
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Qiang Lyu,
Southwest University, China

REVIEWED BY

Yunchao Tang,
Guangxi University, China
Liantao Liu,
Hebei Agricultural University, China

*CORRESPONDENCE

Shengping Lv

lvshengping@scau.edu.cn

RECEIVED 25 August 2023
ACCEPTED 20 October 2023

PUBLISHED 08 November 2023

CITATION

Li X, Zhang Z, Lv S, Liang T, Zou J,
Ning T and Jiang C (2023) Detection of
breakage and impurity ratios for raw
sugarcane based on estimation model
and MDSC-DeepLabv3+.
Front. Plant Sci. 14:1283230.
doi: 10.3389/fpls.2023.1283230

COPYRIGHT

© 2023 Li, Zhang, Lv, Liang, Zou, Ning and
Jiang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 November 2023

DOI 10.3389/fpls.2023.1283230
Detection of breakage and
impurity ratios for raw sugarcane
based on estimation model and
MDSC-DeepLabv3+

Xin Li, Zhigang Zhang, Shengping Lv*, Tairan Liang,
Jianmin Zou, Taotao Ning and Chunyu Jiang

College of Engineering, South China Agricultural University, Guangzhou, China
Broken cane and impurities such as top, leaf in harvested raw sugarcane

significantly influence the yield of the sugar manufacturing process. It is crucial

to determine the breakage and impurity ratios for assessing the quality and price

of raw sugarcane in sugar refineries. However, the traditional manual sampling

approach for detecting breakage and impurity ratios suffers from subjectivity, low

efficiency, and result discrepancies. To address this problem, a novel approach

combining an estimation model and semantic segmentation method for

breakage and impurity ratios detection was developed. A machine vision-

based image acquisition platform was designed, and custom image and mass

datasets of cane, broken cane, top, and leaf were created. For cane, broken cane,

top, and leaf, normal fitting of mean surface densities based on pixel information

and measured mass was conducted. An estimation model for the mass of each

class and the breakage and impurity ratios was established using the mean

surface density and pixels. Furthermore, the MDSC-DeepLabv3+ model was

developed to accurately and efficiently segment pixels of the four classes of

objects. This model integrates improved MobileNetv2, atrous spatial pyramid

pooling with deepwise separable convolution and strip pooling module, and

coordinate attention mechanism to achieve high segmentation accuracy,

deployability, and efficiency simultaneously. Experimental results based on the

custom image and mass datasets showed that the estimation model achieved

high accuracy for breakage and impurity ratios between estimated andmeasured

value with R2 values of 0.976 and 0.968, respectively. MDSC-DeepLabv3+

outperformed the compared models with mPA and mIoU of 97.55% and

94.84%, respectively. Compared to the baseline DeepLabv3+, MDSC-

DeepLabv3+ demonstrated significant improvements in mPA and mIoU and

reduced Params, FLOPs, and inference time, making it suitable for deployment

on edge devices and real-time inference. The average relative errors of breakage

and impurity ratios between estimated and measured values were 11.3% and

6.5%, respectively. Overall, this novel approach enables high-precision, efficient,

and intelligent detection of breakage and impurity ratios for raw sugarcane.
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1 Introduction

Sugarcane is an important raw material for the sugar industry

worldwide. In China, sugarcane-based sugar production reached 4.6

million tons in 2022, which is 4.3 times that of beet sugar (National

Development and Reform Commission, 2023). In recent years, the

use of machine-harvested sugarcane has been steadily increasing,

with plans to reach 30% of total sugarcane harvest in China by 2025

(Chinese government website, 2018). Machine harvesting

significantly improves efficiency and reduces labor intensity;

however, it also leads to higher ratios of broken cane and

impurities such as top, leaf, which can negatively impact the yield

of the sugar manufacturing process. As a result, the breakage and

impurity ratios are crucial indicators for assessing the quality and

pricing of raw sugarcane in practice, and determining these two

ratios is indispensable for sugar refineries. Unfortunately, the

commonly used manual sampling approach for detecting breakage

and impurity ratios brings several issues, including strong

subjectivity, low efficiency, and significant result discrepancies.

To address the aforementioned problem, an estimation model

was established, and machine vision technology was employed to

provide a more objective, efficient, accurate, and intelligent

approach for quantifying the cane, broken cane, and impurities,

as well as the ratios of breakage and impurity. This enables seamless

integration with the sugarcane harvesting and sugar processing

stages. Both cane and broken cane can be used as raw materials, but

broken cane is considered in mass deduction by sugar refineries

because it results in the loss of sugar content and impacts the quality

of the final sugar product. The sugarcane top, leaf, root, sand, gravel,

and soil and so forth are collectively referred to as impurities

(Guedes and Pereira, 2018). Adjusting the height between the

harvester’s cutting device and the ridge surface will reduce the

introduction of sand, gravel, and soil during sugarcane harvesting.

Furthermore, when the mechanical harvester operates smoothly

and adheres to specifications, it noticeably decreases the levels of

mud, stone, and cane root (Xie et al., 2018). Mechanical removal

methods, such as vibration, can often be used to screen out the sand,

gravel, and soil (Martins and Ruiz, 2020). However, the top, leaf and

cane root are unavoidable impurities as they are naturally part of

each sugarcane stem (de Mello et al., 2022). Regarding cane root,

object detection can be utilized to count its quantities. Combining

this with the average weight of the cane root helps predict the mass

of root impurity after excluding sand, gravel and soil. Based on the

quality detection practice of sugar refineries, the four categories of

cane, broken cane, top, and leaf are selected as the detection objects

in this study.

Estimation models and machine vision technology have been

widely used for the detection and monitoring of impurities in grain

crops such as rice, wheat, and corn. For example, Chen et al. (2020)

used morphological features and a decision tree for the classification

of rice grains and impurities with 76% accuracy to optimize

combine harvester parameters. Liu et al. (2023) proposed a

NAM-EfficientNetv2 lightweight segmentation approach for rapid

online detection of rice seed and impurities in harvesters, achieving

high evaluation index F1 scores of 95.26% and 93.27% for rice grain

and impurities, respectively. To improve accuracy in wheat and
Frontiers in Plant Science 02
impurity recognition, Shen et al. (2019) constructed a dataset and

trained a recognition model called WheNet based on Inception_v3,

achieving a recall rate of 98% and an efficiency of 100ms per image.

Chen et al. (2022) designed a vision system based on DeepLabv3+ to

identify seeds and impurities in wheat, obtaining mean pixel

accuracy (mPA) values of 86.86% and 89.91% for grains and

impurities, and mean intersection over union (mIoU) scores of

0.7186 and 0.7457, respectively. For the detection of impurities in

the corn deep-bed drying process, Li et al. (2022) employed a multi-

scale color recovery algorithm to enhance images and eliminate

noise. They used HSV color space parameter thresholds and

morphological operations for segmentation and achieved F1

scores of 83.05%, 83.87%, and 87.43% for identifying broken

corncob, broken bract, and crushed stone, respectively. Liu et al.

(2022) developed a CPU-Net semantic segmentation model based

on U-Net, incorporating the convolutional block attention module

(CBAM) and pyramid pooling modules to improve segmentation

accuracy for monitoring corn kernels and their impurities. They

established a mass-pixel linear regression model to calculate the

kernel impurity rate and experimental results demonstrated that

CPU-Net outperforms other comparative approaches with average

mIoU, mPA, and inference time scores of 97.31%, 98.71%, and

158.4ms per image, respectively. The average relative error between

the impurity rate obtained by the model and manual statistics

was 4.64%.

