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Vigor is one of the important factors that affects rice yield and quality. Rapid and

accurate detection of rice seed vigor is of great importance for rice production.

In this study, near-infrared hyperspectral imaging technique and transfer learning

were combined to detect rice seed vigor. Four varieties of artificial-aged rice

seeds (Yongyou12, Yongyou1540, Suxiangjing100, and Longjingyou1212) were

studied. Different convolutional neural network (CNN) models were built to

detect the vigor of the rice seeds. Two transfer strategies, fine-tuning and

MixStyle, were used to transfer knowledge among different rice varieties for

vigor detection. The experimental results showed that the convolutional neural

network model of Yongyou12 classified the vigor of Yongyou1540,

Suxiangjing100, and Longjingyou1212 through MixStyle transfer knowledge,

and the accuracy reached 90.00%, 80.33%, and 85.00% in validation sets,

respectively, which was better or close to the initial modeling performances of

each variety. MixStyle statistics are based on probabilistic mixed instance-level

features of cross-source domain training samples. When training instances, new

domains can be synthesized, which increases the domain diversity of the source

domain, thereby improving the generalization ability of the trained model. This

study would help rapid and accurate detection of a large varieties of crop seeds.

KEYWORDS

near-infrared hyperspectral imaging, seed vigor, convolutional neural network, fine-
tuning, MixStyle
1 Introduction

Rice is one of the most important crops in the world, serving as the main food crop in

many countries around the world and acting as a fundamental food source for mankind

(Jin et al., 2022a). Seed vigor is a crucial indicator of seeds, directly affecting their yield

(Song et al., 2018). Studying seed vigor before seed germination can help identify high-

vigor seeds with higher germination rates and faster growth potential, ultimately improving
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seed utilization and yield (Du et al., 2017; Zhang J. et al., 2020).

Additionally, seed vigor also plays an essential role in evaluating the

strengths and weaknesses of different varieties. By studying the seed

vigor of various varieties, it is possible to identify excellent varieties

that display good vigor. This provides a theoretical foundation for

selecting and breeding high-quality rice varieties (Wu et al., 2021),

which is conducive to the continuation of excellent varieties.

Therefore, it is important to detect the vigor of rice seeds.

However, the traditional germination experiment to detect seed

vigor is time-consuming and laborious, and other detection

methods, such as staining (Carvalho et al., 2017) and electronic

conductivity test (Barbosa et al., 2021), will more or less damage and

damage seeds, rely on chemical reagents, complex operation, affect

seed reuse, at the same time, these detection methods are inefficient,

unable to detect rice seed vigor efficiently and non-destructively.

Near-infrared hyperspectral imaging technology is a light-based

nondestructive testing technology. It can obtain the spectral

information of the object by analyzing the near-infrared energy

spectrum reflected or transmitted by the object, so as to achieve

rapid quantitative detection of the corresponding parameters of the

object (Zhang and Guo, 2019). The specific principle is to use the

strong penetration characteristics of near-infrared light, near-

infrared light irradiates through the surface of the sample, and

the chemical composition, tissue structure and morphology of the

sample will have an impact on the absorption, scattering, reflection

and other aspects of light (Jin et al., 2022a; Jin et al., 2022b). Near-

infrared hyperspectral imaging systems can capture these reactions

and present the data in the form of a 3D cube that integrates

spectral and spatial information to obtain high-precision imaging

results (Zhang L. et al., 2020). In recent years, some scholars have

applied NIR-HSI to the detection of rice seed vigor: Jin et al. (2022a)

combined NIR-HIS with machine learning and deep learning to

predict the seed vigor of different varieties of rice, and the accuracy

of most models was more than 85%, in addition, they (Jin et al.,

2022b) also used NIR-HSI with LeNet, GoogLeNet, and Residual

network (ResNet) to identify rice seed varieties. Among them, the

classification effect of the ResNet model was the best. The

classification accuracy rate of the test set was 86.08%. In addition,

some scholars have also applied NIR-HIS to the detection of rice

seed vigor, He et al. (2019) utilized Savitzky-Golay preprocessed

extreme learning machine model to detect seed viability in 3

different years, using only 8 bands of spectral data, the

classification accuracy was as high as 93.67%. Hong et al. (2022)

used models such as partial least squares (PLS) discriminant

analysis, support vector machine (SVM), PLS-SVM, PLS-artificial

neural network, and one-dimensional convolutional neural network

(CNN) to predict vigor using averaging and hyperspectral images.

The results show that in most models, about 90% accuracy and a

high F1 score can be obtained. The experimental results have

proved that the method is efficient, accurate and feasible.

However, none of the aforementioned studies addressed the

generalization ability of the models, and the models established in

these studies were trained from scratch, specifically designed for

particular learning tasks.

Deep learning (DL) is an important artificial intelligence

method that enables machines to autonomously acquire
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knowledge from data (Jordan and Mitchell, 2015), and DL is

gradually being applied to the field of spectral analysis (Jin et al.,

2018; He et al., 2019). In practice, it is not recommended to train

neural networks from scratch because it is time-consuming and the

performance of the model is not guaranteed. In addition, DL often

requires a large amount of data to participate in the training

process, and when the amount of data in building the model is

not enough, the model may overfit or fall into local optimum (Pan

and Yang, 2010; Marmanis et al., 2016; Suh et al., 2018; Lu et al.,

2019). Unfortunately, some seed samples are challenging to obtain

during germination, leading to high labeling costs and a difficulty in

creating large-scale, high-quality datasets. Additionally, data

acquired at significant cost is hard to reuse in new tasks, posing

challenges for DL, which relies on numerous labeled samples for

effective training (Zhang and Zhao, 2021). Transfer learning mainly

studies the transfer of knowledge from the source domain to the

target domain, allowing the training data and test data to be located

in different feature spaces, which has a unique advantage in

accelerating the training of the model and improving the

generalization performance of the model, with which it can solve

the learning problem in the case of small samples, low resources,

and few labeled samples (Wu et al., 2021). Transfer learning has

been used for the identification of agricultural varieties: Wu et al.

