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Optimizing window size and
directional parameters of
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UAVs multispectral imagery
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Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences,
Harbin, Heilongjiang, China, 4School of Management, Heilongjiang University of Science and
Technology, Harbin, Heilongjiang, China, 5College of Life Science, Langfang Normal University,
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Aboveground biomass (AGB) is a crucial physiological parameter for monitoring

crop growth, assessing nutrient status, and predicting yield. Texture features

(TFs) derived from remote sensing images have been proven to be crucial for

estimating crops AGB, which can effectively address the issue of low accuracy in

AGB estimation solely based on spectral information. TFs exhibit sensitivity to the

size of the moving window and directional parameters, resulting in a substantial

impact on AGB estimation. However, few studies systematically assessed the

effects of moving window and directional parameters for TFs extraction on rice

AGB estimation. To this end, this study used Unmanned aerial vehicles (UAVs) to

acquire multispectral imagery during crucial growth stages of rice and evaluated

the performance of TFs derived with different grey level co-occurrence matrix

(GLCM) parameters by random forest (RF) regression model. Meanwhile, we

analyzed the importance of TFs under the optimal parameter settings. The

results indicated that: (1) the appropriate window size for extracting TFs varies

with the growth stages of rice plant, wherein a small-scale window

demonstrates advantages during the early growth stages, while the opposite

holds during the later growth stages; (2) TFs derived from 45° direction represent

the optimal choice for estimating rice AGB. During the four crucial growth

stages, this selection improved performance in AGB estimation with R2 = 0.76 to

0.83 and rRMSE = 13.62% to 21.33%. Furthermore, the estimation accuracy for

the entire growth season is R2 =0.84 and rRMSE =21.07%. However, there is no

consensus regarding the selection of the worst TFs computation direction; (3)

Correlation (Cor), Mean, and Homogeneity (Hom) from the first principal

component image reflecting internal information of rice plant and Contrast

(Con), Dissimilarity (Dis), and Second Moment (SM) from the second principal

component image expressing edge texture are more important to estimate rice

AGB among the whole growth stages; and (4) Considering the optimal

parameters, the accuracy of texture-based AGB estimation slightly
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Abbreviations: AGB, aboveground biomass; UAVs, unmann

TFs, texture features; GLCM, gray-level co-occurrence matrix;

R2, coefficient of determination; RMSE, root mean squared err

root mean squared error; PCA, principal component analysis;

component of PCA; PC2, second principal component of PC

D3, 90°; D4, 135°; ND, non-directional; P4M, DJI Phantom

blue; G, green; R, red; RE, red edge; NIR, near-infrared; LT

Booting; HtF, Heading to Flowering; EF, Early Filling; M

Variance; Hom, Homogeneity; Con, Contrast; Dis, Dissimila

SM, Second Moment; Cor, Correlation.
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outperforms the estimation accuracy based on spectral reflectance alone. In

summary, the present study can help researchers confident use of GLCM-based

TFs to enhance the estimation accuracy of physiological and biochemical

parameters of crops.
KEYWORDS

unmanned aerial vehicles (UAVs), aboveground biomass (AGB), multispectral
imagery, texture features (TFs), grey level co-occurrence matrix (GLCM), rice
1 Introduction

Rice (Oryza sativa) serves as a vital staple crop, nourishing

almost half of the global population (Seck et al., 2012). In China, as

the largest rice producer, consumer, and importer globally, rice

constitutes a staple food for approximately 65% of the population

(Peng et al., 2009). Accurate and timely prediction of rice yield

holds significance in stabilizing rice prices, enhancing global food

security, and enabling decision-makers to formulate timely

strategies for rice import and export (Spiertz and Ewert, 2009;

Cao et al., 2021). Aboveground biomass (AGB), the total dry matter

per unit area of land during a specific period, plays a crucial role in

understanding crop growth and development. AGB is an essential

agronomic parameter to describe crop growth and nutritional

status, making it instrumental in predicting crop yield (Li et al.,

2020; Li et al., 2022). Thus, rapid and non-destructive assessment of

the spatiotemporal dynamics of crop AGB is necessary for

formulation and implementation of decision management and

yield prediction in the field.