Detection of impurities in cash crops such as soybean, cotton,

and walnut during harvesting or processing has also been

extensively studied in recent years. Momin et al. (2017) used HSI

to segment the image background of soybean with three categories

of impurities. They employed various image processing techniques,

such as median blur, morphological operations, watershed

transformation, projection area-based analysis, and circle

detection, for feature recognition of soybean and impurities. The

experimental results showed pixel accuracy of 96%, 75%, and 98%

for split bean, contaminated bean, and defective bean, and stem/

pod, respectively. Jin et al. (2022) developed an improved UNet

segmentation model to address issues of soybean sticking, stacking,

and complex semantics in images. The experimental results

demonstrated comprehensive evaluation index values of 95.50%,

91.88%, and 94.34% for complete grain, broken grain, and impurity

segmentation, respectively, with a mIoU of 86.83%. The field

experiment indicated mean absolute errors of 0.18 and 0.10

percentage points for fragmentation and impurity rate between

the model-based value and the measured value, respectively. For

real-time detection of impurity ratio in cotton processing, Zhang

et al. (2022) utilized the enhanced Canny algorithm to segment

cotton and its impurities. They employed YOLOv5 to identify the

segmented objects and determine their respective categories. They

also developed an estimation model for the impurity ratio based on

segmented volume and estimated mass and utilized a multithread

technique to shorten the processing time, achieving a 43.65%

reduction compared to that of a single thread. To improve the

recognition accuracy of white and near-cotton-colored impurities

in raw cotton, Xu et al. (2023) proposed a weighted feature fusion

module and a decoupled detection strategy to enhance the detection

head of YOLOv4-tiny. The proposed method decreased
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computation during the inference process, boosted the speed of

inference, and enhanced the accuracy of cotton impurity

localization. Experimental results showed a respective increase of

10.35% and 6.9% in mAP and frames per second (FPS) compared to

the baseline YOLOv4-tiny. The detection accuracy of white and

near cotton-colored impurities in raw cotton reached 98.78% and

98%, respectively. To achieve real-time segmentation of juglans

impurity, Rong et al. (2020) proposed a hybrid approach by

combining a segmentation model based on a multi-scale residual

full convolutional network and a classification method based on a

convolutional network. The proposed method accurately

segmented 99.4% and 96.5% of the object regions in the test and

validation images, respectively, with a segmentation time of within

60ms for each image. Yu L. et al. (2023) presented an improved

YOLOv5 with lower parameters and quicker speed for walnut

kernel impurity detection by incorporating target detection layers,

CBAM, transformer-encoder, and GhostNet. The results indicated a

mAP of 88.9%, which outperformed the baseline YOLOv5 by 6.7%.

In recent years, researchers have also achieved notable progress

in the field of impurity detection in sugarcane. Guedes and Pereira

(2019) constructed an image dataset comprising 122 different

combinations of sugarcane stalk, vegetal plant part, and soil to

evaluate the impurity amount. They converted color samples into

color histograms with ten color scales and employed three

classifiers, namely soft independent modeling of class analogy,

partial least squares discriminant analysis (PLS-DA), and k

nearest neighbors (KNN), to classify cane and its impurities.

Guedes et al. (2020) further proposed an analytical method using

artificial neural networks (ANNs) combined with the ten color

histograms to predict the content of sugarcane in the presence of

impurities. The experimental results demonstrated correlation

coefficients of 0.98, 0.93, and 0.91 for the training, validation, and

test sets, respectively. Aparatana et al. (2020) employed principal

component analysis (PCA), PLS-DA, and support vector machine

(SVM) to classify and differentiate sugarcane and impurities,

including green leaf, dry leaf, stone, and soil, based on their

spectral information. The research findings indicated that PCA,

PLS-DA, and SVM achieved classification rates of 90%, 92.9%, and

98.2%, respectively. Dos Santos et al. (2021) used a similar

mechanism by combining ten color histograms and ANNs to

classify raw sugarcane. They achieved 100% accurate classification

for two ranges of raw sugarcane in the samples, from 90 to 100 wt%

and from 41 to 87 wt%. However, these studies mentioned above

recognize raw sugarcane and impurities based on their color

features, making it difficult to differentiate objects with inter-class

similarity, such as sugarcane top and leaf, which have similar color

features at the pixel level. Additionally, these methods may not be

suitable for practical situation with multiple combinations of

impurities in arbitrary proportions, which present significant

challenges in building samples with a vast combination of weight

percentages of impurities.

From the perspective of recognition tasks, the aforementioned

studies can be categorized into three types: image classification,

object detection, and semantic segmentation. Image classification-

based approaches (Momin et al., 2017; Guedes and Pereira, 2019;
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Shen et al., 2019; Aparatana et al., 2020; Chen et al., 2020; Guedes

et al., 2020; Dos Santos et al., 2021; Li et al., 2022) cannot capture

pixel-level information for subsequent construction of a mass-pixel

fitting model. Object detection can be utilized for real-time

classification and localization of crops and impurities (Zhang

et al., 2022; Xu et al., 2023; Yu J. et al., 2023), but they still

cannot support subsequent mass estimation based on pixels of

detected objects. Semantic segmentation, on the other hand, enables

pixel-wise classification of an image and facilitates the precise

determination of the number of pixels and their respective

categories in a specific region. Mass-pixel fitting models can be

established by combining the number of pixels and the actual mass

of each category of object (Rong et al., 2020; Chen et al., 2022; Jin

et al., 2022; Liu et al., 2022; Liu et al., 2023), thus supporting the

quantitative analysis of the quality of the detected objects. In order

to quantify the ratio of breakage and impurity in raw sugarcane,

semantic segmentation technology was utilized to abstract the of

raw sugarcane and impurities in this study. However, the

aforementioned approaches and findings are difficult to be

directly applied to the detection of sugarcane and impurities in

this study. Firstly, there is currently a lack of image databases that

include raw sugarcane and impurities. Secondly, the estimation

models developed in the above studies are only suitable for

relatively stable scenarios of surface density (mass/pixel) for each

detection category. However, the surface density of broken cane

varies significantly due to different degrees of breakage, and the

residual leaf at the top of the cane is scattered, resulting in a more

varied surface density. Therefore, it is necessary to establish a

corresponding image dataset and segmentation model for the

detection of raw sugarcane and impurities and build new

estimation model for quality evaluation based on segmented pixels.

Popular and widely applied deep learning (DL)-based semantic

segmentation approaches have achieved excellent results in image

processing in agriculture (Luo et al., 2023). Among these

approaches, end-to-end semantic segmentation models like FCN,

UNet, PSPNet, and DeepLabv3+ have demonstrated good

performance with simple structures. DeepLabv3+ in particular

has gained significant popularity and has been extensively

enhanced due to its exceptional segmentation accuracy, making it

a widely practiced and verified model in agricultural applications.

For instance, Wu et al. (2021) developed an enhanced version of

DeepLabv3+ to segment abnormal leaves in hydroponic lettuce.

Peng et al. (2023) constructed an RDF-DeepLabv3+ for segmenting

lychee stem. Zhu et al. (2023) proposed a two-stage DeepLabv3+

with adaptive loss for the segmentation of apple leaf disease images

in complex scenes. Wu et al. (2023) utilized Deeplabv3+ and post-

processing image analysis techniques for precise segmentation and

counting of banana bunches. Their findings indicated that

DeepLabv3+-based segmentation models can effectively perform

pixel-level segmentation of crop objects, and the segmentation

effects were superior to those of compared approaches. In this

study, DeepLabv3+ was adopted for the semantic segmentation of

raw sugarcane and impurities, and efforts were made to further

improve its segmentation accuracy, reduce parameters, and

optimize inference time.
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This study aims to address the detection of breakage and

impurity ratios in raw sugarcane. The specific research content of

this study includes: (1) Designing a machine vision-based acquisition

platform for online image collection of raw sugarcane (cane, broken

cane) and impurities (top, leaf). Custom datasets of masses and

corresponding images were constructed. (2) Establishing a normal

fitting model to determine the mean surface density of each class

based on measured masses and extracted pixels. Additionally, an

estimation model was developed to assess the ratios of breakage and

impurity using the estimated mass of each class, along with their

pixels and fitted mean surface density. (3) Developing a MDSC-

DeepLabv3+ model for accurate segmentation of raw sugarcane and

impurity pixels based on DeepLabv3+. The model was further

improved by incorporating improved MobileNetv2, atrous spatial

pyramid pooling (ASPP) with deepwise separable convolution (DSC)

and strip pooling (SP) named ASPP_DS, and coordinate attention

(CA) mechanism to enhance segmentation accuracy, reduce

parameters, and optimize inference time. (4) Conducting

experiments to verify the accuracy of the proposed estimation

model in assessing breakage and impurity ratios, and evaluate the

capability of MDSC-DeepLabv3+ in rapidly and accurately

identifying the pixels of cane, broken cane, top, and leaf.

