 62.50 ± 0.634c 0.63 ± 0.0196d 1.59 ± 0.0098d
Data in each column represents mean ± SE followed by different letters that are significantly
different at p = 0.05 according to Duncan’s multiple range test.
FIGURE 3

Root inductions in W. chinensis through nodal segments after 12 weeks in the presence of different hormone combination. Different lowercase
letters are representing significance at p = 0.05 according to Duncan’s multiple range test.
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addresses crucial gaps in both conservation and production of this

medicinal plant. By offering a sustainable propagation method and

amplifying the yield of therapeutically significant molecules, we

contribute to the advancement of therapeutic research, potentially

leading to groundbreaking discoveries in cancer therapy and other

medical applications.

In the present study, the nodal segments are used as an explant

for direct regeneration from axillary buds to obtain true-to-type

plants. Previously, in vitro clonal propagation of W. chinensis was

done by Agarwala et al. (2010) and Rahman and Bhadra (2011)

using nodes as explants with 70% and 80% survival rates,

respectively (Agarwala et al., 2010; Rahman and Bhadra, 2011).

Whereas Tsai and To (2021) determined that stems and mature

leaves of W. chinensis are not suitable materials for plant

regeneration. They used only the youngest two leaves and
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successfully regenerated W. chinensis via indirect organogenesis.

Maximum of 23% shoot regeneration was found on MS medium

supplemented with NAA (0.5 mg/L), Thidiazuron (TDZ) (0.75 mg/

L), GA3 (1 mg/L), adenine (3.75 mg/L), 3% sucrose, and 0.8% agar

at pH 5.8. The in vitro-grown shoots induced rooting on MS

medium containing NAA (3 mg/L) and 3% sucrose with or

without 0.8% agar and were successfully transferred to soil (Tsai

and To, 2021).

In the present study, both the cytokinins (KN and BA) in

combination with lower concentrations of IBA and NAA facilitated

shoot induction from axillary buds. Although from all

combinations used, MS medium augmented with KN at 5.0 mg/L

along with IBA 0.5 mg/L proved to be the most effective for shoot

regeneration. Similar results were also obtained in cucumber (Abu-

Romman et al., 2015). On the other hand, the effectiveness of BA
FIGURE 4

Transplantation of in vitro grown W. chinensis (A): Transfer of plants in plastic pots containing a mixture of soilrite and soil (1:1), (B): Regenerants
transferred to greenhouse after successful acclimatization for hardening, (C): 6-month-old regenerants grown under natural conditions.
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FIGURE 5

HPTLC chromatogram - (A): Standard, (B): Sample, (C): Standard curve, (D): Spectral comparison of Wd. (Here Wd - Wedelolactone).
FIGURE 6

Quantative estimantion of wedelolactone in in vivo and in vitro grown plantlets grown under influence of different growth regulators. *4-month-old
Plantlet raised on MS + (mg/l), #14-month-old in vitro raised plantlet transferred to the field (total age: 6 months). Different lowercase letters are
representing significance at p = 0.05 according to Duncan’s multiple range test.
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over KN for shoot regeneration has been earlier documented in

Eclipta alba (Yesmin et al., 2016) and Gymnema sylvestre (Isah,

2019). The effective role of adenine sulfate at a higher concentration

(25 mg/L) in the culture medium improves the frequency of shoot

development and helps in the recovery of the leaves from chlorotic

symptom in W. chinensis (Tsai and To, 2021).

For every micropropagation protocol, successful rooting of

regenerated shoots is essential for establishment in the soil as well

as survival on in vitro-raised plants in field conditions. In vitro-

raised shoots gave rooting on all combinations of auxins and

cytokinins. The best rooting response was observed on MS

supplemented with IBA (0.5 mg/L) along with KN (5.0 mg/L). A

similar response was observed by Dhaka and Kothari (2005) in E.

alba. IBA is the most commonly used auxin for root induction not

only in herbal plants but also in woody trees (Goyal et al., 2012).
TABLE 3 Effect of plant growth regulators and culture duration on
wedelolactone content in W. chinensis.