Although the field destructive sampling method is highly

accurate, the inherent limitations in terms of time consumption

and inefficiency render them inadequate for the timely, rapid, and

large-scale requirements of modern agricultural monitoring (Fu

et al., 2021). In contrast, the rapid development of remote sensing

has presented new opportunities for non-destructive monitoring of

AGB information in crop fields (Lu et al., 2019). Multispectral or

hyperspectral images acquired from satellites or near-ground

platforms offer a rapid means of monitoring AGB in dynamic

spatiotemporal contexts. These platforms have been widely used to

monitor various crop information, including wheat (Bao et al.,
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2009; Fu et al., 2014; Teng et al., 2015), rice (Gnyp et al., 2014;

Cheng et al., 2017; Alebele et al., 2020), corn (Liao et al., 2019;

Naidoo et al., 2021), and rapeseed (Mercier et al., 2020a; Mercier

et al., 2020b). However, the continuous and prolonged monitoring

of AGB has limitations due to the unavailability of satellite data

during critical growth stages caused by weather variability and

longer data return cycles (Gan et al., 2023). Additionally, the

relatively low spatial resolution of satellite data hampers the

acquisition of precise details about the crop canopy (Jin et al.,

2020). On the contrary, near-ground platforms, which emphasize

plant-to-sensor and sensor-to-plant models, provide certain

advantages, such as continuous monitoring and payload

availability. However, the limitations in terms of monitoring

throughput and data acquisition scale impede their ability to

capture crop AGB information at large scales (Lakhiar et al.,

2018; Qiu et al., 2018; Jangra et al., 2021). The Unmanned aerial

vehicles (UAVs) platform is the latest hot topic for research on crop

phenotypes. It can be equipped with multi-source sensors to acquire

multi-source remote sensing information, making it an effective

supplement to both satellite and near-ground remote sensing

platforms. UAVs provide high-precision data support and

efficient monitoring capabilities, facilitating non-destructive

monitoring of crop AGB (Maes and Steppe, 2019; Mukherjee

et al., 2019).

Extensive research has been conducted utilizing spectral

information from UAVs imagery to monitor crop AGB, and it

has achieved acceptable monitoring accuracy (Han et al., 2019;

Maimaitijiang et al., 2019; Wang F. et al., 2022; Wang et al., 2023).

However, spectral information is susceptible to interference from

water-soil (and weed) background noise during the early stages,

while the dense canopy coverage at the later stages can result in

spectral saturation (Li et al., 2022; Wang F. et al., 2022; Wang Q.

et al., 2022; Wang W. et al., 2022; Zhu et al., 2023). These factors

impose constraints on further advancements in monitoring

accuracy. To address the issue of low accuracy in monitoring

AGB based on spectral information, an increasing number of

researchers are inclined toward utilizing texture features (TFs) to

improve the precision of crop AGB monitoring (Liu Y. et al., 2019;

Yue et al., 2019; Wang F. et al., 2022; Xu T. et al., 2022). TFs describe

the frequency of variations in attribute values among adjacent pixel

pairs within a specific window (Liu Y. et al., 2019; Yue et al., 2019;
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Zhang et al., 2021). They can provide complementary information

regarding the spatial arrangement and patterns of crop canopy,

which helps overcome the limitations of spectral information (Liu

Y. et al., 2019; Zhang et al., 2021). The color differences in crop

leaves caused by factors such as crop varieties and soil nutrients can

be captured by TFs (Zhang et al., 2021; Wang F. et al., 2022).

Furthermore, due to crops undergoing growth and development,

changes in canopy structure also generate texture variations. For

instance, the emergence of rice panicles from leaf sheaths, the

flowering of spikelets, the gradual drooping of mature panicles,

and variations in the proportion between rice plant and background

or shadows all contribute to subtle changes in canopy morphology.

These subtle variations in canopy structure inevitably result in

alterations in TFs (Yue et al., 2019; Xu L. et al., 2022).

Incorporating TFs into the analysis provides a robust means of

capturing subtle variations and improving the accuracy of crop

AGB monitoring in agricultural remote sensing studies. Many

studies utilize the gray-level co-occurrence matrix (GLCM) to

extract TFs from UAVs images (Lu, 2005; Dube and Mutanga,

2015; Liu et al., 2018; Liang et al., 2022; Xu L. et al., 2022). By

incorporating GLCM-based TFs into AGB monitoring, researchers

have improved the accuracy of forest and crop biomass estimation.

For example, Kelsey and Neff (Kelsey and Neff, 2014) discovered

that forest AGB estimation models incorporating TFs exhibited

greater accuracy compared to models relying solely on spectral

information. Zheng et al. (2019) demonstrated that the

incorporation of TFs can significantly enhance the monitoring

accuracy of rice AGB, particularly during the mid to late stages of

the rice growth season.