Comprehensive experimental results show that the average relative

errors of breakage and impurity ratio between predicted values and

measured values are low. These findings have significant implications

for the development of intelligent detection and cleaning system for

sugarcane impurity.
2 Materials and methods

2.1 Raw sugarcane and impurity
dataset construction

2.1.1 Detection device design
In order to provide a stable environment and meet the

continuous image acquisition requirements that align with the

raw sugarcane convey process in the sugar refinery, a dedicated

platform for image acquisition of raw sugarcane and impurities was
Frontiers in Plant Science 04
designed, as shown in Figure 1A. The platform mainly consists of

portable energy storage, an acquisition room, a light source, an

image acquisition module, a computer, and a motion

assistance module.

The portable energy storage is used to supply power to the

platform, especially in situations where electricity supply is limited.

The interior of the image acquisition room, as depicted in Figure 1B,

is covered with black matte paper to create a diffused lighting

environment. Additionally, four magnetic base LED light bars are

strategically placed around the room to ensure consistent

illumination for the image acquisition module. The image

acquisition module comprises an industrial camera and an

industrial lens. The computer is connected to the image

acquisition module via a USB 3.0 interface, which facilitates

image storage and processing. The motion assistance module is

composed of a conveyor, a cross beam guide rail, and a pair of

vertical slider guide rails with self-locking function. The conveyor

simulates the transmission of raw sugarcane before entering the

pressing workshop. The vertical slider guide rails, equipped with

scale markings, support and allow for adjustment of the cross beam

guide rail where the camera is mounted. This feature enables easy

adjustment of the camera’s field of view and ensures the stability of

the image acquisition module.

Table 1 shows the model parameters of the main components of

the acquisition platform. The conveyor belt speed is determined

based on sugar refinery practice and is measured in meters per

second (m/s). The dimensions of the indoor acquisition room are

set according to the requirements, with horizontal (HFOV) and

vertical (VFOV) dimensions are set to the belt width of 450mm

and indoor length of 600mm, respectively. The selected industrial

camera has a horizontal (HCMOS) and vertical (VCMOS) size of the

image sensor as 7.6×5.7mm, and the working distance (WD) is set to

490mm considering the inner height of the acquisition room. The

imaging principle of this acquisition platform is illustrated in

Figure 2. Using the imaging principle and the dimensions of

HCMOS, VCMOS and WD, the field of view can be determined using

Eq.(1).

f =WD = VCMOS=VFOV = HCMOS=HFOV (1)
BA

FIGURE 1

Machine vision acquisition platform. (A) Acquisition device structure. (B) Acquisition room.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1283230
As a result, the focal length is determined by f = WD × (VCMOS/

VFOV) = 490 × (7.6/3450) = 8.27mm, and the MVL-MF0828M-8MP

industry lens is selected.

2.1.2 Image and mass data acquisition
The image and mass acquisition of raw sugarcane and

impurities took place in the sugarcane unloading workshop of

Junshi sugar refinery in Jijia Town, Leizhou City, Guangdong

Province. The data collection period started from the middle of

February to the end of the month in 2023, coinciding with the local

sugarcane harvesting season. For this study, large-scale cultivated

sugarcane variety “Yuetang 159” was selected. The raw sugarcane

samples were randomly collected from different machine-harvested

vehicles at various time intervals throughout the day using a loader.

These samples were then manually placed on the conveyor belt of

the acquisition platform for image collection. In total, 910 RGB 8-

bit photos with jpg format and a resolution of 1624×1240 were

captured. Each image contains four categories: cane, broken cane,

top, and leaf, as shown in Figure 3. Following the image capturing

process, 300 samples of raw sugarcane and impurities were

randomly selected from the collected images. Each category of

material in these samples was weighed using a calibrated

electronic scale with a precision of 0.01g, and their masses were

measured in grams (g).

2.1.3 Image labeling and dataset augmentation
The original dataset consists of 910 images containing cane,

broken cane, top, leaf, and the background. These images were

manually labeled and colored using the image annotation tool

Labelme. The labeled regions of the five classes of objects were

used to evaluate the training loss of intersection over union (IoU)

between predicted bounding boxes and ground truth. The RGB

values for cane, broken cane, top, and leaf were set to [128,0,0],

[0,0,128], [0,128,0], and [128,128,0], respectively, while the

background was set to [0,0,0]. To ensure model performance

validation and testing, the dataset was randomly divided into

training (546 images), validation (182 images), and test sets (182

images) with a ratio of 6:2:2.

In order to improve the generalization of the model, data

augmentation techniques were applied to the training, validation,

and test sets separately. Techniques such as random rotation, affine

transformation, fogging, Gaussian noise, median filtering, and

cutout were used to enhance the original images. After

augmentation, the images were checked and corrected using

Labelme to ensure accurate labeling of each class in every image.

The annotated images were stored in the PASCAL VOC format and
Frontiers in Plant Science 05
named Raw Sugarcane and Impurity (RSI). The label counting

algorithm was used to calculate the number of labels in the RSI

images, and the corresponding statistics are shown in Table 2. The

dataset demonstrates a relatively balanced distribution of samples

across each class. Examples of the original annotated images and

augmented images can be observed in Figure 4.
2.2 Estimation model establishment

2.2.1 Surface density distribution analysis
In general, previous estimation models that are based on image

pixels for assessing the mass of crops (such as wheat, corn, and

soybean) often assume that the surface density (mass/pixel) of each

crop category remains stable across different images (Chen et al.,

2022; Jin et al., 2022; Liu et al., 2022). However, when it comes to

broken cane and impurities, their surface density can vary

significantly in different images. Therefore, before building the

estimation model, it is essential to analyze the surface density

distributions of cane, broken cane, top, and leaf separately. This

analysis will help to account for the variation in surface density and

ensure more accurate estimation for breakage and impurity ratios in

raw sugarcane.
TABLE 1 Main components of the acquisition platform.

Components Parameters Components Parameters

Acquisition room Indoor space 600mm×500mm×700 mm Slider guide rail SGR15N-500mm×2

Industry camera MV-CA020-10UC with 89.1fps@1624×1240, image sensor size 7.6×5.7mm Computer AMD Ryzen7 5800H GeForce GTX 1650

Industry lens MVL-MF0828M-8MP Portable energy storage 72000mAh/3.2V

Light source 3600Lux×4 Conveyor 2000mm×450mm×100mm,1.5m/s, ≤20kg
FIGURE 2

Imaging principle in this acquisition platform.
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The analysis of surface density distribution was conducted using

300 samples of mass data and the corresponding images for each

category. The OpenCV threshold function was utilized to count the

number of pixels in each category. Let PC, PB, PT andPL represent

the number of pixels of cane, broken cane, top, and leaf in each

image sample, respectively, and their corresponding masses are

denoted as MC, MB, MT and ML, respectively. The spatial

distribution of the surface density for raw sugarcane, including

cane and broken cane, as well as the top and leaf, is presented in

Figure 5. Based on the surface density distribution of raw sugarcane

in Figure 5A, it can be observed that the surface density of cane

fluctuates less and is more concentrated. The surface density of

broken cane is approximately half of that of cane, and the data is

scattered. Figures 5B, C illustrate that the surface density
Frontiers in Plant Science 06
distribution of top and leaf is more scattered compared to

broken cane.

To address the scattered surface density of broken cane, top,

and leaf, a Gaussian distribution probability density function was

used to fit the frequency histograms of surface density for each

category. The mean surface density m for each category was then

obtained through the fitting process, and the results are

demonstrated in Figure 6. It can be observed that all fitting

coefficients R2 are greater than 0.95, indicating high fitting accuracy.

The fitting results showed that the mean surface density of cane,

broken cane, top, and leaf are mc = 1.52E-3, mB 7.4E-4, mT = 8.8E-4

and mL = 3E-5 with unit g/pix, respectively. Moreover, it is evident

that the mean value of cane mc is approximately twice the mean

value of broken cane mB and top surface density mT, and mc is more
B C D EA

FIGURE 3

Acquisition materials and segmentation classes. (A) Original image, (B) Cane, (C) Broken cane, (D) Top, (E) Leaf.
B C D

E F G H

A

FIGURE 4

Augmented image samples and image label. (A) Original image, (B) Ground truth, (C) Random rotation, (D) Affine transformation, (E) Fogging, (F)
Gaussian noise, (G) Median filtering, (H) Cutout.
TABLE 2 Statistic of Raw Sugarcane and Impurity (RSI) dataset.