S.No. Plant source Wd content
(In mg/g dw)

1 In vivo grown plant 89.95 ± 1.29e

2 IBA+BA (0.5 + 2.0)* 110.08 ± 1.65c

3 IBA+KN (0.5 + 5.0)* 135.45 ± 1.72b

4 NAA+BA (0.5 + 2.0)* 104.27 ± 1.52d

5 NAA+KN (0.5 + 5.0)* 116.89 ± 1.01c

6 Transplanted plantlet# 151.71 ± 1.28a
Data in each column represents mean ± SE.
*4-month-old Plantlet raised on MS + (mg/l), #14-month-old in vitro raised plantlet
transferred to the field (total age: 6 months).
B

C

D

A

FIGURE 7

Estimation of nuclear DNA content in absolute units. (A): Histogram of CEN (Chicken erythrocyte nuclei) and CTN (Calf thymocyte nuclei). The dot
plot, histogram, and contour of (B): P. pinnata (Standard), (C): in vivo grown W. chinensis, (D): 6-month-old transplanted plants of W. chinensis
obtained through direct organogenesis.
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Root induction and proliferation on IBA-enriched MS medium

were also observed by several workers in various medicinal plants,

e.g., E. alba (Sharma et al., 2013), Pistacia vera (Tilkat et al., 2009),

Pentanema indicum (Sivanesan and Jeong, 2007), and Azadiracha

indica (Shahin-uz-zaman et al., 2008). Divergent to this, other

auxins have been reported for rooting in Thymus vulgaris

(Ozudogru et al., 2011). At higher concentrations of IBA, the

percentage of rooting decreased and callus formation occurred at

the basal cut end as also reported in Pithecellobium dulce (Goyal

et al., 2012). The 4-month-old rooted plants were sequentially

hardened and successfully transplanted into the field. The

plantlets showed 92% survival and attained maturity and

flowered. A similar approach was also reported earlier in E. alba

(Sharma et al., 2013).

The use of MS medium (devoid of agar) has significantly

improved micropropagation efficiency and production of healthy

plantlets in several plant species and is an attractive alternative to

growing cultures on a semisolid medium (Vaidya et al., 2019).
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However, rapid multiplication under in vitro conditions on liquid

culture was reported in the roots of Cleome rosea (da Silva Cordeiro

et al., 2015). Currently, there are no studies that have explored the use

of liquid culture systems for the micropropagation ofW. chinensis. In

the present study, higher number and length of roots differentiated in

liquid MS medium augmented with IBA (0.5 mg/L) and KN (5.0 mg/

L) within 4 weeks. Improved aeration and water availability in the

culture resulted in an improved root proliferation rate in the liquid

medium. Similarly, it is also reported in a variety of plant species

(Adelberg and Cousins, 2006; Tascan et al., 2010; Croom et al., 2016).

Liquid media produced the highest shoot length and rooting

percentage in Boswellia serrata (Suthar et al., 2011) and Typhonium

flagelliforme (Rezali et al., 2017). Despite the benefits of the liquid

culture system, Scutellaria species that are not suitable for liquid

culture led to the development of hyperhydricity (Tascan et al., 2010).

Plant tissue culture technique led to enhancement in the

secondary metabolite level over the field-grown plants (Naik and

Al-Khayri, 2016). Various factors like growth regulators, carbon

source, temperature, and photoperiod affect the biosynthetic

pathway of secondary metabolites (Jayathirtha and Mishra, 2003).

In the present study, 116% increase in wedelolactone content was

achieved in in vitro-grown plantlets under Cu stress as compared

with plants grown under natural conditions. Enhanced (2.7–6.4-

fold) wedelolactone content was previously recorded in the

regenerated plants of E. alba as compared with the in vivo-grown

plants (Zafar and Sagar, 1999).

Flow cytometry based on the principle of DNA-selective

fluorochromes is now the prevailing method for the measurement

of nuclear DNA content in plants. Ease of sample preparation and
TABLE 4 2C DNA content and Coefficient of variation in W. chinensis, in
vivo grown plant, tissue culture regenerated 4-month-old plantlets and
6-month-old transplanted plants in the field.

Plant source 2C DNA content
Coefficient of
variance (CV)

In vivo grown 2.80 ± 0.022 2.07

4-month-old plantlets 2.87 ± 0.008 2.70

6-month-old plantlets 2.86 ± 0.011 2.63
Data in each column represents mean ± SE.
FIGURE 8

Effect of CuSO4 on shoot fresh and dry weight in 12-week-old in vitro raised plantlets of W. chinensis. Different lowercase letters are representing
significance at p = 0.05 according to Duncan’s multiple range test.
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high sample throughput make it generally better suited than other

methods such as RAPD to estimate genome size and level of

generative polyploidy (Doležel et al., 2007). Earlier, Tsai et al.

(2021) successfully examined polyploidy analysis in in vitro-

grown W. chinensis using a flow cytometer (Tsai et al., 2021).