(2021) used deep transfer to transfer knowledge to four datasets of

rice, oats, wheat, and cotton, and Accuracies of the deep transferred

model achieved 95, 99, 80.8, and 83.86% on the four datasets,

respectively. Zhu et al. (2019) fine-tuned the pre-trained models

(AlexNet, ResNet18, Xception, InceptionV3, DenseNet201, and

NASNetLarge) for transfer training, and the results showed that

the accuracy of all six models in the validation set reached 91%.

Transfer learning is also used in the detection of agricultural pests

and diseases: Chen et al. (2020) initialized the weight of the pre-

trained network on the large labeled dataset ImageNet to classify

and predict the images of rice leaf diseases and pests, with an

average accuracy of 92.00%. Some scholars have also obtained good

results in the detection of diseased leaves of tomatoes and grapes

(Paymode and Malode, 2022). However, the application of transfer

learning in the detection of rice seed vigor is still less studied. The

main chemical components contained in different rice seeds are

similar, so the NIR-HIS based depth model constructed can transfer

the knowledge from the model to other varieties of rice seed models

(He et al., 2019). In summary, the non-destructive assessment of

rice seed vigor through near-infrared hyperspectral imaging

technology holds significant value for the preservation of

invaluable seed resources and pre-sowing screening. The

utilization of transfer learning also presents the potential to

conserve both time and resources, as there is no need to

commence training an entirely novel model from scratch. This

research amalgamates the domains of transfer learning and

hyperspectral imaging technology, both at the forefront of

modern computer science and agricultural science. It thereby

offers intriguing avenues for further exploration and innovation.

In this study, the collected rice seed hyperspectral images were

extracted from one-dimensional spectra, the one-dimensional

spectrum was used as the input of the machine learning model to

train the model, and then the knowledge was transferred by deep
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transfer to achieve the purpose of rice seed vigor detection. The

main tasks of this study are to: (1) establish deep learning models

for detecting rice seed vigor with high accuracy based on NIR-HIS

for different varieties of rice seeds; (2) apply deep model knowledge

transfer to the vigor classification of rice seeds of other varieties by

deep transfer technology; (3) compare advantages and

disadvantages of multiple transfer learning techniques in the

detection of rice seed vigor; (4) use Grad-CAM++ to visualize the

CNN model to identify the important wavelengths for seed vigor

detection under different situations.
2 Materials and methods

2.1 Sample preparation and
dataset description

In order to ensure the wide range of rice seed vigor, four rice

var ie t ies , Yongyou12, Yongyou1540, Suxiangj ing100,

Longjingyou1212, were selected for experimental analysis. The

rice seeds used in this study were obtained from three different

types, with a total of 7100 rice seed samples. The detailed

distribution of the samples can be found in Table 1. We divided

the dataset according to a 4:1:1 ratio. The rice seeds used in this

study were provided by the College of Advanced Agricultural

Sciences, Zhejiang A&F University, Lin’an, Zhejiang.

Seeds aged under natural conditions are very rare, and the aging

process is very long, which brings certain difficulties to the study of

seed vigor. As a result, a growing number of studies have found that

seeds can be artificially aged to mimic the natural aging process

(Sena et al., 2017; Zhu et al., 2019; Yuan et al., 2022). In order to

make a significant difference in seed vigor, the seeds were treated by

high temperature and high humidity aging before the experiment.

The rice seeds were placed in the LH-80 seed aging box (Top Cloud-

agri Technology Co., Ltd., Hangzhou, China), the temperature was
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maintained at 45°C, the air moisture content was set to 100%, and

the aging was 96 hours and 192 hours, respectively. Under high

temperature and high humidity environment, a series of

physiological and biochemical reactions such as membrane lipid

peroxidation, soluble sugar and protein degradation, related gene

expression disorders and nucleic acid degradation are accelerated,

and the vitality of seeds is rapidly declining (Brar and Dudi, 2019).

In order to further verify the effect of artificial aging on seed vigor,

standard germination experiments were performed on aged rice seeds

(Seo et al., 2021). The seeds of the samples were placed on moist

germination paper in the numbering order. The samples were

subjected to a 14-day germination experiment under the conditions

of 30°C light for 8 h and 20°C dark for 16 h every day. The

experimental results showed that the number of not aged rice seeds

after 96h aging was more than the number of not aged rice seeds after

192h aging, and the number of not aged seeds after 192h aging was

the largest among the three aging gradients (not aged, aging 96h,

aging 192h). In short, the seed vigor of rice after artificial aging was

reduced, and the seed vigor decreased with the increase of aging time,

which showed a linear negative correlation. The specific standard

germination experiment results are shown in Table 2, where the non-

viable rate is the ratio of the number of not aged seeds to the total

number of seeds under this vigor gradient.
2.2 Near-infrared hyperspectral image
acquisition and correction

In this study, NIR-HIS was collected from four types of rice

seeds. When acquiring hyperspectral images, the ambient room

temperature was an average of 21°C and the average humidity was

73%. The ambient humidity and temperature at germination were

similar to those when hyperspectral images were acquired. Images

were acquired by the FX17 near-infrared hyperspectral camera

(Specim, Spectral Imaging Ltd., Oulu, Finland) in conjunction
TABLE 1 The number of different varieties of seeds.