Existing research has demonstrated that window size and

direction texture parameters are highly sensitive to texture

metrics when extracting TFs using the GLCM (Zheng et al., 2020;

Liang et al., 2022; Zhou M. et al., 2023). Throughout the entire

growth season, the spatiotemporal fluctuations in the rice canopy

coverage determine the requisite selection of appropriate window

size for quantifying texture disparities. Furthermore, as rice is a

row-cropped crop with an apparent spatial direction, the directional

selection may impinge upon the monitoring performance of TFs in

assessing AGB. However, previous studies have primarily relied on

default texture parameters setting (such as a 3x3 window size and

diagonal direction at 45°) (Zheng et al., 2018; Li et al., 2019; Zheng

et al., 2019; Xu L. et al., 2022; Zhang D. et al., 2022; Zhang Y. et al.,

2022;) or a directionless approach (by averaging multiple

directional TFs to eliminate the directional effect) (Wang F. et al.,

2021; Liu et al., 2022a; Xu T. et al., 2022) when extracting GLCM-

based TFs. A quantitative analysis of the impact of TFs derived from

different window sizes and direction parameters for crop AGB

estimation has been omitted from these studies.

Fortunately, a limited amount of research has recently emerged

that focuses on the impact of texture parameters on the accuracy of

AGB monitoring. For example, Fu et al. (2021) and Yue et al. (2019)

had demonstrated that the impact of window size and directional

parameters on winter wheat AGB estimation was relatively minor.

Zheng et al. (2020) discovered a conspicuous directional effect in

rice texture information, with the direction parallel to the planting
Frontiers in Plant Science 03
rows (i.e., the 0° direction of GLCM) being the optimal direction for

monitoring rice nitrogen content. For monitoring potato AGB,

contrasting conclusions had been drawn by Liu et al. (2022a) and

Luo et al. (2022). Liu et al. considered directional parameters could

be negligible for estimating AGB, whereas Luo et al. considered the

45° direction optimal for texture extraction. Although some studies

have confirmed the sensitivity of crop AGB to TFs related to

window size and directional parameters, further research in this

area is still lacking in comprehensiveness. Given the wide use of

GLCM-based TFs in crop growth monitoring, there is an urgent

need to develop a deeper understanding of how texture parameters

impact rice AGB monitoring. To address this, our study utilizes

Random Forest (RF) regression model to investigate the influence of

GLCM texture parameters on the monitoring accuracy of rice AGB

during critical growth stages. The specific objectives of our study are

as follows: 1) to evaluate how texture window size affects the

accuracy of rice AGB monitoring and determine the suitable

window size to estimate AGB; 2) to assess the impact of the

directional parameter on the accuracy of rice AGB monitoring

and identify the optimal direction for texture extraction; and 3) to

explore the significance of TFs for rice AGB estimation and

interaction mechanistic.
2 Materials and methods

2.1 Experimental design

A field experiment was conducted at the modern agricultural

research institute, Anhui Science and Technology University

located in Xiaogang Village, Fengyang County, Anhui Province,

China (117°42’ E, 32°16’ N) (Figure 1A), where the climate belongs

to a transitional pattern from the northern subtropical to the

temperate zone. The average annual rainfall in 2020 was 1179.2

mm, and the average annual temperature was 15.5°C (Station No.

58222, Fengyang County Meteorological Station). The experiment

design involved four N fertilizer treatments (N0: 0 kg/ha; N1: 100

kg/ha; N2: 200 kg/ha, and N3: 300 kg/ha) and three rice varieties

(V1: RunzhuXiangzhan, V2: RunzhuYinzhao, and V3:

Hongxiangnuo). A randomized complete block design was

adopted for the experiment field, with N fertilizer treatments as

the main plot and rice varieties as the split plot. There were three

replications, leading to a total of 36 subplots, measuring 2 m × 8 m

each, and the double-layer impermeable plastic film was used to

isolate different nitrogen fertilizer treatments plot (Figures 1B, C).

The experiment started in May 2020 with land preparation and

delineation of plots, followed by basal fertilizer application and

irrigation. Seeding took place on May 24th, and transplanting was

conducted on June 23rd. The rice seedlings were manually inserted

at a spacing of 30 cm between rows and 15 cm between plants, with

one seedling per hill (including 1-2 tillers). In mid-July, an

additional application of topdressing fertilizer was administered

during the tillering stage. Subsequently, in early August, the plants

entered the heading and panicles initiation stage, and on August

23rd, another additional fertilization was applied. The early grain-
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filling stage began in early September, and harvest was conducted

on October 2nd. Phosphorus fertilizer (CaP2H4O8, with available

P2O5 content of 12% and a pure phosphorus equivalent of 90 kg/ha)

and potassium fertilizer (KCl, with available K2O content of 60%

and a pure potassium equivalent of 135 kg/ha) were applied as basal

fertilizers. Nitrogen fertilizer (urea/CH4N2O, with an available

nitrogen content of 46%) was applied in three stages, with a ratio

of 4:3:3 for basal, tillering, and panicle fertilizer. Field management

followed local high-yield cultivation techniques, including the

application of herbicides and pesticides as general practices in

this area.
2.2 Main workflow

Figure 2 shows the flowchart describing the procedures for

estimating rice AGB from UAVs-based multispectral imagery.