The present report validates genetic uniformity of in vivo-

grown and in vitro-regenerated plants of W. chinensis by using a

flow cytometer. The peaks of regenerated plants are similar to the

peak of the 2C DNA level of in vivo-grown plants. This confirms

that the genetic fidelity among regenerated plants of W. chinensis

was unaltered and maintained even after successful transplantation

In the same column, significant differences at the P≤0.5 level are indicated by different letters.
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in the field. The present study is in close agreement with that in

micropropagated Carum copticum (Niazian et al., 2017) and

Rauvolfia serpentina (Zafar et al., 2019) where genetic stability

was proved using flow cytometry. Similarly, genome size stability

has been reported in in vitro-regenerated plants of Coriandrum

sativum (Ali et al., 2017) and Gladiolus (Mujib et al., 2017). In

contrast to the present study, lower nuclear DNA content was

obtained in in vitro-regenerated plants of Pueraria lobata than that

in the control seedlings (Makowczyńska et al., 2008). Some gross

genome variability has also been noted in tissue culture-regenerated

plants of Nitraria tangutorum (Yang et al., 2010) and oil palm

(Lucia et al., 2011).

Soil contamination with heavy metals is a widespread

environmental issue, originating from urbanization, industrial

growth, mining activities, municipal waste, and agriculture

practices (Masindi and Muedi, 2018; Zwolak et al., 2019). Cu is

an essential micronutrient for plants. It contributes to different

physiological processes, including photosynthetic electron

transport, mitochondrial respiration, cell wall metabolism,

hormone signaling, DNA transcription, protein trafficking, and

protein regulation (Jung, 2008; Ullah et al., 2020). However, an

extreme amount makes it toxic for plants because of its redox

properties. Excess Cu affects photosynthetic and respiratory

processes, inhibits plant growth, decreases nutrient uptake, and

produces reactive oxygen species (Ravet and Pilon, 2013; Zandi

et al., 2020).
TABLE 5 Shoot fresh and dry weight in 12-week-old in vitro raised
plantlets of W. chinensis grown in the presence of CuSO4.

Shoots grown on MS +
IBA (0.5mg/l) and KN (5.0

mg/l) + CuSO4 (mM)

Shoot fresh
weight (g)

Shoot dry
weight (g)

00 1.04 ± 0.135a 0.12 ± 0.019a

25 0.80 ± 0.093ab 0.10 ± 0.021ab

50 0.75 ± 0.068ab 0.08 ± 0.009ab

75 0.64 ± 0.051bc 0.07 ± 0.006bc

100 0.57 ± 0.093bc 0.07 ± 0.006bc

125 0.39 ± 0.058c 0.04 ± 0.002c
The data were statistically analyzed using Duncan’s multiple range test. Values are mean ± SE.
FIGURE 9

Effect of CuSO4 on total protein and proline content in 12-week-old in vitro raised plantlets of W. chinensis. Different lowercase letters are
representing significance at p = 0.05 according to Duncan’s multiple range test.
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In the present investigation, stress tolerance of the regenerants

was tested under different concentrations of CuSO4. The shoot fresh

and dry weights were reduced by increasing the concentration of

CuSO4 in the medium. However, enhanced shoot biomass

accumulation is reported in Tagetes minuta in the presence of

lead (del Carman Sosa et al., 2016). Whereas total protein, proline as

well as chlorophyll, and carotenoid contents were increased up to 75
Frontiers in Plant Science 15
mM and after that decreased on further increase in CuSO4.

Similarly, increased chlorophyll and carotenoid contents were

observed in T. minuta in the presence of lead (del Carman Sosa

et al., 2016) and an enhanced level of proline content in Cajanus

cajan due to Cu stress (Hayat et al., 2021).

Heavy metals act as abiotic stress agents, causing oxidative

damage to the plant. Plants can recognize these threat signals and

activate various defense responses. Biosynthesis and accumulation of

secondary metabolites are vital detoxification mechanisms that help

to relieve the detrimental effects caused by toxic heavy metals

(Anjitha et al., 2021). In the present study, wedelolactone content

was enhanced from 0 to 75 mMCuSO4 concentrations, and after that,

further increasing CuSO4 reported reduced yield. A maximum 100%

increase in wedelolactone content was detected at 75 mM CuSO4

concentration compared to in vivo plants. Various researchers

obtained enhanced secondary metabolite under Cu stress in

different plants, such as enhanced diosgenin yield in Dioscorea

bulbifera (Narula et al., 2005), quercetin content in Pluchea

lanceolata (Kumar et al., 2004), saponin in Bacopa (Srivastava

et al., 2002), and phytochelatins in Antarctic Colobanthus

(Contreras et al., 2018) and increased phenylpropanoid

biosynthesis in the adventitious root culture of Althaea officinalis

(Park et al., 2021).
5 Conclusion

The present research emphasized a well-organized, low-cost, and

rapid in vitromassmultiplication protocol for the conservation of less

exploited medicinally important W. chinensis. The remarkability of

this protocol is based on an effective sterilization procedure followed

by the use of plant growth regulators to promote increased

multiplication rates in a short duration under in vitro conditions.