Variety Type
Aging
time

The number
of seeds

Yongyou12 indica japonica
hybrid rice

Not aged 600

Aging 96h 600

Aging192h 600

Yongyou1540 indica japonica
hybrid rice

Not aged 600

Aging 96h 600

Aging192h 600

Suxiangjing100 regular japonica
rice

Not aged 500

Aging 96h 600

Aging192h 600

Longjingyou1212 hybrid indica rice Not aged 600

Aging 96h 600

Aging192h 600
TABLE 2 The number of non-viable seeds of different varieties of seeds.

Variety Aging time Number Non-viable rate

Yongyou12 Not aged 103 0.1717

Aging 96h 291 0.4850

Aging192h 424 0.7067

Yongyou1540 Not aged 112 0.1867

Aging 96h 194 0.3233

Aging192h 406 0.6767

Suxiangjing100 Not aged 93 0.1860

Aging 96h 353 0.5883

Aging192h 542 0.9033

Longjingyou1212 Not aged 117 0.1950

Aging 96h 270 0.4500

Aging192h 345 0.5750
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with the hyperspectral image acquisition platform Lab Scanner

(Specim, Spectral Imaging Ltd., Oulu, Finland). The FX17 near-

infrared hyperspectral camera acquires a spectral range of 900-

1700nm. Lab scanner is illuminated by two arrays of halogen lamps,

each with a power of 35W. The sample stage on the stepper motor

control Lab scanner pushes forward for imaging at a speed of

24.70mm/s and acquires spatial and spectral information of one

row of data at a time; The sample stage surface is a high-gloss black

surface with a white calibration whiteboard. The FX17 camera and

Lab scanner are controlled by Lumo Scanner2020 (Specim, Spectral

Imaging Ltd., Oulu, Finland) software. Hyperspectral images of 224

spectral channels were acquired per scan and then calibrated using

the following equation:

R =
I − D
W − D

    (1)

where R is the corrected image, I is the original image, W is the

white reference image, and D is the dark reference image. The white

reference image is obtained by shooting a white calibration

whiteboard; Dark reference images are taken after the lens is

completely covered with a lens cap. To avoid the instability of the

system and the influence of noise in the spectral data on this study,

the head and tail bands are removed and the wavelength range from

998 nm to 1631 nm was retained (Jin et al., 2022a). In this study, the

average spectrum of each seed was obtained in the range of

experimental accuracy: each seed in the hyperspectral image was

treated as a region of interest (ROI), and the spectra of all cells in the

ROI were averaged to obtain a spectral vector representing the

seed sample.
2.3 Classification methods

2.3.1 Logistic regression
Logistic regression is a classic machine learning algorithm. The

idea of logistic regression is to first fit the decision boundary (not

limited to linearity, but also polynomial), and then establish the

probability of this boundary and the classification, so as to obtain

the probability in the classification case (Jin et al., 2022b). Logistic

regression typically uses the sigmoid function as the prediction

function. Logistic regression has the advantage of avoiding

inaccurate hypothetical distributions. In this study, L2

regularization was selected for LR and C was selected 1000.

2.3.2 eXtreme Gradient Boosting
XGBoost (eXtreme Gradient Boosting) is a machine learning

algorithm that demonstrates exceptional performance and serves as

an extension of gradient boosting trees (Friedman, 2001). It

enhances model performance by integrating multiple weak

classifiers, resulting in outstanding predictive accuracy (Chen and

Guestrin, 2016). XGBoost introduces regularization terms to

control model complexity and incorporates penalty functions in

the objective function for assessing model complexity, thereby

preventing overfitting (Qiu et al., 2021). XGBoost has achieved

remarkable success in various domains and tasks within the field of

machine learning. During the training process of the XGBoost
Frontiers in Plant Science 04
model, the parameter “reg_alpha” was set to 0.1, “reg_lambda” was

set to 0.1, and “max_depth” was set to 2.

2.3.3 Support vector machine
Support vector machine is a machine learning method proposed in

the 90s of last century, which can be used for classification and

regression tasks with superior performance and is widely used in

research (Zhao et al., 2018; Cui et al., 2021). Support vector machines

based on the principle of marginal maximization are used as a special

linear classifier (Arun Kumar and Gopal, 2009). When the SVM is

trained, it maps the data to a multidimensional space called decision

space and finds the decision boundary in this space to complete the

classification. When the data is linearly divisible, the decision boundary

is a two-dimensional straight line;When the linearity is inseparable, the

kernel function is used to map the feature data to the high-dimensional

space, so that it becomes linearly separable in the high-dimensional

space, and the decision boundary is a three-dimensional plane

(Gopinath et al., 2020). SVM is an efficient nonlinear classifier that

has strong robustness in processing classification problems under small

sample conditions and can effectively handle high-dimensional data

problems. In this study, the RBF and Poly kernel functions were

selected and a grid search was performed to select the optimal

parameters in ‘C’: [1,10,100,1000,10000], ‘gamma’: [1, 0.1, 0.01, 0.001].