Dataset Training dataset Validation dataset Test dataset Complete dataset

Images 5460 1820 1820 9100

Cane labels 16882 4151 3850 24883

Broken cane labels 13735 3310 3410 17045

Top labels 15903 4071 4390 24364

Leaf labels 17234 4015 3830 25079
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than fifty times of mL. The mass error of leaf has little effect on the

overall mass error. Therefore, when establishing the estimation

model, the accuracy of the estimated mass of cane should be

ensured first, followed by broken cane, top, and finally leaf. This

approach is consistent with the low deduction percentage setting (as

low as 0.2%) employed by sugar refineries for leaf impurities.
2.2.2 Fitting and estimation model establishment
On the basis of the mean values of surface density given in

Figure 6, the estimated mass of caneM’C, broken caneM’B, topM’T,

and leaf M’L based on their pixels can be expressed as follows:
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M0
C = mC � PC = 1:52E� 3PC (1)

M0
B = mB � PB = 7:4E� 4PB (2)

M0
T = mT � PT = 8:8E� 4PT (3)

M0
L = mL � PL = 3E� 5PL (4)

Furthermore, a linear regression of the estimated and measured

mass was conducted to validate the accuracy of the mass estimation

model defined by Eq.(1)-(4). Based on the distribution

characteristics shown in Figure 6, a total of 285 mass data of

cane, broken cane, top, and leaf within a 95% confidence interval

were selected for fitting, and the fitting results were presented in

Figure 7 and Table 3. It can be seen that the measured mass of the

cane is highly correlated with the estimated mass with an R2 value of

0.983. This indicates that the linear regression model is capable of

explaining the numerical relationship between the measured mass

and the estimated mass of the cane. The R2 value for broken cane

and top are 0.894 and 0.88, respectively, demonstrating the

regression model’s good fitting capability. The R2 value for the

leaf is 0.764 suggesting that the model can still adequately fit the

relationship between the measured mass and the estimated mass. In

addition, the results of ANOVA in Table 3 indicate that the

significance F<0.01 between estimated cane, broken cane, top, and

leaf and their measured values proves a high correlation.

Based on the mass of each category, the ratios of breakage (RB)

and impurity (RI) is defined as:

RB = MB
MC+MB

� 100%

= 7:4E−4 � PE
1:52E−3�Pc+7:4E−4�PE

� 100%
(5)

RI =
MT  þ ML

MC+MB+MT+ML
� 100%

= 8:8E−4�PT  þ  3E−5�PL
1:52E−3�Pc+7:4E−4 � PE+8:8E−4�PT  þ  3E−5�PL

� 100%
(6)

Where MC, MB, MT and ML is the mass of cane, broken cane,

top and leaf in an image sample. The estimated breakage and

impurity ratios R'B and R'I can also be determined by replacing MC,

MB, MT and ML in Eq.(5)-(6) with estimated mass M'C, M'B, M'T
and M'L. Thereby Eq.(5)-(6) can be taken as the estimation model

for breakage and impurity ratios.
2.3 Raw sugarcane and impurity
segmentation model development

2.3.1 MDSC-DeepLabv3+ framework
In order to facilitate the M'C, M'B, M'T, M'L, R'B and R'I

calculation, a segmentation model, MDSC-DeepLabv3+, was

developed for the intelligent extraction of pixels of cane PC,

broken cane PB, top PT, and leaf PL in each image sample.

MDSC-DeepLabv3+ is an improvement upon the DeepLabv3+.

The DeepLabv3+ comprises two modules: an encoder and a

decoder (Chen et al., 2018). In the encoder, the Xception
B

C

A

FIGURE 5

Spatial distribution of surface density for the 4 classes in RSI. (A) Raw
sugarcane, (B) Top, (C) Leaf.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1283230
backbone is used to extract input image features, resulting in two

effective feature maps. One of the feature map undergoes processing

through atrous spatial pyramid pooling named ASPP, and is then

using a 1×1 standardization convolution for the fused features from

ASPP. This produces high-level features that are subsequently fed

into the decoder. The other feature map directly outputs to the

decoder. The ASPP is composed of a 1×1 standardization

convolution, three 3×3 depthwise separable convolutions named

DSC with varying dilation rates (6, 12, and 18), and an average

pooling layer. These convolutions generate feature maps at four

different scales, which are stacked along the channel dimension.

In the decoder, the low-level features obtained from the

Xception backbone first undergo 1×1 convolution to reduce the

number of channels. Meanwhile, the high-level features from the

encoder are bilinearly upsampled by a factor 4 to improve the image

resolution. Afterwards, the 1×1 convoluted low-level features are

fused with the upsampled high-level features, and a 3×3 DSC is

utilized to extract information from the fused features, followed by

another bilinear upsampling by a factor 4. Previous studies have

demonstrated the effective use of DeepLabv3+ in agricultural fields,

such as fruit picking, crop disease and pest, and field road scenes

(Wu et al., 2021; Peng et al., 2023; Yu J. et al., 2023).

To enhance both the accuracy and deployability of the model, as

well as reduce inference time, various improvements including

improved MobileNetv2, ASPP_DS module and CA mechanism

were introduced in this study. First, the atrous convolution was
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employed to optimize the MobileNetv2, and Xception was replaced

by the improved MobileNetv2 in DeepLabv3+. In the MobileNetv2,

dilated convolution was incorporated into the last two layers by

increasing the kernel size, thus expanding the receptive field. This

enhancement allows the network to better perceive surrounding

information without significantly increasing computational

complexity or compromising the resolution of the feature maps.

Then, the dilation rates in the ASPP module were adjusted as 4, 8,

and 12, and a strip pooling layer was added parallel to DSC to build

a module named ASPP_DS. Module ASPP_DS can reduce the

model parameters and establish long-range dependencies between

regions distributed discretely, and focus on capturing local details.

ASPP employs diverse padding and compact dilation strategies to

extract receptive fields at various scales, effectively capturing

information from both multi-scale contexts and small objects.

Additionally, ASPP integrates a parallel strip pooling layer with

elongated and narrow pooling kernels to grasp local contextual

details in both horizontal and vertical spatial dimensions. This

approach helps in reducing interference from unrelated regions in

label prediction results. Finally, CA was appended to the output of

MobileNetv2 and ASPP_DS separately, that allows the model to

acquire weight information from the dimensions of feature channels

and effectively leverage positional data. This incorporation enables

the accurate capture of spatial relationships and contextual

information of the target, thereby enhancing training efficiency.

The enhanced version of DeepLabv3+ is denoted as MDSC-
B
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A

FIGURE 6

Gaussian distribution fitting of surface density. (A) Cane, (B) Broken cane, (C) Top, (D) Leaf.
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DeepLabv3+. The overall framework of MDSC-DeepLabv3+ is

depicted in Figure 8.

2.3.2 Improved MobileNetv2
The basic structure unit of MobileNetv2 is the inverted

residual block (IRB), which mainly consists of dimensionality

expansion, feature extraction and dimensionality compress three

main steps. The MobileNetv2 employs 3×3 depthwise convolution
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(Dwise) and 1×1 convolution to construct two IRBs with s= 1, s=2

(Sandler et al., 2018). In cases where the stride is equal to 1 and the

shape of the input feature matrix matches that of the output

feature matrix, a shortcut connection is employed, as shown in

Figure 9. In addition, the dimensionality compression process in

MobileNetv2 uses a linear activation function instead of the Relu

activation function to reduce information loss caused

by compression.
TABLE 3 Analysis of Variance (ANOVA) of estimated and measured mass. .

