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Crop modeling suggests limited
transpiration would increase
yield of sorghum across
drought-prone regions of
the United States
Rubı́ Raymundo1*, Greg Mclean2, Sarah Sexton-Bowser3,
Alexander E. Lipka4 and Geoffrey P. Morris1*

1Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, United States,
2Center for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of
Queensland, Brisbane, QLD, Australia, 3Department of Agronomy, Kansas State University, Manhattan,
KS, United States, 4Department of Crop Sciences, University of Illinois, Urbana, IL, United States
Breeding sorghum to withstand droughts is pivotal to secure crop production in

regions vulnerable to water scarcity. Limited transpiration (LT) restricts water

demand at high vapor pressure deficit, saving water for use in critical periods later

in the growing season. Here we evaluated the hypothesis that LT would increase

sorghum grain yield in the United States. We used a process-based crop model,

APSIM, which simulates interactions of genotype, environment, and

management (G × E × M). In this study, the G component includes the LT trait

(GT) and maturity group (GM), the EW component entails water deficit patterns,

and the MP component represents different planting dates. Simulations were

conducted over 33 years (1986-2018) for representative locations across the US

sorghum belt (Kansas, Texas, and Colorado) for three planting dates and maturity

groups. The interaction of GT x EW indicated a higher impact of LT sorghum on

grain for late drought (LD), mid-season drought (MD), and early drought (ED, 8%),

than on well-watered (WW) environments (4%). Thus, significant impacts of LT

can be achieved in western regions of the sorghum belt. The lack of interaction of

GT × GM × MP suggested that an LT sorghum would increase yield by around 8%

across maturity groups and planting dates. Otherwise, the interaction GM × MP

revealed that specific combinations are better suited across geographical

regions. Overall, the findings suggest that breeding for LT would increase

sorghum yield in the drought-prone areas of the US without tradeoffs.
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stress tolerance, crop growth model, crop adaptation, plant breeding, limited
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Introduction

Droughts resulting from changes in precipitation patterns

threaten crop production and food security in semiarid areas

worldwide (Barbier, 2015). In the United States alone, crop yield

loss due to droughts costs ~$9 billion per year (NOAA, 2020). In

this respect, breeding for drought-prone environments plays a

pivotal role in maintaining crop production (Thornton et al.,

2018). Nevertheless, developing crops with less water demand is

challenging because drought adaptation traits are complex, difficult

to identify, and often involve tradeoffs (Araus et al., 2012;

Monneveux et al., 2012). Furthermore, testing the effect of these

traits under water stress scenarios is limited since drought events

vary over time and geographies (Tang and Piechota, 2009;

Pournasiri-Poshtiri et al., 2018). Thus, plant breeding programs

require complementary methods to test the effect of any

hypothetical drought adaptation trait to design a breeding

pipeline (Cooper et al., 2002; Bernardo, 2020; Crossa et al., 2022).

Crop models have become standard tools to assess the impact of

new technologies in agriculture and can support plant breeding

(van Ittersum et al., 2003; Challinor et al., 2018). These models

integrate ecophysiological knowledge to represent the plant-soil-

atmosphere system and predict the crop response to soil properties,

climatic conditions and crop management practices (Jones et al.,

2003). Crop models equip breeding programs with the tools to

develop and evaluate hypotheses regarding the performance of new

cultivars (G) under environmental (E), and management scenarios

(M) (Messina et al., 2011; Chenu et al., 2017). Several crop modeling

studies have evaluated theoretical expressions of crop traits linked

to cultivar-specific parameters for drought environment (Singh

et al., 2014). The most common approach varies cultivar

parameters (Messina et al., 2011; Singh et al., 2014) or

implements new traits (Sinclair et al., 2005) to evaluate alternative

ideotypes for constraint environments. This approach to crop

improvement advantages investment of finite resources to defined

targets for genetic gain in specific environments.

Sorghum is one of the most drought-adapted crops in semiarid

regions used for multiple purposes, including forage, fiber, and food

(Doggett and Majisu, 1968; Smith and Frederiksen, 2000). Most of

the grain sorghum production worldwide (15%) is grown under

rainfed environments in the sorghum belt of the United States that

runs from South Dakota to South Texas (Laingen, 2015). Kansas,

Texas, and Colorado lead grain sorghum production in the

sorghum belt with 50%, 30%, and 6%, respectively (Laingen,

2015). Across this area, water limitation and high vapor pressure

deficit (VPD) affect plant transpiration, making sorghum

production vulnerable to droughts. Although sorghum harbors

drought adaptation (Abdel-Ghany et al., 2020; Abreha et al.,

2021), breeding for drought traits has received less attention.

Therefore, the full potential of sorghum production under water-

limited environments in the sorghum belt of the United States may

not yet have been achieved.

Limited transpiration (LT) is a hypothetical trait that restricts

water demand in periods of high VPD which occurs around mid-

day (Figures 1A, B). This mechanism shifts plant-water demand,
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conserving water in the soil profile during the vegetative stage and

for use during grain filling (Figure 1) (Sinclair et al., 2005).

Reducing transpiration (H2O) due to stomatal closure in hours

with high VPD would penalize carbon assimilation (CO2). Thus,

causing grain yield reductions under well-watered conditions but

increasing the grain yield and the effective use of water under

moderate water-limited environments (Vadez et al., 2014). This

hypothetical physiological mechanism of LT has been extended into

process-based models where transpiration was restricted during

high VPD hours (Sinclair et al., 2005; Messina et al., 2015; Truong

et al., 2017). Crop model simulations under rainfed conditions for

sorghum and other crops such as soybean, maize, lentil, chickpea,

and wheat indicate a yield increase for a phenotype with LT trait in

areas vulnerable to water scarcity (Sinclair et al., 2017; Collins et al.,

2021). For sorghum, reports indicated an increase in yield

production from 6 to 10% for severe drought scenarios in

Australia, semiarid regions of India, and the United States

(Texas) (Sinclair et al., 2005; Kholová et al., 2014; Truong

et al., 2017).