2.3.4 Convolutional neural network
Convolutional neural network is a special feedforward neural

network integrated into convolution operations (Jin et al., 2022b),

which not only has the characteristics that the neural network is

composed of a large number of neurons, but also has excellent feature

extraction and mapping capabilities because of convolution

operations work with activation functions and normalization

methods (Jin et al., 2022a). CNN algorithms essentially achieve

input-to-output mapping by extracting features and reducing

dimensionality (Voulodimos et al., 2018). CNNs consist of

convolutional layers, pooling layers, and fully connected layers. The

unit of the convolution layer is the feature graph, and each unit is

related to the block of the previous feature graph by the filter group

(Jin et al., 2018), the downsampling technique of the convolutional

layer can capture the main spectral information (Xie et al., 2021). The

main role of the pooling layer is dimensionality reduction. In the

gradient-based optimization method, the ReLU activation function

can reduce the effect of gradient vanishing, which has the advantage

of preventing overfitting. The batch normalization layer (BN) can

improve the efficiency of model training (Xie et al., 2021). Therefore,

in the self-built CNN of this study, the ReLU activation function and

BN are used in it. In addition, to further prevent overfitting, a dropout

layer is added after the fully connected layer. Use the Adam optimizer

for training and accelerated convergence. CNNs are widely used, have

the ability to automatically learn features in images (Moujahid et al.,

2022), and the trained CNN model can perform transfer learning in

different tasks, which is where this institute especially needs it.

However, the generalization ability of CNN is weak. In order to

comprehensively explore the generalization ability of CNN,

researchers (Sun et al., 2021) had set up three different

experimental conditions for evaluation. The experimental results

demonstrated the weak generalization ability of CNN-based
frontiersin.org
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methods. Therefore, it is of great significance to enhance the

generalization ability of CNN through transfer learning.

In this study, four CNN with different structures were designed for

four types of rice seeds, with a maximum of 4 layers and a minimum of

2 layers, as shown in Figure 1. Convolution kernels of 1 × 4 were used

in the four CNN to extract features hidden in spectral vectors. Also, BN

and ReLU activation functions were used after each convolution to

reduce the risk of overfitting and speed up the convergence process. A

maxpooling layer with a kernel size of 1 × 2 was added after the partial

convolutional layer to reduce the feature dimension. The parameter of

the Dropout layer was set to 0.4. Different batch size and learning rates

were set for the four CNN models, 32,0.005; 32,0.001; 32,0.0005; and

32,0.0005. Stride is all set to 1.
2.4 Transfer learning strategy

Transfer learning is an emerging machine learning tool that is

considered an important small-sample learning method (Xiao et al.,

2019; She et al., 2021), and it has been proposed to alleviate the need

for sufficient training data for the model by transferring the available

knowledge in the relevant source domain to the target domain (Pan

and Yang, 2010; Xie et al., 2021). For the detection of rice seed vigor

in the agricultural field, transfer learning can greatly save time and

resources, improve the generalization ability of the model, and also

have obvious advantages in solving the problem of data scarcity.

Transfer learning is expressed by the formula: let the source domain

be Ds = fxi, yigNs
i , and the target domain is Dt = fxi, yigNt

i , where xi
and   yi represent data samples and their corresponding labels,

respectively. Given the Ds and learning task Ts, Dt , and learning
Frontiers in Plant Science 05
task Tt , improve the performance of the prediction function ft( · )   in

the Dt by acquiring knowledge in the Ds and Ts, Ds ≠ Dt , Ts ≠ Tt .

The transfer process is shown in Figure 2.

2.4.1 Fine-tuning
Fine-tuning is a simple and versatile strategy in transfer

learning. The pre-trained depth models has been adapted to new

tasks (Cetinic et al., 2018). It can effectively reduce modeling costs.

Fine-tuning is: there is a pre-trained model Modelpre that has been

trained on large-scale data with a set of parameters qpre, and now we

have a specific task that aims to minimize a specific loss function Lq ,

where q represents the parameters of the model. The goal of fine-

tuning is to fine-tune the parameters of a pre-trained model so that

it performs well on specific tasks. The process of fine-tuning can be

expressed as the following optimization problem: minLq . The initial

layer of the CNN retains abstract, generic features, while the top

layer retains more specific features related to the task (Vrbancic and

Podgorelec, 2020). Considering the characteristics of the above

CNN, there are two main ideas for fine-tuning: (1) only adjust

the last few fully connected layers; (2) Adjust all network layers

(Zhen et al., 2017). The outcome of knowledge transfer depends on

the similarity between the trained CNN and the target task we want

to transfer knowledge. In this study, the distribution and features

between the source domain data and the target domain data were

similar, and the convolutional layer before the fully connected layer

may have extracted the important feature information of the seed

spectrum and can be reused in the target domain (Wu et al., 2021),

so the parameters of each layer before the pre-trained CNN fully

connected layer were frozen, and the last few fully connected layers

were fine-tuned.
B C DA

FIGURE 1

CNN structure diagram for the detection of rice seed vigor by (A) Yongyou12, (B) Yongyou1540, (C) Suxiangjing100, and (D) Longjingyou1212.
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2.4.2 MixStyle
As the role of deep transfer is discovered by more and more people,

more deep transfer strategies are proposed, such as BNM (Cui et al.,

2020), MCC (Jin et al., 2020) andV-REx (Krueger et al., 2021) and so on.