Category DF Square sums Mean square F Significance F

Cane

Regression analysis 1 2340192.15697 2340192.15697 16820.25846 4.23041E-254

Residual 283 39373.61497 139.12938

Total 284 2379565.77194

Broken
cane

Regression analysis 1 225202.9665 225202.9665 2390.43448 4.97988E-140

Residual 283 26661.44583 94.21006

Total 284 251864.41233

Top

Regression analysis 1 656015.70993 656015.70993 2055.21929 8.58987E-132

Residual 283 90332.18347 319.19499

Total 284 746347.8934

Leaf

Regression analysis 1 431.20971 431.20971 915.53104 1.07792E-90

Residual 283 133.29133 0.47099

Total 284 564.50104
B
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FIGURE 7

Regression of estimated and measured mass. (A) Cane, (B) Broken cane, (C) Top, (D) Leaf.
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To reduce computing costs and memory usage, this study utilizes

the first 8 layers of theMobileNetv2model. This choice is made because

starting from the 9th layer, the number of output channel increases to

1280, leading to higher computing resource consumption. Tominimize

the loss of down-sampling information while increasing receptive field,

the stride of the 7th layer is modified to 1 (Meng et al., 2020).

Furthermore, dilated convolutions with a factor not exceeding 1

are utilized to replace conventional convolutions. According to

research by Wang et al. (2018), sparse concatenation of dilated

convolution may introduce grid effects, hindering the lower layers

of the network from fully leveraging features from the initial layer
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and causing the loss of fine-grained details. Therefore, dilation rates

of 2 and 5 are applied in the 7th and 8th layer respectively, while the

remaining layers maintain a dilation rate of 1, aiming to expand the

receptive field and preserve edge detail information. The structure

and hyperparameter of the improved MobileNetv2 are displayed in

Table 4, in which t is the expansion factor, c is the output channel, n

is the number of repetitions of bottleneck, s is the first module strid,

and r is dilation rate. When dilation rate of 1 results in atrous

convolution being equivalent to a regular convolution. This design

achieves a balance between computational resource consumption

and network performance requirements.
FIGURE 8

Framework of MDSC-DeepLabv3+.
BA

FIGURE 9

Structure of inverted residual block in MobileNetv2. (A) Stride=1 block. (B) Stride=2 block.
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2.3.3 Strip pooling
To better handle the segmentation of broken cane and top with

irregular and complex shapes, a lightweight strip pooling layer was

added in parallel to DSC in the ASPP. This allows for more efficient

acquisition of information from a large receptive field, facilitating

the collection of remote contextual information from different

spatial dimensions by ASPP. Strip pooling utilizes a pooling

kernel (rectangular area) that performs pooling operations along

the horizontal and vertical dimensions. The structure of strip

pooling (Hou et al., 2020) is shown in Figure 10, where X ϵ
RC×H×W is the input tensor, C denotes the number of channels, H

denotes the height, and W denotes the width. First, the input X is

pooled horizontally and vertically to obtain yh ϵ RC×H×1 and yv ϵ
RC×1×W, respectively. Then, the feature maps are expanded to the

same resolution C×H×W as the input X using a 1D convolution

with a kernel size of 3×3 to obtain the expanded yh, yv. Next, the

expanded feature maps are fused to obtain a final representation.

yc,i,j = yhc,i + yvc,j, 1 ≤ c ≤ C, 1 ≤ i ≤ H, 1 ≤ j ≤ W

Finally, after a 1 × 1 standard convolution and a sigmoid layer,

the final output Z of strip pooling is obtained by multiplying the

corresponding elements with the original input.

Z = Scale X,s f yð Þð Þð Þ
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where Scale (-, -) is the element-level multiplication, s is the

sigmoid function, and f is the 1×1 convolution, y is feature

fusion results.

The element of specified location in the output tensor (i,

j),1≤i≤H,1≤j≤W corresponds to the result of strip pooling of the

horizontal and the vertical pooling window in the input tensor. By

repeatedly applying the aggregation process using long and narrow

pooling kernels, the ASPP_DS module can efficiently capture

information from a wide receptive field throughout the entire

scene. Due to the design of the elongated and narrow shape of

the pooling kernel, it not only establishes remote dependency

relationships between regions distributed discretely but also

focuses on capturing local detailed features.

2.3.4 Coordinate attention
Inspired by the prominence of the region-of-interest search in the

human visual system, attention mechanisms aim to simulate this

process by dynamically adjusting the weights based on the input image

features. Attention mechanisms can be categorized into various types,

such as channel attention (e.g. SE), hybrid attention (e.g. CBAM),

temporal attention (e.g. GLTR), branch attention (e.g. SKNet), and

position attention mechanisms (e.g. CA). These attention mechanisms

have been widely applied in fields such as object detection (Yu J. et al.,

2023) and image segmentation (Zhu et al., 2023).
FIGURE 10

Structure of strip pooling.
TABLE 4 Hyperparameters of MobileNetv2.

Input size Operator t c n s r

512×512×3 conv2d – 32 1 2 1

256×256×32 bottleneck 1 16 1 1 1

256×256×16 bottleneck 6 24 2 2 1

128×128×24 bottleneck 6 32 3 2 1

64×64×32 bottleneck 6 64 4 2 1

32×32×64 bottleneck 6 96 3 1 1

32×32×96 bottleneck 6 160 3 1 2

32×32×160 bottleneck 6 320 1 1 5
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The CA not only models channel relationships but also utilizes

positional information to capture long-range dependencies (Hou

et al., 2021). Therefore, CA was selected in the MDSC-DeepLabv3+

to highlight the regions of interest. The CA consists of coordinate

information embedding (CIE) and coordinate attention generation

(CAG) two main operation, as shown in Figure 11. CIE introduces

two global average pooling to encode each channel along the

horizontal and vertical coordinate on the input feature map,

respectively, hence aggregates features along the two spatial

directions. These two pairs of global average pooling operation

enable CA to capture long-range dependencies along one spatial

direction and preserve precise positional information along other

one, which allows the network to more precisely locate the objects

of interest. CAG first conducts concatenation (Concat) and Conv2d

for the feature maps obtained from CIE followed by batch

normalization and non-linear activation operation. Then, the

intermediate feature map is split into two separate tensors along

the spatial dimension. Next, 1×1 Conv2d and sigmoid activation are

utilized to separately transform the output tensors to tensors with

the same channel number as the input feature maps. Finally, the

output tensors are then expanded into elements and used as

attention weights. The final output of CA is the element-wise

multiplication of original input of CIE and the attention weights.

Introduction of CA before low feature processing and after the

features fusion of ASPP_DS is beneficial in fully utilizing positional

information. This allows the model to accurately capture the spatial

relationships and contextual information of the target, thus

improving the accuracy of sugarcane and impurity phenotype

segmentation in denser images.
3 Experiments and results

3.1 Analyzing of estimation model

The effectiveness of estimation model for breakage and impurity

ratios defined in Section 2.2.2 was validated by fitting estimated and

measured value. First, the measured mass of cane, broken cane, top,

and cane leaf MC,MB,MT andML, along with the number of pixels

for each category manually labeled in the selected 285 images (95%

confidence interval of samples) were obtained. Then, estimated

masses of M'C, M'B, M'T and M'L for the four categories were
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determined based on the mean surface density mC, mB, mT and mL
according to Eq.(1)-(4). Next, the measured and estimated ratios of

breakage and impurity were obtained according to Eq.(5)-(6) based

on the measured and estimated masses. Finally, the measured

breakage and impurity ratios were linearly fitted with the

estimated breakage and impurity ratios, and the fitting results are

shown in Figure 12 and Table 5, respectively.

It can be observed that the fitting R2 values are as high as 0.976

and 0.968, respectively. In addition, the results of the ANOVA

presented in Table 5 indicate a high correlation between the

estimated breakage and impurity ratios and their measured

values, with a significance level of F<0.01. Therefore, it is feasible

to utilize the fitted surface density to estimate mass for each

category and furthermore predict the breakage and impurity

ratios for raw sugarcane.
3.2 Analyzing of segmentation model

3.2.1 Training environment and
evaluation metrics

The semantic segmentation categories considered in this study

are background, cane, broken cane, top, and leaf. In the process of

sugarcane harvesting, raw sugarcane is primarily composed of cane,

with cane tops and leaves present as impurities to a lesser extent.

Broken cane represents the category with the lowest representation,

leading to an extreme class imbalance. Consequently, this often

leads to imbalanced positive and negative samples, along with

varying sample difficulties. Therefore, this study utilizes the Focal

Loss function as the primary loss function to address the imbalance

between easy and difficult samples, facilitating better parameter

optimization during the backpropagation process (Lin et al., 2017).