Additionally, the protocol highlights the acclimatization of in vitro-

grown plantlets to natural conditions with high efficiency and survival

rates for the conservation of this plant. Another application of plant

tissue culture is the production of true-to-type plants for usefulness

on an industrial scale for the production of secondary metabolites.
TABLE 6 Total protein content in 12-week-old in vitro raised plantlets
of W. chinensis grown in the presence of CuSO4.

Shoots grown on MS + IBA (0.5 mg/l)
and KN (5.0 mg/l) + CuSO4 (mM)

Total protein
content
(mg/ml)

00 0.85 ± 0.017d

25 0.95 ± 0.019c

50 1.02 ± 0.012b

75 1.15 ± 0.014a

100 0.73 ± 0.020e

125 0.55 ± 0.017f
The data were statistically analyzed using Duncan’s multiple range test. Values are mean ± SE.
In the same column, significant differences at the P≤0.5 level are indicated by different letters.
TABLE 7 Proline content in 12-week-old in vitro raised plantlets of W.
chinensis grown in the presence of CuSO4.

Shoots grown on MS + IBA (0.5 mg/l)
and KN (5.0 mg/l) + CuSO4 (mM)

Proline
content (mg/

g fw)

00 13.88 ± 0.396f

25 16.96 ± 0.231e

50 21.30 ± 0.427d

75 28.18 ± 0.107c

100 34.02 ± 0.345b

125 41.27 ± 0.381a
The data were statistically analyzed using Duncan’s multiple range test. Values are mean ± SE.
In the same column, significant differences at the P≤0.5 level are indicated by different letters.
TABLE 8 Chlorophyll and carotenoid content in 12-week-old in vitro raised plantlets of W. chinensis grown in the presence of CuSO4.

Shoots grown on MS + IBA (0.5 mg/l) and KN (5.0
mg/l) + CuSO4 (mM)

Chlorophyll A
content
(mg/g fw)

Chlorophyll B
content
(mg/g fw)

Total
Chlorophyll
content
(mg/g fw)

Carotenoid
content
(µg/g fw)

00 1.48 ± 0.009d 0.44 ± 0.027d 1.93 ± 0.034d 0.46 ± 0.014d

25 1.66 ± 0.020c 0.62 ± 0.036c 2.28 ± 0.044c 0.55 ± 0.008c

50 1.75 ± 0.021b 0.78 ± 0.034b 2.53 ± 0.054b 0.63 ± 0.008b

75 2.18 ± 0.019a 1.28 ± 0.033a 3.46 ± 0.016a 0.70 ± 0.034a

100 1.14 ± 0.019e 0.34 ± 0.020de 1.48 ± 0.019e 0.39 ± 0.011d

125 0.55 ± 0.025f 0.26 ± 0.044e 0.82 ± 0.060f 0.22 ± 0.016e
The data were statistically analyzed using Duncan’s multiple range test. Values are mean ± SE. In the same column, significant differences at the P≤0.5 level are indicated by different letters.
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Keeping this in mind instead of using RAPD that gives low

reproducibility, we are the first to report the use of flow cytometry,

a flourochromatic based advanced and accurate method, for checking

the genetic uniformity of tissue culture-raised W. chinensis. The

regenerated plants obtained through direct regeneration were

genetically stable even after transplantation, and their genetic

profiling was similar to field-grown plants. CuSO4 in the

regeneration medium not only enhances stress tolerance but also

leads to an increase in the production of secondary metabolites.

Enhanced levels of wedelolactone obtained in this study can be

exploited for the treatment of different types of cancer.
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FIGURE 10

Effect of CuSO4 on wedelolactone content in 12-week-old in vitro raised plantlets of W. chinensis. Different lowercase letters are representing
significance at p = 0.05 according to Duncan’s multiple range test.
TABLE 9 Wedelolactone content in 12-week-old in vitro raised plantlets
of W. chinensis grown in the presence of CuSO4.

Shoots grown on MS + IBA (0.5 mg/l)
and KN (5.0 mg/l) + CuSO4 (mM)

Wedelolactone
content
(mg/g dw)

00 89.95 ± 1.29d

25 96.70 ± 0.74c

50 142.99 ± 0.63b

75 193.90 ± 0.58a

100 71.43 ± 0.55e

125 47.13 ± 0.96f
The data were statistically analyzed using Duncan’s multiple range test. Values are mean ± SE.
In the same column, significant differences at the P≤0.5 level are indicated by different letters.
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