In order to cope with the data distribution problem in different domains,

the above deep transfer methods can be roughly divided into domain

adaptation and domain generalization. Domain adaptation refers to the

process of transferring information to one or more source domains in

order to improve the learning performance of target learners (Pan and

Yang, 2010). Domain generalization aims to improve the generalization

ability of models by leveraging useful information from multidomain

data (Du et al., 2022). In view of the relatively similar spectral data

distribution between rice varieties, MixStyle belonging to domain

generalization was selected in this study (Zhou et al., 2021).

The method was proposed by Zhou et al. in 2021, a novel

method based on probabilistically mixing instance level feature

statistics of training samples across source domains. The method

mixes the feature statistics of two instances with a random convex

weight to simulate the new style.

A batch of data is sampled from each of the domaini and the

domainj, xi and the xj form x = ½xi, xj�, swap the position of the batch
to obtain ~x, and then shuffle each batch along the batch dimension.

After shuffling, MixStyle computes the mixed feature statistics by:

gmix = ls(x) + (1 − l)s (~x) (2)

bmix = lm(x) + (1 − l)m(~x) (3)

where l ∈ RB are instance-wise weights sampled from the Beta

distribution, l   ∼  Beta(a ,  a)   with a ∈ (0,∞) being a hyper-

parameter, we set a   to 0.1. Finally, the mixed feature statistics are

applied to the style-normalized x:

MixStyle(x) = gmix
x − m(x)
s (x)

+ bmix (4)
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2.5 Visualization method

CNNs are a “black box”model in the field of deep learning, and

in order to make it easier to interpret CNN results, Gradient-

weighted Class Activation Mapping++ (Grad-CAM++) was used to

visualize CNN models in this study. Grad-CAM++ is a generalized

approach based on Grad-CAM that better provides visualization

results for CNNs (Cai et al., 2023). It uses the gradient of any target

concept flowing into the final convolutional layer to generate a

coarse localization map that highlights important areas of the image

for predicting the concept (Moujahid et al., 2022). It can be adapted

to any CNN model (Afify et al., 2023).

2.6 Model evaluation and software

Figure 3 is the experimental flow chart of this article. using a 1D

spectrum with 181 features after noise reduction as input. This study

used classification accuracy to evaluate the performance of the model.

The SVM, LR and XGBosst used in this study was based on Python 3.8

and scikit learn 1.0.2; the deep learning model was built on pytorch

1.10.2. The deep model was trained using the NVIDIA GeForce RTX

3060 Laptop GPU for acceleration. Data analysis was performed on

computers configured with Intel (R) Core (TM) i7-11800H (2.3GHz)

and 16G RAM. All data analysis was performed on Windows 10.

3 Results

3.1 Spectral analysis

In this study, all the spectral data collected were averaged to

obtain the average spectra and standard deviation of four types of

rice seeds, as shown in Figure 4.

In general, the shape of the spectrum and the location of the

peak of the four types of rice seeds were very similar, which
FIGURE 2

Transfer learning process.
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indicated that there may be more common characteristics between

the four types of rice seeds, which was conducive to the transfer

learning. The spectral difference between Yongyou12 rice seeds

under different aging gradients was the largest among the four types

of rice seeds, and the wavelength differences were most obvious at

1150-1300 nm and 1400-1650 nm. Suxiangjing100 rice seeds had

minimal spectral differences. The wavelengths of the four types of

rice seeds with different vigor spectra were concentrated at 1400-

1650 nm, and the band could be attributed to the first overtone of

amide A (N–H stretch), which might be the critical band for protein

detection (Wu et al., 2019). The 1100 nm band were caused by the

second overtone of carbohydrates (C–H stretch) (Wu et al., 2021).

The peak near 1300 nm was reported to be associated with the

combinations of the first overtone of amide B (N–H stretch) and the
Frontiers in Plant Science 07
fundamental vibrations of amide II and III (C–N stretch and N–H

in-plane bend) (Daszykowski et al., 2008).

Standard deviation is a measure of how dispersed or dispersed a

set of data is. The introduction of standard deviation helps to

understand the degree of change in multiple spectral curves. The

small standard deviation indicates that their spectral curves are

relatively close and have similar fluctuation patterns. As can be seen

from Figure 4, the standard deviation of all four types of rice seeds

in the 1350-1400 nm band was small.

3.2 Classification results on source dataset

In this study, LR, XGBoost, SVM and CNN were used to

determine the vigor of four types of rice seeds with different aging
B

C D

A

FIGURE 4

The average spectra with the standard deviation of four rice seeds: (A) Yongyou12; (B) Yongyou1540; (C) Suxiangjing100; (D) Longjingyou1212.
FIGURE 3

Experimental flow chart.
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gradients. In our investigation, True Positives (TP) were defined as

instances where the model accurately categorizes not aged seed as not

aged. True Negatives (TN) referred to cases where the model correctly

classifies seeds aging 96 hours and 192 hours as not aged. False

Positives (FP) represented erroneous classifications where the model

incorrectly labels some seeds aging 96 hours or 192 hours as not aged.

False Negatives (FN) denoted situations where the model incorrectly

classifies some not aged seeds as aging 96 hours or 192 hours. The same

definitions applied to the cases of seeds aging 96 hours and 192 hours

as well. The parameters for LR, XGBoost and SVM were described in

2.3.1, 2.3.2 and 2.3.3, respectively. The number of CNN training epochs

was 2000, we selected the best round of results as a showcase. The

models started fitting around 1500 rounds.