This process consisted of five main aspects: (1) acquiring UAVs

remote sensing images and ground-truth AGB measurements;

(2) preprocessing the acquired data in step I; (3) extracting TFs

using various window sizes and directional parameters

combination; (4) Random Forest (RF) regression model was

built based on TFs calculated from step III for rice AGB

estimation, and analyzed the significance of the TFs; (5)

Estimating results were used to map AGB during the whole

growth season.
Frontiers in Plant Science 04
2.3 Data acquisition and preprocessing

2.3.1 UAVs data acquisition and preprocessing
The DJI Phantom 4 Multispectral RTK (P4M) UAVs (DJI,

Shenzhen, Guangdong, China) was used to acquire multispectral

images at four growth stages, including the late tillering stage (LT:

25/07/2020), booting stage (B: 23/08/2020), heading to flowering stage

(HtF: 31/08/2020), and early filling stage (EF: 09/09/2020) (Table 1).

The P4M equipped with five monochrome sensors are used for

multispectral images (blue (450nm±16nm, B), green (560nm±16nm,

G), red (650nm±16nm, R), red edge (730nm±16nm, RE), and near-

infrared (840nm±26nm, NIR) image). Among them, the RE and the

NIR are the important selection of crop parameter inversion (Cui and

Kerekes, 2018a; Liu J. et al., 2022).Themultispectral sensors record each

monochrome for 2.12-megapixel with a 40-mm focal length and 62.7-

degree field of view. The multispectral image was geotagged

automatically by its built-in multi-frequency high-precision RTK

GNSS positioning system which provides about 8 mm and 15 mm

accuracy in the vertical and horizontal directions, respectively.

Supplementary Table 1 describes the technical specifications of

the P4M.

Flight campaigns were planned to utilize DJI GS Pro software,

which allows autonomous path points to be defined by the user in

all flight campaigns. All campaigns were conducted on cloud-free

days from 10:00–12:00 A.M. (local time) and were planned at a

flight altitude of 30 m and flight speed of 3 m/s with a forward
FIGURE 1

Location of study area (A), field experimental design (B, C), and radiometric correction target (D).
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overlap of 90% and a side overlap of 85%. The flight campaigns were

kept consistent throughout the growth season to ensure consistency

in data collection.

PIX4Dmapper software (Pix4D SA, Lausanne, Switzerland,

https://www.pix4d.com/) was used to generate orthophoto images

from four critical growth stages (Wang F. et al., 2022). Images were

aligned based on key points, then mosaicked and generated dense

point clouds. To build high-density point clouds, “Half image size”

for the image scale option and “Optimal” for the point density

option were selected. Subsequently, a textured mesh was generated

based on the constructed point cloud, resulting in the production of

the Digital Surface Model (DSM) and Digital Orthophoto

Image (DOM).
Frontiers in Plant Science 05
Due to the absence of spectral response function (SRF) of

camera, it is not possible to quantify the influence of SRF (Cui

and Kerekes, 2018b). Hence, we employ empirical linear model

(ELM) for radiometric correction purposes (Di Gennaro et al., 2022;

Liu J. et al., 2022). Four standard diffuse panels (Figure 1D) were

placed on one side of the study area within the UAVs field of view

(Figure 1C). The reflectance of each diffuse panel was measured

using the ASD FieldSpec HandHeld2 portable spectrometer

(Analytical Spectral Devices, Boulder, Colorado, USA). The digital

number (DN) values of the UAVs images were converted into

reflectance values using ELM to eliminate radiometric distortions

caused by variations in lighting conditions during different stages.

The ELM is conducted through the following Equation (1).
FIGURE 2

Flowchart of this study.
frontiersin.org

https://www.pix4d.com/
https://doi.org/10.3389/fpls.2023.1284235
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1284235
Ri = DNi � Gaini + Offseti (i = 1, 2,…, 5) (1)

where, Ri and DNi respectively represent the reflectance values

and original DN values corresponding to the i th band in the

multispectral image. Gaini and Offseti respectively represent the

conversion coefficient corresponding to the ith band, which are

calculated using the ordinary least squares (OLS) method.