In addition, the model incorporates the multi-class Dice Loss as an

auxiliary loss function to enhance segmentation accuracy and

address class imbalance scenarios (Milletari et al., 2016). The

combination of Focal Loss and multi-class Dice Loss as the loss

function enhances the model’s predictive capability. The Focal loss

for multi-objective segmentation is defined as.

LF = −at 1 − ptð Þg log ptð Þ
Where pt is the confidence value of the sample category

prediction. g is an adjustable parameter, and the default is 2.
FIGURE 11

Structure of coordinate attention.
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The Dice loss for multi-objective segmentation is defined as.

LD = 1 −o
c

j=1

2WjoN
i=1gt j, ið Þ log pi,j

� �

oN
i=1 gt j, ið Þ2+ log pi,j

� �2� �

Where, N is the number of samples, c is the target class, and pi,j
is the softmax output of class j target class; gt(j,i) is the ground-truth

label of class j target, andWj is the weight of the objective of class j,

Wj = 1/j.

The experiments were conducted on a server in the lab with the

configuration shown in Table 6. The MDSC-DeepLabv3+ used the

Adam optimizer to compute the gradient of the loss function in

each epoch to perform parameter updates. The initial learning rate

was set to E-4. The batch size was set to 6. The training process

consists of 100 epochs. In each epoch, the image dataset was

randomly shuffled and fed into the model to ensure a different

order of dataset used in different epochs. This technique enhances

the convergence speed of the model and improves the prediction

results on the test set.

In order to comprehensively evaluate the performance of the

proposed and comparative semantic segmentation models, three

aspects of each model, namely accuracy, deployability, and

efficiency, are comprehensively evaluated. The commonly used

mIoU and mPA were utilized as accuracy evaluation metrics. And

the model deployability was evaluated using model parameter

quantity (Param) and model computation volume floating point

operations (FLOPs). Efficiency was evaluated using inference time

for each image. The metrics of IoU, mIoU and mPA which is

represented by the following Eq. (7)-(9), respectively.
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IoUi =
Pii

oc−1
i=0Pij +oc−1

j=0Pji − Pii
� 100% (7)

mIoU =
1
co
c−1

i=0
IoUi (8)

mPA =
1
co
c−1

i=0

pii

oc−1
j=0pij

(9)

Where c denotes the number of categories, so c=4 (cane, broken

cane, top and leaf), Pij or Pji denotes the number of category

prediction that is incorrect, while Pii denotes the number of

correct predictions made by categories.

3.2.2 Model training
The size of the input image is a crucial factor affecting the

model’s performance. Increasing the image size enhances accuracy

by preserving semantic information for small targets and

preventing information loss caused by low-resolution feature

maps. However, excessively large image sizes can lead to reduced

detection accuracy due to the limited receptive field imposed by the

fixed network structure. This, in turn, diminishes the network’s

ability to accurately predict targets of various scales (Lin et al.,

2022). In practical applications, there is a trade-off between

accuracy and speed that requires careful consideration. For this

study, the input image was resized to three different dimensions:

256×256, 512×512, and 768×768. The proposed MDSC-DeepLabv3

+ model was trained accordingly, and the results obtained are

presented in Table 7. It can be observed that reducing the input
TABLE 5 ANOVA of breakage and impurity ratios.

Ratio DF Square sums Mean square F Significance F

Breakage ratio

Regression analysis 1 2.58018 2.58018 11405.03085 1.05518E-230

Residual 283 0.06402 2.26232E-4

Total 284 2.64421

Impurity ratio

Regression analysis 1 2.41267 2.41267 8470.24579 6.21725E-213

Residual 283 0.08061 2.84841E-4

Total 284 2.49328
BA

FIGURE 12

Fitting of estimated and measured ratio. (A) Breakage ratio, (B) Impurity ratio.
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image size to 512×512 achieves an optimal balance between speed

and accuracy.

The segmentation results of models using different loss

functions are displayed in Figure 13. The MDSC-DeepLabv3+

using only the Dice loss function exhibits the highest fluctuations

in mPA and mIoU, leading to inferior segmentation results.

Similarly, the MDSC-DeepLabv3+ using only Focal Loss

demonstrates notable fluctuations during the early stages of the

validation process, with slow growth in mPA and mIoU values in

later stages. In contrast, the MDSC-DeepLabv3+ which combines

Focal Loss and multi-class Dice Loss exhibits lesser sawtooth

fluctuations during the increase in mPA and mIoU values,

ultimately reaching their peak during the validation process.

Consequently, the integration of Focal Loss and multi-class Dice

Loss yields optimal outcomes in the segmentation of raw sugarcane

and impurities.

3.2.3 Ablation experiment
To verify the effectiveness of the three improvements, including

improved MobileNetv2, ASPP_DS and CA presented in Section 2.3,

the following 7 models were constructed according to the control

variable method, with a downsampling factor of 8.
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1. DeepLabv3+_base: MobileNetv2 replaced the backbone

Xception in DeepLabv3+.

2. M-DeepLabv3+: MobileNetv2 in DeepLabv3+_base was

enhanced with atrous convolution operation.

3. MDS-DeepLabv3+: ASPP_DS replaced ASPP module in

M-DeepLabv3+.

4. MC1-DeepLabv3+: CA was applied independently before

1×1 Conv of low-level features by the decoder in M-

DeepLabv3+.

5. MC2-DeepLabv3+: CA was applied independently after the

fusion of ASPP in M-DeepLabv3+.

6. MC-DeepLabv3+: CA was added separately before 1×1

Conv the low-level features and after the fusion of ASPP

features in M-DeepLabv3+.

7. MDSC-DeepLabv3+: CA was added separately before

processing the low-level features and after the fusion of

ASPP_DS features in MDS-DeepLabv3+.
Table 8 presents the results of the ablation experiment for the

seven aforementioned models. It can be observed that the MDSC-

DeepLabv3+ outperforms the baseline DeepLabv3+_base, with an

improvement of 1.25 in mPA and 1.8 in mIoU. Additionally, it

achieves a reduction of 16.42% in Params and 31.46% in FLOPs,

however, the inference time per image has slightly increased from

13.48ms to 13.85ms. These results demonstrate that the MDSC-

DeepLabv3+ surpasses the DeepLabv3+_base in terms of

segmentation accuracy and deployability metrics, while still

maintaining comparable efficiency. Furthermore, it can be seen

that the MDSC-DeepLabv3+ achieves the highest segmentation

accuracy (mPA and mIoU) compared to other models, while

exhibiting minimal differences in terms of deployability (Params,

FLOPs) and efficiency (inference time) metrics.
TABLE 6 Experimental environment.

Parameter Configuration Parameter Configuration

Operating system Ubuntu 18.04 Operating environment CUDA 11.2

Deep learning framework PyTorch 1.8 CPU Intel(R) Xeon(R) Silver 4214 CPU @2.20GHz

Programming Language Python 3.7 GPU NVIDIA GeForce RTX 3080 12G @1260-1710MHz
TABLE 7 mPA and inference time obtained with different input image
sizes.

Resize of image/pixels mPA/% Inference time/ms

256×256 94.68 10.69

512×512 97.55 13.85

768×768 97.07 24.19
BA

FIGURE 13

Results of mPA and mIoU with different loss functions. (A) Valid mPA, (B) Valid mIoU.
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In order to visually demonstrate the improvement of the

models, Grad-CAM (Selvaraju et al., 2020) was used to visualize

the channels of the feature maps of DeepLabv3+ and MDSC-

DeepLabv3+. The visualization segmentation instances of top

were illustrated in Figure 14. In group (a), the two feature maps

are extracted by the Xception in DeepLabv3+ and the enhanced

MobileNetv2 in MDSC-DeepLabv3+, respectively. In group (b), two

feature maps are the output of ASPP in DeepLabv3+ and ASPP_DS

in MDSC-DeepLabv3+, respectively. In group (c), the two feature

maps are the output of DeepLabv3+ and MDSC-DeepLabv3

+, respectively.