The categorization of rice seed vigor among the four distinct

types using the LR model resulted in suboptimal outcomes, with an

accuracy rate of approximately 65.00%. Notably, LR demonstrated

better performance in classifying Yongyou1540 rice seed vigor,

achieving a commendable test set accuracy of 72.33%. However,

LR’s performance was inferior to that of SVM and CNN. This could

be attributed to LR being a linear model, which may not fit the data

well for complex nonlinear relationships, such as one-dimensional

spectral data. Furthermore, the small sample size may have also

contributed to the lower performance.

The experimental results indicated that the performance of XGBoost

was rather disappointing, as it exhibited the poorest overall performance

among all classifiers. The accuracy on both the validation and test sets

remained around 60.00%, with the occurrence of overfitting.

When using SVM and CNN models for vigor detection, there

were slight instances of overfitting in the models. This phenomenon

could potentially be linked to the relatively limited quantity of

training samples available. Both SVM and CNN consistently

achieved an accuracy rate surpassing 90% when applied to the

training dataset. Notably, the Yongyou12 rice seed variety

demonstrated the most congruent accuracy levels between SVM

and CNN, exhibiting remarkable stability across both classifiers.

SVM and CNN exhibited remarkable proficiency when employed

to categorize Yongyou1540 rice seeds. The classification accuracy

across the training, validation, and test datasets demonstrated notable

consistency, with CNN achieving the highest accuracy among the

four seed types on the test set, reaching an impressive 90.33%.

However, it is worth noting that the classifier’s performance was

comparatively less impressive when dealing with Suxiangjing100 and

Longjingyou1212, falling short of the performance demonstrated on

Yongyou12 and Yongyou1540. Nevertheless, the overall classification

accuracy remained commendable.

In summary, CNN consistently outperformed SVM in terms of

classification accuracy, owing to the convolution operation’s ability

to extract more intricate feature information from the abundant

spectral data. The architectural framework of the CNN model

employed is depicted in Figure 1, and detailed classification

accuracy metrics can be found in Table 3.

3.3 Results of fine-tuning

In order to verify the feasibility of transfer learning in rice seed

vigor detection, this study used the most common fine-tuning in the
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field of transfer learning to adjust the pre-training model to adapt it

to the vigor detection of other rice seeds. Our main idea was to

design 4 different CNNmodels for specific rice seeds, and then fine-

tuned the CNN models, frozen the layer before the fully connected

layer, adjusted the fully connected layer, and transferred to the vigor

identification of the other three rice seeds. The feasibility of fine-

tuning was verified by taking the accuracy rate as the criterion, and

the specific experimental results are shown in Table 4.

From Table 4, it can be concluded that the overfitting

phenomenon of each model after fine-tuning had improved

compared with before fine-tuning. The CNN model fine-tuning

of Longjingyou1212 performs best when used for other rice seed

vigor and was closest to the accuracy of each CNN model before

fine-tuning. When it was transferred to the detection of Yongyou12

rice seed vigor, the accuracy rate was improved by 2.33% compared

with the original model, reaching 90.00%. When the CNN model

fine-tuning of Yongyou12 and Yongyou1540 was used for other rice

seed vigor detection, the performance was average, but the accuracy

was similar to that before fine-tuning. The CNN model fine-tuning

results of Suxiangjing100 were poor and there was a large negative

transfer (Wu et al., 2021), which may be due to the fact that

compared with other rice varieties, the spectrum of Suxiangjing100

had its own unique characteristics, that was, the difference between

the source domain data and the target domain data was large,

resulting in poor results.

The results in Table 4 shows that the overall fine-tuning can

meet the requirements of model generalization, but there was a

certain gap between the accuracy rate and the accuracy of each

model before fine-tuning, and this gap was most obvious in the

micro-sculpting of Suxiangjing100. When there were large

differences in the data sets, fine-tuning may not achieve the

desired effect. Therefore, we needed to find a more effective

transfer learning strategy.
3.4 Results of MixStyle

MixStyle is designed to normalize CNN training by perturbing

the style information of the training instance in the source domain.

It is designed to be plugged between CNN layers as a plug-and-play

module. The essence of the MixStyle approach lies in utilizing a

CNN as a feature extractor. The process begins by passing the input

sample through the feature extractor, which generates a specific

feature map. Next, multiple style samples are inputted into the

feature extractor to generate corresponding style feature maps.

During the training process, a hybrid style feature map is created

for classification prediction. This is achieved through linear

interpolation and synthesis of the style feature maps. This

blending of style features enables the model to capture a diverse

range of styles and improve its ability to classify different samples

effectively. The potential superiority of MixStyle arises from its

ability to synthesize “new” styles, thereby regularizing the network

to become more resilient to domain shifts. When using MixStyle for

transfer learning, the Aadm optimizer was used, and the learning

rate of all models was set between [0.0005, 0.000001]. To mitigate
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overfitting, L2 regularization was used, set to 0.0005. The training

process consisted of 20,000 epochs, and the best result was selected.

MixStyle involves mixing feature statistics for two instances

with random convex weights to simulate the new style. A reference

batch is generated by swapping the locations of instances from

different domains and applying a shuffle operation. In this study,

the training sets of two types of rice seeds were mixed, and the vigor
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prediction was carried out with one of the rice seeds as the target

domain. We added the MixStyle layer after the last convolutional

layer. The model structure used is shown in Figure 1. Taking the

transfer of Yongyou12 rice seed knowledge to Yongyou1540 as an

example, Yongyou12 rice seed data is the source domain and

Yongyou1540 rice seed data is the target domain. During model

training, the Yongyou12 rice seed training set data and the
TABLE 4 The results of detection of seeds vigor using fine-tuning.