Simulations for various crops (Messina et al., 2015; Guiguitant

et al., 2017; Collins et al., 2021) suggest that breeding for the LT trait

can make a valuable economic contribution in rainfed regions. Yet,

its impact on grain yield in sorghum-producing regions of the

United States remains unknown. This study uses the APSIM-

sorghum growth model to generate hypotheses of the potential

benefits and tradeoffs of the LT trait in grain sorghum. Under

drought scenarios, we expect an increase in grain yield in rainfed

sorghum-producing regions for sorghum with the LT trait

(Figure 1). Otherwise, no impacts or detrimental effects on grain

yield are expected for non-stress environments. Likewise, we expect

these benefits across different combinations of genetic background

and management practices. Results indicate that introgressing LT in

grain sorghum would increase yield by more than 5% in water-

limited scenarios but less than 5% in well-watered settings.

Additionally, the LT would benefit grain yield across all

combinations of maturity groups and planting dates.
Materials and methods

Production system and study sites

The simulation study was conducted for Kansas, Texas, and

Colorado counties that have high sorghum production (Figure 2A)

area and are located in contrasting gradients of precipitation and

VPD (Table 1, Figure 2D). Across these locations annual

precipitation and VPD are inversely associated (Figures 2B, C, E)

with declining precipitation and increasing VPD from east to west

(https://prism.oregonstate.edu/). Annual precipitation shapes

farmer crop management including maturity group adoption

(Roozeboom and Fjell, 1998; Shroyer et al., 1998; Ciampitti et al.,

2019). Therefore, in these regions plant density of 17 plants m2 and

6 plants m2 are recommended for areas with annual precipitation

around 800 mm and 350 mm, respectively (Shroyer et al., 1998).

Similarly, full-season hybrids are planted in regions with high
frontiersin.org
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annual precipitation while short-season hybrids are grown in

regions with low precipitation (Roozeboom and Fjell, 1998;

Ciampitti et al., 2019).
APSIM-sorghum crop model

APSIM-Sorghum (Hammer et al., 2010; Hammer et al., 2019a) is a

crop model that integrates the intertwined interaction of G × E ×M) to

simulate plant development and growth on a daily basis (Wang et al.,

2002; Keating et al., 2003; Holzworth et al., 2014). The model requires

the following input data: daily weather records, soil profile

characteristics, crop management, and cultivar-specific parameters.

Crop phenology development is estimated as the summation of

thermal time for nine phases from germination to physiological

maturity. Daily biomass is estimated as the minimum of biomass

limited by solar radiation or water availability. The biomass limited by

solar radiation is the product of radiation use efficiency (RUE, MJ m-2),

solar radiation (MJ m-2), and the fraction of light intercepted. The

biomass limited by water availability is the product of transpiration

efficiency and soil water supply. The model estimates water,

temperature, and nitrogen deficit factors which affect phenology and
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growth. To estimate the effect of LT on carbon assimilation in hours

with high VPD, APSIM-sorghum downscales daily temperature and

solar radiation to hourly time steps and estimates relative humidity

(RH) on each hour (Parton and Logan, 1981). Temperature and RH

are used to calculate VPD on each hour (Murray, 1967; Monteith and

Unsworth, 2013), then the model estimates biomass as a function of

hourly water supply and demand. Finally, the biomass accumulation is

aggregated for each daily timestep. Note, the version of APSIM-

sorghum used and LT modifications were made for research

purposes and are not in the release version.
Weather, soil and management inputs

Daily weather data at each site, including precipitation (mm), solar

radiation (MJ m-2 day-1), maximum (°C), and minimum temperature

(°C), were obtained from NASA Prediction of Worldwide Energy

Resources (POWER- https://power.larc.nasa.gov/) from 1986 to 2018.

The spatial resolution of the data are 1.0° latitude by 1.0° longitude for

solar radiation and 0.5° latitude by 0.5° longitude for the remaining

variables. Soil profile information such as soil texture (%), bulk density

(g ml-1), organic carbon (%), and pH was downloaded from the web
B

C D

A

FIGURE 1

Hypothetical effect of LT trait in grain sorghum under rainfed conditions. (A) Hourly trajectory of VPD during four days with contrasting, (B) Hourly
trajectory of transpiration for sorghum with non-LT and LT traits (GT). The dashed gray line indicates the threshold of VPD at which genotypes
express differences in transpiration VPD response. (C) Cumulative transpiration during the growing season, and (D) trajectory of grain yield during the
growing season.
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soil survey (https://websoilsurvey.sc.egov.usda.gov/App/

HomePage.htm). These data were used to estimate the saturation

capacity (SAT), field capacity (DUL), and wilting point (LL15) for

each layer of the soil profile using the SBuild application of the Decision

Support System for Agrotechnology Transfer (DSSAT) program

(Hoogenboom et al., 2019). Crop management practices such as

planting depth, plant population and planting dates were obtained

from experiments or variety trials (Pachta, 2007; Larson et al., 2021;

Schnell et al., 2021).
Frontiers in Plant Science 04
Model calibration and testing

Model testing was conducted in two steps: model calibration and

model evaluation (Wallach et al., 2014). In model calibration, specific

parameters were iteratively adjusted to fit observations, while model

evaluation estimated the accuracy of the model with independent

data. For model testing we collected available information on field

experiments for hybrid 87G57 from 1997 to 2007 (Figure 1D;

