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Editorial on the Research Topic

Plant signaling in response to environmental stresses
In nature, plants constantly interact with both abiotic and biotic environments. Recent

studies have often converged on plant-stress interactions by modulating and eliciting

precise signals. Advances in molecular techniques and mining of big datasets have

increased our understanding of these processes, revealed new levels of complexity, and

opened new research directions. This Research Topic aims to provide an interdisciplinary

understanding of how plants use physiological, biochemical, and molecular genetic

mechanisms to adapt to adverse environments. The contributions included in this

Research Topic provide new insights into the responses and adaptations of various crops

to abiotic stresses.

In a study of this Research Topic, Jin et al. indicated that fluctuating desert

environments induce temporal variation in the photosystem II (PSII)-energy

partitioning response. The authors revealed that different responses to PSII-energy

allocation were influenced by photosynthetically active radiation (PAR), air temperature

(Ta), and vapor pressure deficit (VPD) at a diurnal scale. In contrast, PSII-energy

partitioning on a seasonal scale displayed greater variability among the different

environmental variables, such as photochemical efficiency (FPSII) and non-regulatory

thermal dissipation (FNPQ, FNO), being more predisposed to changes in Ta, and FNPQ to

changes in VPD, acclimatize to excessive PAR, dry-air conditions, and prolonged drought.

Photosynthesis in plants is particularly susceptible to environmental fluctuations. Similarly,

plant photosynthetic activity and growth are related to light intensity. Low light intensity

caused by shading significantly reduces plant growth and biomass, probably because of the

reduced photosynthetic rate (Wang et al., 2012). Interestingly, Zhang et al. addressed clonal

integration (Glechoma longituba), and high-nutrient supplements not only significantly
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increased the growth of apical portions, but also enhanced plant

growth and biomass under shaded light conditions. Collectively,

these studies revealed that the pictures emerged from

environmentally induced variations in photosynthetic processes as

a function of plant adaptation.

Plants perceive stress signals through internal receptors, such

as G-protein, kinase, reactive oxygen species (ROS), and calcium,

which trigger molecular cascades to transmit signals (Devireddy

et al., 2021). Among these, calcium-permeable channels in the

plasma membrane play a vital role in plant response to

environmental stress. Silamparasan et al. addressed the

significance of calcium-dependent protein kinase (CDPKs)-

mediated phosphorylation of serine (Ser)-856 of glutamate

receptor-like (GLR)3.6 protein, which plays an essential role in

salt and abscisic acid (ABA) response in Arabidopsis by

modulating Ca2+ signaling. Additionally, Ca2+-mediated

CDPK16 phosphorylates GLR3.6, which regulates root growth

under normal and salt-stress conditions. On the other hand, in

guard cells, H2O2 triggers an influx of cytosolic calcium (Ca2+) to

regulate ABA-induced stomatal closure in Arabidopsis plants

(Pei et al., 2000). Evidence has demonstrated that H2O2-

induced Ca2+ ion flux is involved in H2O2 perception and

s igna l ing pathways (Demidchik and Shabala , 2018) .

Additionally, Available at: Wu et al. (2020) identified hydrogen

peroxide-induced Ca2+ increase 1 (HPCA1) as a leucine-rich

repeat receptor kinase induced by H2O2. HPCA1 mediates

H2O2-induced activation of Ca2+ channel signals in guard cells

and is required for stomatal closure. Therefore, HPCA1 is

involved in the perception of extracellular H2O2 in response to

various external stressors and internal cues in plants.

Recently, abscisic acid application has been shown to partially

improve water use efficiency (WEU). Roeder et al. found that ABA-

related cyano cyclopropyl compounds (CCPs) play a pivotal role in

minimizing leaf transpiration. Several CCPs activate ABA signaling,

such as CCP1, CCP2, and CCP5, which are an order of magnitude

more efficient than ABA in minimizing transpiration in

Arabidopsis plants. Among these, CCP2 mediated an increase in

water use efficiency superior to ABA, without trade-offs in biomass

accumulation in a progressive drought experiment. Thus, ABA and

other chemically stable ABA agonists have the potential to improve

crop water productivity. Furthermore, ABA is known to be a

phytohormone responsible for stomatal closure, and ABA

receptors including the REGULATORY COMPONENT OF ABA

RECEPTOR (RCAR) and PYRABACTIN RESISTANCE 1-LIKE

(PYL) (PYR/PYL/RCAR) play a central role in executing ABA’s role

in water relations (Cutler et al., 2010; Vaidya et al., 2019). Among

these ABA receptors, RCAR and PYL are the most targeted for ABA

sensitivity and water productivity. Overexpression of ABA

receptors RCAR6/PYL12 increased water use efficiency (WUE) by
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up to 40% in Arabidopsis (Yang et al., 2016). In addition,

overexpression of TaPYL1/2/4/6 in wheat increases ABA

sensitivity and significantly lowers a plant’s lifetime water

consumption (Mega et al., 2019). Physiological analyses of

TaPYL4 overexpressing plants showed that the water-saving trait

is a consequence of reduced transpiration during water deficits

(Mega et al., 2019).

Furthermore, one contribution pertains to transcriptome

analysis aimed at gaining insight into the molecular response of

soybean drought response to drought mepiquat chloride

pretreatment. Wang et al. identified DEGs in drought-tolerant

and drought-sensitive soybean genotypes and identified candidate

genes such as LOC100816177, SOMT-2, LOC100784120,

LOC100797504, LOC100794610, and LOC100819853, which are

crucial for the drought resistance of soybeans. Taken together, this

study indicated that 2-oxocarboxylic acid metabolism and

isoflavone biosynthetic pathways are the core pathways by which

mepiquat chloride regulates soybean drought response.

In summary, the five articles published on the Research Topic

provide illustrative examples of the research area of plant signaling

responses to environmental stress by highlighting the complexity of

the connections between physiological, key signaling, and metabolic

pathways in plants. Thus, we hope that these compiled articles

provide new insights into this topic and expand the scope of

future research.
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