Variety Fine-tuning to
Accuracy (%) Comparison with Table 3 (%)

Training Validation Test Training Validation Test

Yongyou12 Yongyou1540 96.58 87.67 87.67 -3.34 -1.00 -2.66

Suxiangjing100 95.32 80.57 82.04 -4.06 -3.18 -4.23

Longjingyou1212 84.25 80.60 82.33 -10.92 -1.40 -2.34

Yongyou1540 Yongyou12 97.08 82.67 87.33 +2.83 -4.33 -0.34

Suxiangjing100 95.50 77.39 81.28 -3.88 -6.36 -4.99

Longjingyou1212 95.42 75.33 77.00 +0.25 -6.67 -7.67

Suxiangjing100 Yongyou12 94.92 76.67 82.33 +0.34 -10.33 -5.00

Yongyou1540 95.00 83.67 83.00 -4.92 -5.00 -7.33

Longjingyou1212 97.17 71.33 73.33 +2.00 -10.67 -11.34

Longjingyou1212 Yongyou12 92.50 86.67 90.00 -1.75 -0.33 +2.33

Yongyou1540 92.58 89.67 89.33 -7.34 +1.00 -1.00

Suxiangjing100 90.56 84.10 85.56 -8.82 +0.35 -0.71
TABLE 3 The results of detection of seeds vigor.

Variety Model
Accuracy(%)

Training Validation Test

Yongyou12 LR 69.92 65.00 65.67

XGBoost 93.08 61.00 63.00

SVC 94.58 87.00 87.33

CNN 94.25 87.00 87.67

Yongyou1540 LR 71.67 70.67 72.33

XGBoost 94.25 60.67 64.33

SVC 96.33 91.33 89.67

CNN 99.92 88.67 90.33

Suxiangjing100 LR 64.99 62.30 60.65

XGBoost 95.74 60.12 60.84

SVC 91.09 84.10 83.45

CNN 99.38 83.75 86.27

Longjingyou1212 LR 63.33 63.00 64.67

XGBoost 93.17 59.00 61.00

SVC 90.17 83.00 81.67

CNN 95.17 82.00 84.67
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Yongyou1540 rice seed training set data were extracted by the

Figure 1A model, then mixed by MixStyle, and finally the rice seeds

in the source domain were predicted. After the model training is

completed, the target domain seed is used as the validation set and

the test set to test the model performance, that is, the model is

applied to the prediction of the target domain Yongyou1540 rice

seed vigor.

As can be seen from Table 5, after MixStyle mixing, the

performance of each model in the training set and the validation

set was better, and the accuracy rate was generally higher than

80.00%. Among them, when the Yongyou12 rice seed data was used

as the source domain, the performance of the model was the best.

When mixed with other varieties, the accuracy rate was 86.00%,

84.07% and 81.33% on the test set, respectively. When Yongyou12

knowledge transfer was used to predict Yongyou1540 rice seed

vigor, the model had the best performance, with 94.47%, 90.00%

and 86.00% accuracy on the training set, validation set and test set,

respectively, and the model performance was also better when

Longjingyou1212 was used as the source domain for transfer. In

conclusion, MixStyle can significantly improve the generalization

performance of CNN in detecting rice seed vigor.

3.5 Model visualization

To demonstrate the model training process, we took the

example of Yongyou1540 rice seeds. In Figures S1 (in

Supplementary Materials), we showcased the variations in loss

and accuracy during the training process of the original CNN

model, fine-tuned CNN model, and the CNN model with

MixStyle incorporated. These figures clearly depict a consistent

decrease in loss and a progressive increase in accuracy, ultimately

converging to indicate a good fit.

Figure 5 shows the visualization of each band when using CNN

classification after transferring Yongyou12 to Yongyou1540 using
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Fine-tuning and MixStyle, with three top-to-bottom Grad-CAM++

plots of (A) not aged, (B) aging 96h, and (C) aging 192h. Among

them, the curve represents the weight of each spectral wavelength

on the model, and the higher the weight of the wavelength,

the greater the contribution to the model classification result.

The shaded area with the same color as the curve represents the

corresponding standard deviation of the weight value for each

wavelength. The weight values and standard deviations of each

wavelength of the CNN using Fine-tuning and MixStyle were

compared to the weight values and standard deviations of each

wavelength of the original CNN. It could be seen from the figure

that for the vigor classification of Yongyou12 knowledge transferred

for Yongyou1540 rice seeds, the weight distribution of CNNs after

transfer was similar to that of the original CNN classification, and

the wavelengths with larger weights were mainly distributed in the

1100-1200 nm and 1400-1450 nm ranges. Compared with the

weight distribution of CNNs after fine-tuning, the weight

distribution of CNNs after knowledge transfer through MixStyle

was more similar to that of the original CNNs, and the weights

assigned by CNNs after Fine-tuning were higher in the wavelength

range of 1450-1550 nm, which was far from the region where the

original CNN assigns weights. Figures S2, S3 shows the knowledge

transfer of Yongyou12 rice seeds for Suxiangjing100 and

Longjingyou1212 rice seed vigor classification, respectively, with

weight distribution similar to Figure 5, with higher weighted regions

concentrated in the 1100-1200 nm and 1400-1450 nm intervals.