Supplementary Table S1). Model calibration was conducted with a
FIGURE 2

Study system to evaluate the impact of the limited transpiration (LT) trait. (A) Geographic distribution of grain sorghum production area (ha-1) in the
United States in 2019. (B) Annual precipitation (mm) in sorghum producing areas. (C) Mean of the monthly maximum vapor pressure deficit (VPD,
kPa) from May to August in sorghum producing areas. (D) Distribution of grain sorghum in Colorado, Kansas, and Texas and sites for model
evaluation and simulation sites. (E) Mean VPD and annual precipitation in sorghum producing regions. Sorghum production areas were obtained
from the National Agricultural Statistical Service (NASS, https://www.nass.usda.gov/). Precipitation and vapor pressure deficit information for
sorghum-producing areas were acquired from the PRISM Climate Group (https://prism.oregonstate.edu/).
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high quality experiment that accounts for information of crop

management, phenology development, in-season biomass

components, and initial soil water (Pachta, 2007). Information of

this experiment including weather, soil and crop management was

arranged into APSIM-Sorghum. First, a simulation was conducted

for the hybrid 86G56 (no calibration), which was available in the

library of the model. Next, cultivar parameters were modified, to

eliminate the photoperiod sensitivity (photoperiod_slope from 10 to

0), and to match the grain yield components by modifying the

parameter relation between biomass accumulated from floral

initiation to the start of grain (dm_per_seed from 0.00087 to

0.00099). There was no need to adjust parameters related to

phenology development since the model was accurate in predicting

flowering time for this experiment (observed: 52, and simulated: 53).

Model evaluation was conducted with variety trial experiments

conducted in Garden City, Colby, and Hays (Kansas). These

experiments have information of planting date, plant density,

flowering time, and grain yield. Environment (daily weather data,

soil profile) and crop management practices for these simulations

were arranged into APSIM-Sorghum. Each year the crop was

simulated to be planted under optimal soil moisture (70% soil
Frontiers in Plant Science 05
available water), and non-nitrogen limitations at plant density of 6–

14 plants m-2. Grain yield was expressed assuming 12.5% of

moisture content. Model accuracy was analyzed using the root

mean square error (RMSE), which indicates the distance from a

perfect prediction (Wallach et al., 2014).
Model application and sensitivity analysis

Simulations comprised three factors: trait (GT): non-LT and LT

trait; maturity group (GM): short, medium, and full-season; and

planting dates (MP): early-May, mid-May, and early-June. The

model defines a phenotype with an LT trait by assigning the

parameter limited maximum transpiration to any value from 0.2 to

0.9 mm h-1 (Supplementary Table S2). Note a phenotype with an LT

trait of 0.9 mm h-1 represents a genotype that restricts the

transpiration by 10%; by contrast, a phenotype with non-LT had

no restrictions. The LT trait was imposed as 0.9 mm h-1 for

simulations across all locations. Parameters for hybrid 87G57

corresponded to a commercial short-season sorghum hybrid with

15 leaves. Parameters controlling growth and development,
TABLE 1 Characteristics for the study locations across the US sorghum belt.

State County VPD (KPa)
Prec.
(mm)

Planted area
(ha)

Soil texture
Soil depth

(cm)
Plant density
(Plants m-2)

CO Bent 3.2 356 318 Sandy loam 150 6

Lincoln 2.7 377 1129 Loam 200 6

Logan 2.7 426 2488 Sandy Loam 150 6

Phillips 2.6 460 1708 Complex 150 6

Prowers 3.1 407 1768 Silty loam 200 6

KS Clay 2.5 784 8249 Silty clay loam 200 14

Gray 2.9 527 3509 Loam 200 8

Morris 2.3 898 2316 Complex 116 14

Morton 3.2 442 1455 Silty loam 200 6

Russell 2.7 666 16205 Silty clay loam 200 8

Colby* 2.6 520 1708 Silty clay loam 200 6

Garden
City*

3.2 480 1455 Silty clay 200 6

Hays* 2.7 680 16205 Silty clay loam 200 8

Manhattan* 2.5 900 8249 Clay 200 14

TX Andrews 3.7 380 401 Sandy loam 150 6

Coleman 3.3 694 847 Clay 200 8

Hansford 3.3 505 5140 Clay loam 200 6

Jim Wells 3.1 663 12559 Clay 180 6

Refugio 2.4 927 10517 Clay 200 14

Terry 3.5 482 2730 Loamy sand 150 6

Milam 2.8 913 2498 Complex 200 14
*Model evaluation sites.
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tt_endjuv_to_init, Tpla_prod_coef, and Tpla_inflection, were adjusted

to simulate medium-season and late-season sorghum hybrids, each

with 17 and 19 leaves, respectively. The number of tillers was kept

constant (0.3) for all maturity groups. Simulations started every year

on the first of January with initial soil moisture of 60%. In these

simulations, the crop was automatically planted at three time

intervals, early-May, mid-May, and early-June, a row distance of 76

cm, planting depth of two cm, and fertilized to fully meet plant

nitrogen demand. Simulations were conducted every year from 1986

to 2018. We analyzed the grain yield, transpiration, biomass, soil

moisture and water productivity for both sorghum phenotypes (non-

LT and LT).