In Figure 14A, it can be observed that Xception in DeepLabv3+

achieves clearer pixel segmentation than that obtained by

MobileNetv2 in MDSC-DeepLabv3+. The reason is that

MobileNetv2 is a lightweight and shallow model compared to

Xception, and its depthwise convolution can lead to information

loss and limit the number of channels, thereby resulting in a lower-

level feature map with fewer information. However, the two heat

maps in group (b) indicate that there is pixels misfocus at the top-

right corner in the first line of the feature map extracted by ASPP,

while ASPP_DS results in more complete pixel segmentation,
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enhances preservation of details, and eliminates the top-right

misfocus. The heat map illustrates that the introduced strip

pooling in ASPP_DS rectifies the shortage of MobileNetv2, and

the dense and compact dilation rates (4, 8, 12) improve its capability

of focusing on capturing local detailed features. Heat map of final

outputs of MDSC-DeepLabv3+ and DeepLabv3+ given in

Figure 14C demonstrates that the CA in MDSC-DeepLabv3+

further enhances the color intensity in heat map, indicating that

the inclusion of CA allows the model to focus more on the features

of the categories, thereby enhancing its distinguishability of cane,

broken cane, top and leaf.

3.2.4 Comparative experiment
To further validate the superiority of the proposed model

MDSC-DeepLabv3+, comparative experiments were conducted

using the RSI dataset under the same experimental conditions.

The compared models include UNet, PSPNet, SegFormer-B0, and

the baseline DeepLabv3+. Previous research results have shown that

UNet (Ronneberger et al., 2015) and PSPNet (Zhao et al., 2017)

perform well in terms of accuracy in segmentation tasks with

challenges like cell tracking ISBI and Cityscapes. SegFormer-B0 is
B CA

FIGURE 14

(A) Backbone output. (B) Encode output. (C) Decode output.
TABLE 8 Results of ablation experiment.

Number ASPP_DS Coordinate Attention mPA/
%

mIoU/
%

Param/
M

FLOPs/
G

Inference time/
ms

Before
decoder

After ASPP
(_DS)

(1) 96.3 93.04 4.81 69.29 13.48

(2) 96.67 93.36 3.35 45.49 12.13

(3) √ 97.16 94.37 3.36 45.41 12.76

(4) √ 96.88 93.66 3.55 46.83 13.51

(5) √ 97.05 94.48 3.63 46.88 13.56

(6) √ √ 97.22 94.57 3.68 46.88 13.67

(7) √ √ √ 97.55 94.84 4.02 47.49 13.85
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a lightweight model that combines transformers with a lightweight

multilayer perceptron decoder (Xie et al., 2021). The comparative

results are given in Table 9.

It can be seen that the accuracy of MDSC-DeepLabv3+ surpasses

that of the aforementioned four models with significant improvements.

Specifically, the mIoU of MDSC-DeepLabv3+ is higher by 0.81, 5.22,

12.47, and 0.28 compared to UNet, PSPNet, SegFormer-B0, and

DeepLabv3+, respectively. Moreover, the mPA of MDSC-DeepLabv3

+ reaches an impressive 97.55%, which outperforms UNet, PSPNet,

SegFormer-B0, and DeepLabv3+ by 0.69, 2.7, 7.76, and 0.34,

respectively. These remarkable improvements can be attributed to

the adoption of the advanced DeepLabv3+ as the basic model,

coupled with the enhancements introduced through strip pooling

and CA. Strip pooling plays a crucial role in collecting remote

contextual information from different spatial dimensions and

addressing the issue of information loss resulting from the atrous

convolution operation in DeepLabv3. On the other hand, CA efficiently

utilizes positional information, enabling accurate capturing of the

spatial relationships and contextual information of the detected cane,

broken cane, top, and leaf.

In terms of deployability, MDSC-DeepLabv3+ demonstrates

remarkable reductions in Params and FLOPs when compared to

UNet, PSPNet, and DeepLabv3+. Specifically, it reduces Params by

83.65%, 91.29%, and 90.35%, and FLOPs by 89.49%, 59.9%, and

66.37% compared to UNet, PSPNet, and DeepLabv3+ respectively.

This significant reduction in model size and computational

complexity makes MDSC-DeepLabv3+ highly efficient and

resource-friendly. Moreover, MDSC-DeepLabv3+ achieves

impressive segmentation efficiency, with a recognition speed of

only 13.85ms per image. This inference time per image is far less

than the above three models, with reductions of 48.97%, 10.18%,

and 43.31%, respectively. This indicates that MDSC-DeepLabv3+ is

able to perform fast and accurate segmentation, making it highly

suitable for real-time applications. Although SegFormer-B0 may

have some advantages in terms of deployability, its accuracy is

much lower compared to MDSC-DeepLabv3+ (89.79% vs. 97.55%).

The reason for this superior performance is the utilization of the

improved lightweight MobileNetv2, which replaces Xception in

DeepLabv3+, leading to an efficient and accurate model overall.

In summary, the proposed MDSC-DeepLabv3+ outperforms the

compared four models in the task of segmenting sugarcane and

impurities, offering a winning combination of high segmentation

accuracy, deployability, and recognition speed.
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Instances of the results obtained using the aforementioned

segmentation models are illustrated in Figure 15. In which, red

[128,0,0] represents cane, blue [0,0,128] represents broken cane,

green [0,128,0] represents top, yellow [128,128,0] represents leaf,

and black [0,0,0] represents the background. From the visualization

of test results, it is evident that all five models perform well in most

cases. However, the segmentation obtained by MDSC-DeepLabv3+

stands out as more complete, with clearer preservation of details in

general. Upon closer observation, it can be seen that UNet, PSPNet,

and SegFormer-B0 misclassify their categories, for instance,

misclassifying broken cane as leaf, and vice versa. This indicates

inaccuracies in pixel differentiation for these models. Additionally,

the compared four models result in fuzzy segmentation and

ambiguous boundaries between objects. On the other hand, the

proposed MDSC-DeepLabv3+ demonstrates superior performance

in addressing the issue of detail adhesion. This can be observed in

the instances marked out in the line of MDSC-DeepLabv3+ where

the model is capable of better distinguishing object boundaries and

preserving fine details.
3.3 Analyzing of comprehensive
experiment

The breakage and impurity ratios of raw sugarcane were

estimated using the estimation model presented in Section 2.2

and the MDSC-DeepLabv3+ segmentation model presented in

Section 2.3. These estimated values were then compared with the

measured breakage and impurity ratios obtained through manual

weighing to assess the effectiveness of the proposed method.

First, a subset of 25% (70) of the images was randomly selected

from the mass dataset with 300 samples. The MDSC-DeepLabv3+

model was applied to semantically segment the selected 70 images and

determine the number of cane, broken cane, top, and leaf pixels for

each image. Then, corresponding masses were estimated using Eq.(1)-

(4), based on the mean values of the surface density for each category

obtained through normal fitting. The ratios of breakage and impurity

were calculated according to the estimationmodel defined in Eq.(5)-(6)

based on the estimated masses. Finally, the measured breakage and

impurity ratios were determined using the measured mass and the

relative errors between the estimated and measured results were

calculated. Tables 10. 11 document and analyze the relative errors in

the breakage ratio and impurity ratio for each sample, as well as the
TABLE 9 Test results of different recognition models.

Segmentation
models

IoU/% mIoU/
%

mPA
%

Param/
M

FLOPs/
G

Inference
time/ms

Background Cane Broken
cane

Top Leaf

UNet 98.13 94.18 91.01 93.11 93.73 94.03 96.86 24.89 451.77 27.14

PSPNet 95.45 90.38 87.89 86.48 87.89 89.62 94.85 46.71 118.43 15.42

SegFormer-B0 95.6 82.98 72.38 81.12 79.79 82.37 89.79 3.72 13.56 16.78

DeepLabv3+ 97.78 95.18 91.83 93.38 94.62 94.56 97.21 42.19 141.22 24.43

MDSC-DeepLabv3+ 97.94 95.13 91.85 94.27 95.03 94.84 97.55 4.07 47.49 13.85
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average relative error of the overall samples. The average relative errors

were found to be 11.3% and 6.5% for breakage and impurity ratios,

respectively. These results indicated that the proposed method exhibits

strong reliability.