Figures S4–S6 is the CNN visualization result of Yongyou1540

knowledge transfer for the vigor classification of other rice varieties,

and it can be seen that the weight assigned in the wavelength range

of 1400-1450 nm was higher, and the weight distribution of CNN

after MixStyle knowledge transfer was closer to the weight

distribution of the Fine-tuning. The wavelengths with higher

weights in were also mainly distributed in the 1100-1200 nm and

1400-1450 nm ranges, and the transfer ability of MixStlye was
TABLE 5 The results of detection of seeds vigor using MixStyle.

Variety Mixstyle with
Accuracy (%) Comparison with Table 3 (%)

Training Validation Test Training Validation Test

Yongyou12 Yongyou1540 94.50 90.00 86.00 0.22 1.33 -4.33

Suxiangjing100 89.75 80.33 84.00 -9.63 -3.42 -2.27

Longjingyou1212 96.50 85.00 81.33 1.33 3.00 -3.34

Yongyou1540 Yongyou12 94.92 82.33 83.33 0.67 -4.67 -4.34

Suxiangjing100 89.42 82.33 77.33 -9.96 -1.42 -8.94

Longjingyou1212 91.58 79.67 78.33 -3.59 -2.33 -6.34

Suxiangjing100 Yongyou12 86.33 80.67 79.67 -7.92 -6.33 -8.00

Yongyou1540 84.25 82.00 83.33 -15.67 -6.67 -7.00

Longjingyou1212 88.75 79.33 76.00 -6.42 -2.67 -8.67

Longjingyou1212 Yongyou12 93.25 81.33 80.67 -1.00 -5.67 -7.00

Yongyou1540 94.67 84.67 83.67 -5.25 -4.00 -6.66

Suxiangjing100 93.75 80.33 79.33 -5.63 -3.42 -6.94
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similar to Fine-tuning from the wavelength weight distribution in

Figures S7–S9. The weight distribution of CNN after knowledge

transfer of Longjingyou1212 is shown in Figures S10–S12, the

original CNN assigned higher weights in the wavelength range of

1100-1150 nm, but the CNNs after transfer learning did not assign

higher weights in this interval. In the remaining interval, the

weights assigned by the transfer-learned CNN and the original

CNN were extremely similar, so when Longjingyou1212 was used

for the vigor classification of Yongyou12, Yongyou1540 and
Frontiers in Plant Science 11
Suxiangjing100, the classification accuracy was also higher in

all cases.
4 Discussion

The identification of rice seed vigor plays a crucial role in

improving germination rates, increasing yields, reducing pests

and diseases, and optimizing resource utilization. In this study,

near-infrared hyperspectral imaging was utilized to detect the

vigor of artificially aged rice seeds. Furthermore, transfer learning

was employed to transfer knowledge and enhance the model’s

generalization ability. The findings indicate that NIR-HIS is an

effective method for detecting rice seed vigor. Moreover,

employing transfer learning significantly improves the model’s

ability to generalize. Previous research mainly focused on training

models from scratch (Jin et al., 2022a; Wang et al., 2022), which is

time-consuming and labor-intensive, especially for deep models

that require a substantial number of samples. In this study, we

adopted traditional machine learning methods and developed

custom CNN to discriminate rice seed vigor. Transfer learning

was then utilized to transfer knowledge to pre-trained models,

enabling rice seed vigor detection across different varieties. While

many scholars have explored transfer learning (Zhen et al., 2017;

Cetinic et al., 2018; Wu et al., 2021), their approaches were limited

to basic Fine-tuning, which often yielded unsatisfactory results. In

contrast, our study not only employed Fine-tuning but also

utilized the MixStyle transfer strategy to transfer knowledge

between different rice seeds. The results demonstrate that the

deep model outperformed the traditional machine learning model

in terms of classification performance, highlighting the superior

generalization ability offered by the deep transfer strategy. In the

future, we plan to include more rice varieties in the study, with

more generalized models adapted to more rice variety vigor

detection. In addition, crop pest and disease data are also

difficult to obtain, so in the future, we will also apply near-

infrared hyperspectral imaging technology and transfer learning

to pest detection to detect pests and diseases early and take

corresponding control measures.
5 Conclusion

In this study, the potential of near-infrared hyperspectral

imaging in seed vigor detection was discussed, and remarkable

results were achieved by combining transfer learning methods, and

the CNN model of Yongyou12 classifies the vigor of Yongyou1540,

Suxiangjing100 and Longjingyou1212 through MixStyle transfer

knowledge, and the accuracy reaches 90.00%, 80.33% and 85.00%,

respectively. NIR hyperspectral imaging is a non-invasive means to

capture the absorption and reflection properties of rice seeds at

different wavelengths, providing useful information about the

internal chemical composition of the seeds. Transfer learning

effectively improves the generalization performance of the model

by sharing similar spectral characteristics between different seed
B

C

A

FIGURE 5

Grad-CAM++ of each vigor gradient of CNN: Yongyou12 transfer to
Yongyou1540: (A) the weights of not aged; (B) the weights of aging
96h; (C) the weights of aging 192h.
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varieties, thereby improving the performance and robustness of the

model. In the future, we plan to apply near-infrared hyperspectral

imaging techniques and transfer learning to the field of crop

diseases and pests. This study provides a viable approach to

detect rice seed vigor and enhance the generalization ability of the

model in situations with limited sample sizes. It also reduces the

cost of seed testing, thereby contributing to the promotion of

sustainability in agricultural products. These advancements hold

positive and long-term implications for the agricultural sector and

food production.
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