We conducted a sensitivity analysis in a representative location to

identify initial conditions’ effect on grain yield changes resulting from

the LT trait. Therefore, simulations started with initial soil moisture of

20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% while maintaining the

LT trait at 0.9 mm h-1. Otherwise, to determine yield gains resulting

from hypothetical genetic variability, we created simulations and varied

the LT parameter from 0.2 to 0.9 mm h-1 while maintaining the initial

soil moisture at 60%. As previously outlined, these simulations started

each year on the first day of January under similar maturity groups and

management practices. Absolute and relative change in harvested grain

yield for the phenotype with LT trait was calculated for each simulation

and averaged over environments.
Predominant water stress environments in
the study system

The APSIM-Sorghum estimates the daily trajectory of soil water

supply and plant water demand (waterSD), penalizing crop growth

and development on a scale from 0 (stress) to 1 (no stress). The

model indicates stress (close to zero) when the soil water supply falls

behind plant water demand and no stress (close to 1) when the soil

water supply meets the plant water demand (Wang et al., 2002). For

the non-LT trait, the daily trajectories of waterSD were aggregated

at the centesimal cumulative thermal time for each season. This

time series information was analyzed via a hierarchical classification

using the cluster (Maechler et al., 2023) library and the clara

(Clustering Large Applications clara) method (Kaufman and

Rousseeuw, 1990). The number of clusters was determined via the

silhouette method (Kassambara, 2017), a measure of similarity for

each data point relative to the assigned cluster and separation

compared to other clusters. The final water stress environments

(EW) resulted as the median of water stress on each cluster.
Statistical analysis and interpretation

Statistical analyses of model outputs were performed in the R

statistical environment utilizing mixed linear models and the lmer

library (Bates et al., 2015) and lmerTest libraries. The analysis

quantified the size of fixed effects on dependent variables (simulated

grain yield, biomass, transpiration, soil moisture, and water

productivity). Factors with fixed effects were trait (GT), maturity

group (GM), planting date (MP), water stress environments (EW),
Frontiers in Plant Science 06
and their interaction while factors with random effects were years

(EY) nested on each location (EL). First, a backward-elimination

stepwise regression (step function) that estimates the Akaike

Information Criterion (AIC) was used to select the best linear model.

The alternative hypothesis behind each model identified by the

stepwise regression is that at least one of these fixed main and

interaction effects is not equal to zero, while the null hypothesis is

that all fixed effects and interactions are zero. Next, to test the

robustness of the stepwise regression, a comparison between the new

model and the four-way interaction model (GT × GM ×MP × EW) was

conducted using the likelihood ratio test (lrtest function). For simulated

variables: grain yield, total transpiration, and soil water content, the

stepwise regression indicated the model in Equation 1 as the best (a =

0.05), and the likelihood ratio test suggested this model was

significantly different (a = 0.05) to the four-way interaction model.

For simulated variables: biomass at flowering, transpiration at

flowering, and water productivity, linear models resulting from the

stepwise regression are detailed in Equations 2, 3, and 4, respectively.

The likelihood ratio test coincided with Equation 2 as the best model

for biomass (a = 0.05). Nevertheless, Equations 3 and 4 were non-

significantly different to a four-way interaction model.

Yijklmn =   μ +  GTi +  GMj + EWl +  MPk + (GT � EW)il + (GM

�MP)jk + (EW �MP)lk + (GM � EW )jl + (GM � EW

�MP)jkl + EY (EL)m(n) (1)

Yijklmn = m + GTi + GMj + EWl +MPk + (GT � GM)il +

(GT � EW)jl + (GM �MP)jk + (EW�
MP)lk + (GM � EW)jl + (GM � EW �MP)jkl + EY (EL)m(n)

(2)

Yijklmn = μ +  GTi +  GMj + EWl +MPk + (GT � GM)il + (GT

� EW )jl + +(EW �MP)lk + (GM � EW)jl + (GT � EW

�MP)ikl + EY (EL)m(n) (3)

Yijklmn = μ +  GTi +  GMj + EWl +MPk + (GT � EW)il + (GM

� EW)kl + (GM �MP)jk + (GM � EW)jl + EY (EL)m(n) (4)

where Yijklmn is the response or dependent variable in the nth

location in the mth year in the lth water stress environment in the kth

planting date in the jthmaturity group in the ith trait, is the grandmean,

GTiis the fixed effect of the ith trait, GMjis the fixed effect of the jth

maturity group, Mk is the fixed effect of the kth planting date, is the

fixed effect of the lth water stress environment, (GT � EW)il is the two-

way interaction effect in the ith trait in the lth water stress environment,

(GT � GM)il is the two-way interaction effect in the ith trait in the jth

maturity group, (GM �MP)jkis the two-way interaction effect in the jth

maturity group in the kth planting date, (EW �MP)lk is the two-way

interaction effect in the lth water stress environment in the kth planting

date, (GM � EW )jl is the two-way interaction effect in the jth maturity

group in the lth water stress environment, (GM � EW  �MP)jlk is the

three-way interaction effect in the jth maturity group in the lth water

stress environment in the kth planting date, (GT � EW �MP)jlk is the
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three-way interaction effect in the ith trait in the lth water stress

environment in the kth planting date, EY (EL)m(n) is the random effect

of mth year nested within the nth location.