Additionally, the visualization of measured and estimated ratios

of the 70 samples is depicted in Figure 16. This aids in the intuitive

observation and analysis of the relationship and differences between

predicted and manual measured results. It can be observed that the

results obtained using the proposed method exhibit only slight

deviations compared to the results obtained through manual

weighing measurements, and the fluctuations are minimal. This

suggests that the estimated breakage and impurity ratios can

maintain their stability. Consequently, the proposed method

based on estimation model and MDSC-DeepLabv3+ offers an

efficient, accurate, and intelligent means of quantitatively

estimating the breakage and impurity ratios of raw sugarcane.
4 Conclusions

In practice, objective, efficient, accurate, and intelligent

detection of breakage and impurity ratios is an urgent

requirement in the sugar refinery. Therefore, this study developed
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a novel approach combining the estimation model and MDSC-

DeepLabv3+ segmentation network to tackle this problem. First, a

machine vision-based acquisition platform was designed, and

custom image and mass datasets of raw sugarcane and impurities

were constructed. Then, estimation model was built to assess the

ratios of breakage and impurity, considering the variation of surface

density for the four categories of objects. Finally, the MDSC-

DeepLabv3+ segmentation network dedicated to the detection of

cane, broken cane, top, and leaf was developed. It effectively

incorporated improved MobileNetv2, ASPP_DS, and CA based

on DeepLabv3+ to enhance segmentation accuracy, reduce

parameters and inference time. The analysis of the experimental

results leads to the following conclusions:
1. The breakage and impurity ratios obtained through

estimation model based on normal fitted surface density

exhibit high accuracy, with corresponding R2 of 0.976 and

0.968, respectively.

2. The proposed MDSC-DeepLabv3+ achieved superiority

considering segmentation accuracy, deployability, and

efficiency simultaneously. The mPA and mIoU achieved

byMDSC-DeepLabv3+ were as high as 97.55% and 94.84%,

respectively, surpassing the baseline DeepLabv3+ by 0.34
FIGURE 15

Test results of each detection model.
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TABLE 10 Breakage ratios of 70 samples.

Sample
number

Breakage ratio/% Sample
number

Breakage ratio/%

Measured Estimated Relative
errors

Measured Estimated Relative
errors

1 0.393 0.433 0.103 36 0.163 0.146 0.103

2 0.244 0.215 0.119 37 0.067 0.077 0.148

3 0.328 0.319 0.027 38 0.075 0.077 0.017

4 0.122 0.096 0.218 39 0.117 0.127 0.082

5 0.259 0.272 0.049 40 0.253 0.242 0.047

6 0.486 0.562 0.156 41 0.381 0.418 0.097

7 0.319 0.290 0.090 42 0.145 0.125 0.137

8 0.165 0.174 0.057 43 0.268 0.259 0.036

9 0.173 0.201 0.162 44 0.272 0.247 0.091

10 0.298 0.269 0.097 45 0.060 0.046 0.231

11 0.389 0.416 0.069 46 0.298 0.323 0.087

12 0.235 0.284 0.208 47 0.192 0.168 0.126

13 0.225 0.222 0.012 48 0.209 0.209 0.001

14 0.102 0.131 0.282 49 0.361 0.343 0.049

15 0.105 0.141 0.340 50 0.112 0.150 0.344

16 0.152 0.163 0.077 51 0.233 0.193 0.171

17 0.403 0.340 0.157 52 0.226 0.215 0.048

18 0.144 0.154 0.071 53 0.253 0.281 0.110

19 0.108 0.124 0.150 54 0.299 0.271 0.093

20 0.273 0.267 0.025 55 0.056 0.071 0.262

21 0.388 0.404 0.042 56 0.138 0.168 0.218

22 0.371 0.387 0.045 57 0.141 0.167 0.188

23 0.456 0.480 0.052 58 0.109 0.106 0.035

24 0.264 0.247 0.064 59 0.201 0.207 0.028

25 0.348 0.330 0.053 60 0.385 0.425 0.105

26 0.257 0.240 0.065 61 0.314 0.289 0.079

27 0.170 0.136 0.198 62 0.120 0.130 0.089

28 0.184 0.149 0.191 63 0.227 0.201 0.113

29 0.353 0.337 0.044 64 0.125 0.120 0.044

30 0.351 0.343 0.023 65 0.416 0.451 0.084

31 0.296 0.255 0.138 66 0.160 0.195 0.219

32 0.356 0.342 0.039 67 0.281 0.278 0.011

33 0.214 0.233 0.088 68 0.162 0.186 0.149

34 0.215 0.277 0.286 69 0.322 0.277 0.141

35 0.172 0.150 0.132 70 0.195 0.231 0.184

Average 0.113
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TABLE 11 Impurity ratios of 70 samples.

Sample
number

Impurity ratio/% Sample
number

Impurity ratio/%

Measured Estimated Relative
errors

Measured Estimated Relative
errors

1 0.473 0.499 0.055 36 0.328 0.319 0.026

2 0.237 0.254 0.071 37 0.313 0.322 0.032

3 0.423 0.424 0.004 38 0.091 0.104 0.142

4 0.292 0.298 0.021 39 0.217 0.240 0.103

5 0.303 0.263 0.133 40 0.380 0.381 0.001

6 0.602 0.570 0.053 41 0.241 0.240 0.005

7 0.445 0.445 0.002 42 0.369 0.369 0.000

8 0.372 0.341 0.082 43 0.292 0.282 0.035

9 0.393 0.352 0.104 44 0.328 0.337 0.026

10 0.294 0.280 0.048 45 0.146 0.167 0.148

11 0.529 0.554 0.046 46 0.274 0.316 0.156

12 0.277 0.272 0.018 47 0.310 0.273 0.118

13 0.378 0.388 0.028 48 0.410 0.382 0.068

14 0.206 0.199 0.034 49 0.254 0.269 0.063

15 0.332 0.314 0.055 50 0.320 0.319 0.004

16 0.240 0.217 0.098 51 0.343 0.386 0.124

17 0.482 0.452 0.062 52 0.328 0.325 0.009

18 0.277 0.298 0.073 53 0.385 0.355 0.077

19 0.331 0.317 0.043 54 0.211 0.232 0.102

20 0.274 0.265 0.034 55 0.228 0.248 0.088

21 0.358 0.322 0.102 56 0.420 0.389 0.073

22 0.491 0.470 0.042 57 0.268 0.267 0.007

23 0.417 0.439 0.054 58 0.209 0.200 0.043

24 0.286 0.318 0.110 59 0.239 0.245 0.023

25 0.273 0.241 0.119 60 0.427 0.421 0.014

26 0.316 0.337 0.066 61 0.332 0.320 0.036

27 0.267 0.265 0.006 62 0.319 0.315 0.011

28 0.251 0.272 0.082 63 0.253 0.239 0.054

29 0.208 0.249 0.196 64 0.313 0.339 0.082

30 0.375 0.334 0.109 65 0.500 0.483 0.034

31 0.296 0.347 0.173 66 0.418 0.378 0.095

32 0.229 0.290 0.265 67 0.297 0.320 0.077

33 0.283 0.279 0.014 68 0.299 0.337 0.128

34 0.357 0.332 0.072 69 0.475 0.465 0.021

35 0.350 0.342 0.024 70 0.301 0.302 0.002

Average 0.65
F
rontiers in Plant Scienc
e 19
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1283230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1283230

Fron
and 0.28. This improvement in accuracy was accomplished

with 38.12M, 93.73G, and 10.58ms reduction in Params,

FLOPs, and inference time, respectively, making it

advantageous for deployment on edge devices and real-

time inference.

3. The estimated data obtained according to the approach

developed in this study fit the manually obtained breakage

and impurity ratios with average relative errors of 11.3% and

6.5%, respectively. The lower segmentation accuracy of broken

cane is due to their burr and ambiguous boundaries, resulting

in a higher average relative error of the breakage ratio.
The raw sugarcane not only includes top and leaf impurities but

also contains other impurities like dispersed root whiskers. The

upcoming research will emphasize mechanical cleaning of sand,

gravel, soil, and similar substances. Additionally, a pivotal aspect of

the forthcoming study will involve counting sugarcane roots and

estimating their quality through object detection.
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