Tukey’s test was performed when the F value was below an a =

0.05 significance threshold.
Results

Accuracy of model for grain
yield prediction

To determine the model accuracy for flowering time and grain

yield, we compared the observed data versus the information
Frontiers in Plant Science 07
simulated by the model. For a growing season with hybrid 87G67

in Manhattan, Kansas (Figures 3A–D), the model reproduced the

trajectory of dry weight for total biomass, stem, and panicle with an

RMSE of 1.1, 0.4, and 0.7 Mg ha-1, respectively. However, a

substantial underestimation occurred for dry leaf weight. In this

experiment, the observed grain yield was 4.8 Mg ha-1, and the

results after calibration were 5.4 Mg ha-1. For experiments in Kansas

from 1997 to 2007 in Garden City, Hays, Colby, and Manhattan, the

model showed satisfactory predictions for days to anthesis with an

RMSE of 5 days (Figure 3E) and grain yield with an RMSE of 2 Mg

ha-1 (Figure 3F). Despite the lack of experimental field data for

model testing in Texas and Colorado, a comparison of statistical

(2.2 to 6.6 Mg ha-1) versus simulated grain yield (1.5 to 6 Mg ha-1)

resulted in a RMSE of 1.1 Mg ha-1 (Figure 3G).
B

C D

E F G

A

FIGURE 3

Model testing for APSIM-Sorghum in the study system. (A) Observed versus simulated in-season dry biomass for hybrid 87G67 in Manhattan, Kansas (2007).
(B) Observed versus simulated in-season stem dry weight for hybrid 87G67 in Manhattan, Kansas (2007). (C) Observed versus simulated in-season leaf dry
weight for hybrid 87G67 in Manhattan, Kansas (2007). (D) Observed versus simulated in-season panicle dry weight for hybrid 87G67 in Manhattan, Kansas
(2007). (E) Observed versus simulated days to anthesis for hybrid 87G67 under rainfed conditions for experiments in Garden City, Colby, Hays, and
Manhattan (Kansas). (F) Observed versus simulated dry grain yield for hybrid 87G67 under rainfed conditions across the Kansas precipitation gradient (Garden
City, Colby, Hays, and Manhattan). Each point (E, F) represents results for single seasons between 1997 to 2007. Information of (G) Observed versus
simulated grain yield for Kansas, Colorado, and Texas study sites (indicated in Figure 4D). The y axis represents the mean of simulated yields over 33 years
(1986-2018), three planting dates, and three maturity groups. The x axis represents the mean of observed data over 21 years (2010 to 2021). Observed
sorghum grain yield (G) was obtained from the National Agricultural Statistical Service (NASS, https://www.nass.usda.gov/).
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Variation of grain yield across GM × MP
scenarios in the absence of LT

To determine the best GM and MP combination for grain yield

in precipitation gradients, we conducted simulations for short-,

medium- and full-season sorghums planted in early May (May 01),

mid May (May 15) and early June (June 01). Note, around 3% of the

simulations were removed for the analysis because they did not

complete the vegetative stage (hereafter referred to as “failed

seasons”) and the yield was close to zero. This occurred under

extreme drought events (Rippey, 2015). For instance, in Colorado in

2012, the annual precipitation was less than 207 mm, and the

rainfall during the simulated growing period was less than 130 mm.

The number of failed seasons for full-season sorghum either planted

early or late was higher in Colorado suggesting that short-season

varieties outperform any maturity group under low rainfall, while

the frequency of failed seasons in Texas was higher in early planting

dates (Supplementary Figure S2).
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Grain yield for simulated sorghumwith a non-LT trait for different

maturity groups and planting dates in Kansas, Texas, and Colorado, are

indicated in Figure 4. An average across GM andMP indicated that grain

yield varied from 1.7 to 6.5 Mg ha-1 (Figure 4A), with higher and lower

yields in eastern and western regions, respectively. Interannual

variability for grain yield ranged from 30 to 50% (Figure 4A). The

model predictedhigher yields inColorado andKansaswhenallmaturity

groups were planted in early May, followed by planting dates in mid-

May and early June. In most Texas locations, the model predicted a

higher yield for planting dates in early June (Figure 4B). The seasonal

rainfall during each simulated season influenced the performance of

different maturity groups for grain yield (Supplementary Figure S1A).

On planting dates in June, discrepancies among maturity groups

occurred under high precipitation; nevertheless, as the amount of

rainfall during the growing season decreases, these differences become

negligible (< 1%; Supplementary Figure S1B). By contrast, differences in

maturity groups for grain yield across precipitation gradients in early

May are insignificant (Supplementary Figure S1B).
B

C D E

A

FIGURE 4

Maturity (GM) × planting date (M) combinations to achieve maximum yield for non-LT versus LT sorghum. (A) Average grain yield and interannual
variability. (B) Average grain under different planting dates and maturity groups. Each point represents the mean of 33 years (1986-2018), the annual
variability (coefficient of variability) is the quotient of the standard deviation and mean. Best GM × M combination for a sorghum with (C) non-LT and
(D) LT trait. (E) Relative increase in grain yield for a sorghum with LT trait.
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Effect of LT on the best combination of
maturity group and planting date
across sites

Due to GM × MP × EW interactions, the effect of LT trait (GT)

may depend on agronomic options, such as maturity group (GM) of

the hybrid and planting date (MP). To identify the best combination

(GM × MP) at each site (EL), we obtained the maximum yield for LT

sorghum. The model indicated similar combinations for non-LT

and LT sorghums (Figures 4C, D). In Colorado and Kansas, higher

yields resulted when seasons for all maturity groups started on the

first of May. In Colorado, short-season sorghum performed better

in northern regions, while medium-season sorghum in southern

regions. Full-season sorghum yielded higher across Kansas, except

in Colby, where medium-season sorghum outperformed any other

combination. In Texas, the model indicated full-season sorghum

planted on the first of June as the best combination, with some

exceptions in the northern regions (i.e. Hansford, Texas). Overall,

sorghum with LT across all locations is expected to increase grain

yields from 0 to 15% (Figure 4E). Note, the relative change is lower
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than 3% in regions with high precipitation and this change increases

as declining precipitation amplifies water deficit scenarios in

western regions of the study site.
Water deficit environments are more
recurrent in the west

To determine predominant water stress environments (EW) in the

study system, we conducted a hierarchical cluster analysis for simulated

time series on waterSD and thermal time. The classification indicated

four water deficit environments: well-watered or light stress at grain

filling (WW), late drought (LD), mid-season drought (MD), and early

drought (ED) (Figure 5A). WW and LD predominated in eastern

regions of Kansas and Texas, while MD and ED predominated in

eastern Colorado and western Texas (Figure 5B). The analysis revealed

a strong correlation between seasonal precipitation and water deficit

patterns; although it was non-significant (r = 0.9,a = 0.06). On average,

WW, LD, MD, and ED, showed seasonal precipitation of 400 mm, 300

mm, 244 mm, and 230 mm, respectively.
B

CA

FIGURE 5

Simulated effects of LT (GT) across the US sorghum belt. (A) Water stress environment identified via water supply and demand (WaterSD) at each site.
(B) Frequency of water stress environments in Kansas, Texas and Colorado. (C) Distribution of simulated grain yield, transpiration, water productivity,
biomass and soil extractable water for a phenotype with a non-LT (dark gray) and LT trait (green) in water stress environments. Each distribution
represents simulations for all maturity groups (GM), and planting dates (MP) in all sites over 33 years. Letters indicate significant differences (a< 0.05)
of all pairwise comparisons using the Tukey HSD test. WW, Well-watered or light stress at grain filling; LD, late drought; MD, mid-season drought;
and ED, early drought.
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The effects of GT × GM × EW × MP

To determine the significance of fixed factors plus corresponding

interaction on dependent variables (simulated variables), we used

mixed models (Equations 1–4). We conducted this analysis for six

simulated variables: grain yield, total transpiration, total water

productivity, biomass at flowering time, transpiration at flowering

time and soil water content at flowering time. All individual fixed

effects (GT, GM, EW, and MP) had high significance (a = 2×10-16,

Supplementary Table S3), and a post hoc analysis suggested that factors

on each fixed effect belonged to different groups (Supplementary Table

S3). For instance, sorghum’s LT trait increased grain yield by 5%. Full-

season sorghum yielded 21% and 10% higher than early and medium-

season sorghum. WW favored grain production; while lower yields

correspond to ED. Likewise, earlier planting dates outperformed

sorghum planted either in mid-May or early-June.

All dependent variables exhibited high significance (a = 2×10-16) in

two-way interaction for three combinations: GT × EW, EW × MP, and

GM × EW (Supplementary Table S3). The significant interaction for GT

× EW, and the pairwise comparison for grain yield, water productivity,

biomass at flowering, and soil moisture at flowering indicated that the

LT trait outperformed the non-LT trait in all environments

(Figure 5C). Note, grain yield for a LT sorghum in a WW

environment was lower (4%) than in LD, MD, and ED

environments (8%). However, the pairwise comparison for total

transpiration and transpiration at flowering confirmed the

significance for the interaction GT × Ew. For instance, the non-LT

trait exhibited higher total transpiration in WW, while the LT trait

improved it in MD and ED (Figure 5C). At flowering time, LT

increased transpiration in WW, LD, and MD, but both traits

exhibited similar transpiration in ED (Figure 5C). Only for biomass

at flowering time the interaction GT × GM had high significance.

Transpiration at flowering exhibited a three-way interaction for

GT × GM × EW (a = 0.002, Table S3). The pairwise comparison

indicated a lack of differences between LT and non-LT genotypes

for each maturity group in ED (Supplementary Figures S4A B, C).

By contrast, the LT trait increased transpiration in WW, LD, and

MD for each maturity group (Supplementary Figures S4A, B,C).

Grain yield, transpiration, and soil water at flowering time and

biomass at the flowering time exhibited the following three

interactions as significant: GM × EW × MP (a = 0.04). Pairwise

comparisons among these interactions for grain yield revealed

differences for each maturity group and planting dates in

environments WW and LD, but these differences become smaller

in MD and ED (Supplementary Figures S4D, E, F). In these

environments, for all maturity groups, grain yield for planting

dates in early May and mid-May were similar, but these differed

(a = 0.01) from the early June planting.

Sensitivity of initial soil moisture on LT and
variability of LT in different environments

To test the effect of initial water content on the LT trait, we

designed simulations and created eight scenarios of initial soil

moisture (from 20% to 90%) while maintaining the LT parameter

at 0.9 mm h-1. We conducted these simulations in Hays (Kansas),
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which presented the four environment classes identified in this

study (Figures 2D, 5B). Nevertheless, regardless of the initial water

content scenario, the model pointed out a yield increase for

sorghum with LT, which is more pronounced under low soil

moisture (i.e. 20% and 30%). Overall, model predictions indicated

that initial soil moisture changes do not affect LT’s positive effect,

although the uncertainty of these changes increased under low soil

moisture (Figure 6A).

To test the hypothetical genetic variability of LT on grain yield,

we created simulations for LT sorghum with a limited maximum

transpiration rate from 0.2 mm h-1 to 0.9 mm h-1, while

maintaining the initial soil moisture at 60%. We conducted these

simulations in a central site of the sorghum belt in Kansas (Hays),

representing the four water deficit patterns identified in this study.

Model predictions indicated that grain yield increases in all

environments when LT is lower than 0.9 mm h-1 (Figure 6B),

with a greater benefit under drought scenarios. For instance, on

average, an LT sorghum with a limited maximum transpiration rate

of 0.2 mm h-1 increased the grain yield by 15%, 45%, 70%, and 74%

in WW, LD, MD, and ED, respectively. By contrast, an LT sorghum

with 0.8 mm h-1 increased the grain yield by 7%, 8%, 10%, and 11%

in WW, LD, MD, and ED, respectively. Note that the uncertainty of

predictions, represented by the standard deviation, became larger at

LT lower than 0.9 mm h-1. In LD, the model predicted a yield

increase between 25 to 79% for sorghum with an LT of 0.2 mm h-1.

Otherwise, this increase ranged from 6 to 16% for sorghum with an

LT of 0.8 mm h-1.
Discussion

This study takes advantage of the nonlinearity of G×E×M

captured by the APSIM-Sorghum to guide breeding programs in

developing improved water-use hybrids in the sorghum belt of the

United States. Specifically, this study assessed management

practices to leverage the performance of sorghum hybrids

(Figure 5B), envirotyped the target population of environments

with distinctive water stress patterns (Figures 5A, B), and quantified

the impact of the LT trait in the production sorghum area. Crop

model applications to support breeding exist for different crops and

diverse geographies (Technow et al., 2015; Chenu et al., 2017;

Hammer et al., 2019b; Jighly et al., 2023). For instance, a study

deployed a rice crop model to hypothesize the lack of effectiveness

in breeding drought-tolerant upland rice in Brazil (Heinemann

et al., 2019), and other studies improved phenomic prediction by

integrating crop models and genomic prediction (Cooper et al.,

2002; Heslot et al., 2014; Crossa et al., 2022).
APSIM-sorghum is reliable for grain
yield prediction

The foundation of the model application is testing the

prediction accuracy for the evaluated variable. This study showed

that APSIM-Sorghum predictions of grain yield for short-season
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283339
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Raymundo et al. 10.3389/fpls.2023.1283339
sorghum, obtained from variety trials, resulted in 2 Mg ha-1

(Figure 3F). A comparison of statistical data and simulated yield

for all locations (Figure 3G) indicated a RMSE 1.1 Mg ha-1. These

results agree with previous studies for sorghum, which show a

RMSE of 1 to 2 Mg ha-1 (Carcedo et al., 2022; Ojeda et al., 2022).

APSIM-sorghum underestimates the -in-season dynamic of leaf

tissue study (Figure 3C), a similar phenomenon is observed in a

sorghum study that used the APSIM-sorghum model in Ethiopia

(Tirfessa et al., 2023). While we acknowledge this discrepancy, it

does not influence the impact of the LT trait. The APSIM-sorghum

simulates transpiration on a leaf area basis, the simulated leaf area is

identical for non-LT and LT phenotypes (Supplementary Table S2);

hence, the relative change resulting from the LT trait is similar to

our findings regardless of the model accuracy for leaf tissue.

Researchers have applied differing approaches to APSIM-sorghum
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validation with some studies primarily comparing flowering time,

biomass, and grain yield (Carcedo et al., 2022; Della Nave et al.,

2022; Ojeda et al., 2022), while others disregard testing the accuracy

of the model (Kholová et al., 2014; Ronanki et al., 2022). Overall, the

model reliability for grain yield predictions enabled deployment to

test the potential impact of the LT trait.
LT for the US sorghum belt: is it
worth pursuing?

The decision to include a trait within a breeding program clearly

depends on the impact of this trait on final grain yield. Breeding

programs require that a candidate trait can contribute at least a 5%

yield increase to be included in a breeding portfolio. Findings of this
B

A

FIGURE 6

Sensitivity of a sorghum with LT trait to variation of initial conditions and genetic variability. (A) Relative change in grain yield under thresholds of
initial soil moisture. The limited maximum transpiration was 0.9 mm h-1. (B) Relative change in grain yield under thresholds of limited maximum
transpiration. Initial soil moisture was 60%. The analysis was conducted for a representative location (Hays, Kansas; 1986-2018) at the center of the
sorghum belt which presented all four water stress environments. Vertical lines represent the standard deviation of each environment.
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study revealed the LT trait can potentially increase grain yield from

3% to 13% in the sorghum belt in the United States (Figure 4E).

Therefore, LT is a candidate trait for developing hybrids with

improved water-resiliency for western regions of the sorghum

belt (Figure 5B).

Although our simulation does not present a full geospatial

analysis (Messina et al., 2015), our study shows results for

contrasting sites across gradients of VPD and precipitation. Site-

specific simulations allowed for handling detailed information on

additional variables (Collins et al., 2021) in any growing period,

such as soil moisture, transpiration, and biomass (Figure 5C).

Otherwise, grid geospatial simulation studies rarely provide

information other than yield (Messina et al., 2015; Guiguitant

et al., 2017). Despite our study disregarded spatial variability on

initial soil moisture, the model reproduced the observed yield

(RMSE 1.1 Mg ha-1, Figure 3F). Likewise, a sensitivity analysis

revealed that the initial water conditions do not affect the positive

impact on LT (Figure 6A).

Current climate variability (33 years) highlights the crop

vulnerability (Figure 4A) in western regions characterized by the

high frequency of water deficit scenarios (Figure 5B) and where the

impact of LT sorghum is more significant (Figure 4E and Figure 5).

Climate change scenarios, disregarded in our simulations, project a

VPD increase by the end of the century (Yuan et al., 2019). Under

high VPD, LT hypothetically leads to stomatal closure (Sinclair

et al., 2005); similarly, rising levels of CO2 cause stomatal closure in

C3 and C4 crops (Allen et al., 2011). However, it is unknown

whether the impact of CO2 and LT would have a synergistic effect or

if the stomatal response to CO2 would prevail over LT. Simulations

under future scenarios would be needed to elucidate these effects.

Nevertheless, a simulation study hypothesized that CO2 and LT can

compensate for detrimental impacts of climate change in the wheat

belt of Australia (Collins et al., 2021).
Navigating G × E × M for deployment of LT

The LT trait is expected to restrict water transpiration when soil

moisture is at field capacity and high VPD (Sinclair et al., 2005).

Therefore, this trait is undesirable for WW conditions because

depriving transpiration would penalize carbon fixation and final

grain yield (Vadez et al., 2014). Unexpectedly, in our study,

simulation studies indicated that an LT sorghum can contribute

to an increase in grain yield of 4% for WW environments

(Supplementary Table S3, Figure 5C). Under WW environments,

predictions for wheat with the APSIM model indicated a yield

increase of 0.2% (Collins et al., 2021), while predictions for maize

with a simple model indicated a yield decline of -3% in the USA

(Messina et al., 2015). Yield gains for WW environments in our

study can be due to differences in the model structure. In LD

environments, sorghum grain yield increased by around 9%

(Figure 5C, Supplementary Table S3), which is slightly higher

than predictions for wheat (2 to 7%, Collins et al., 2021) and

within the range of 0 to 24% reported for maize (Messina et al.,

2015). Our results for MD (10%) and ED (9%) align with the
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reported yield increase for wheat which ranged between 3 to 13%

(Collins et al., 2021). From a breeding perspective, LT sorghum

would have a more significant impact on water stress scenarios of

the sorghum belt. It is essential to identify the best combination of

GT × GM × MP in sorghum since it is planted late and across

precipitation gradients (Roozeboom and Fjell, 1998; Shroyer et al.,

1998; Ciampitti et al., 2019). Overall, LT sorghum increased grain

yield across planting dates and maturity groups by 8%. Although

specific combinations of GM × MP (Supplementary Table S3) can

maximize crop yield either for a non-LT (Figure 4C) or LT

sorghum (Figure 4D).

Variety trials or multi-environment experiments have shown

that, unlike full-season varieties, medium- and short-season

varieties can complete their growing cycle in regions with low

precipitation (Larson et al., 2021; Schnell et al., 2021) and limited

growing degree days (GDD) at higher latitudes (Kukal and Irmak,

2018). This strategy has led to the selection of maturity groups that

match precipitation and GDD gradients in the sorghum belt

(Figures 4C and 4D). Since the impact of LT sorghum is more

relevant in western regions (Figure 4E), this study suggests

introgressing this trait in medium- and short-season hybrids

rather than in full-season hybrids (Figures 4D, 5B). Management

practices need to be considered to enhance the performance of LT

sorghum. Shifting planting dates can change the frequency of water

deficit environments (Chenu et al., 2011; Raymundo et al., 2021)

(Supplementary Figure S3) by increasing grain yield in early

planting dates, especially in Kansas (Figure 4B). Higher yields in

early spring resulted from the synchronization of planting dates

with the onset of precipitation, which increased the frequency of

WW environments (Supplementary Figure S3). Likewise,

simulation and field studies demonstrated yield gains of up to

11% in seasons with higher water availability (Francis et al., 1986;

Carcedo et al., 2021; Zander et al., 2021)

Genetic pyramiding for drought adapted phenotypes can be

explored via crop modeling (Cooper et al., 2002). A simulation

study in sorghum revealed that LT is more effective than stay-green

in water scarcity scenarios (Kholová et al., 2014). Higher yields in

early spring suggests (Figure 4B and Supplementary Figures S4D–F)

a plausible interaction between early chilling tolerance and LT trait.

LT increases canopy temperature (Belko et al., 2013), and

temperatures beyond 38°C can penalize carbon assimilation and

plant growth (Singh et al., 2015). Via experimentation and

simulations, crop models provide understanding of the effect of

interplay between multiple traits (genes) on harvestable yield. Note

phenotypes commonly used in crop modeling differ from

phenotypes traditionally evaluated by breeders (Ramirez-Villegas

et al., 2020). This mismatch makes large-scale phenotyping

deployed by breeding programs unsuitable for crop model

purposes (Muller and Martre, 2019). Hence, our study shows how

crop models can inform high-throughput phenotyping platforms

regarding potential traits contributing to the plant water economy

(Boote et al., 2021). Then, integrating field experimentation and

crop modeling for ideotyping LT with additional adaptation traits

can support breeding programs when developing a trait technology

for water-limited scenarios (Chenu et al., 2017).
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Next steps for water-optimized sorghum

In this simulation study, the LT trait optimizes water use by

reducing transpiration around flowering time, increasing water

productivity and grain yield (Figure 5C). Therefore, this trait can

benefit farmers’ economies in the sorghum belt. Nevertheless, LT is

a hypothetical trait, implemented in crop models (Bates et al., 2015;

Messina et al., 2015; Sinclair et al., 2017; Truong et al., 2017), and

whose genetic variation is reported and limited to controlled

environments (Gholipoor et al., 2010; Vadez et al., 2015; Devi

and Reddy, 2018; Medina et al., 2019; Collins et al., 2021). Although

variation for LT was reported in controlled environments, the

repeatability of this trait has yet to be shown in sorghum-

producing regions. Hence, including the LT trait in a sorghum

breeding program requires validating this trait under field

conditions and testing the effectiveness of phenomic approaches

to discriminate this trait in large populations. Potential donors

would make feasible developing bi-parental populations to

determine quantitative trait loci (QTLs) controlling the

phenotypic expression of this trait. Further isolating these QTL

can assist in dissecting the underlying physiological and molecular

mechanisms of limited transpiration, which remain enigmatic.
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