In order to conduct analysis and modeling at the plot level, the

unique shapefiles, which removed inward a row of rice plant, were

created manually using ArcGIS(10.2 version, Environmental

Systems Research Institute, Inc., Redlands, CA, USA) (Figure 1C).

This approach was implemented to account for the vigorous growth

of rice plant at the margin, which can be influenced by incomplete

spatial constraints or competition with contiguous rows. Failing to

mitigate such boundary effects could lead to an overestimation of

spectral reflectance within the plot.

2.3.2 AGB measurement
Following the collection of UAVs data, we randomly sampled 3

hill plants from each plot by cutting the stems approximately 2 cm

above the soil surface and the stems, leaves, and panicles would be

separated for AGB measurements. The separated samples were then

oven-dried at 105°C for 30 min and then at 75°C until weights

stabilized. Dry samples were weighed and summed to obtain the

aboveground dry biomass. Finally, 144 AGB measurements were

collected in total (four growth stages) and converted into a unified

value of kg/ha based on the planting row and plant spacing.
2.4 Feature extraction

Texture analysis methods can be categorized into four types:

statistical method, structural method, model-based method, and

transformation-based method (Haralick et al., 1973; Hall-Beyer,

2007; Hall-Beyer, 2017). The most commonly used method is based

on the Gray-Level Co-occurrence Matrix (GLCM), which was first

introduced by Haralick in 1973 to reveal the variation properties of

the spatial distribution of grayscale values in an image at a certain

distance (d) and specific angle (q) (Pacifici et al., 2009). GLCM

ensures non-deformation, rotation-invariant multi-scale features,

and low computational complexity. In this study, eight TFs were

selected: Mean (Mean), Variance (Var), Homogeneity (Hom),

Contrast (Con), Dissimilarity (Dis), Entropy (Ent), Second

Moment (SM), and Correlation (Cor) (Table 2).
Frontiers in Plant Science 06
The GLCM requires users to define the window size, direction,

and displacement of the moving window. In this study, the

displacement was set to 1 as it is the most commonly used setting

(Liu Y. et al., 2019; Zheng et al., 2019; Wang Q. et al., 2022; Xu L.

et al., 2022). To determine and select the most optimal texture

parameters, TFs for all multispectral images were calculated using

three window sizes (3 × 3, 7 × 7, and 13 × 13 pixels, denoted as S, M,

and L, respectively) and four directions (0°, 45°, 90°, and 135°,

denoted as D1, D2, D3, and D4, respectively). The average TFs

values of these four directions were then obtained to achieve

rotation invariance, referred to as the non-directional (ND)

texture metrics. Figure 3 depicts more details on the selection of

window sizes and directions for TFs calculation.

All TFs were calculated from the component images after

principal component analysis (PCA). On one hand, this choice

was made to reduce redundancy among the multispectral data; on

the other hand, to minimize the computational workload during

GLCM construction (Liu C. et al., 2019). In this study, the principal

components with a cumulative contribution rate exceeding 90%

were selected (Supplementary Figure 1), specifically the first two
TABLE 2 Texture features of multispectral imagery (Hall-Beyer, 2007;
Pacifici et al., 2009; Hall-Beyer, 2017).

Texture
features

Calculation equations Features
description

Mean
(Mean) Mean =o

Ng

i=1
o
Ng

j=1

i� P(i, j)
The mean value in the
GLCM window.

Variance
(Var) Var =o

Ng

i=1
o
Ng

j=1

(i − u)2 � P(i, j)
The variance in the
GLCM window.

Homogeneity
(Hom) Hom =o

Ng

i=1
o
Ng

j=1

1

1 + (i − j)2
� P(i, j)

The homogeneity of grey
level
in the GLCM window.

Contrast
(Con) Con =o

Ng

i=1
o
Ng

j=1

(i − j)2 � P(i, j)

The clarity of texture in the
GLCM window, as opposed
to
HOM.

Dissimilarity
(Dis) Dis =o

Ng

i=1
o
Ng

j=1

i − jj j � P(i, j)

The similarity of the pixels
in
the GLCM window, similar
to
CON.

Entropy
(Ent) Ent = �o

Ng

i=1
o
Ng

j=1

P(i, j)� log P(i, j)½ �

The diversity of the pixels
in
the GLCM window,
proportional to the
complexity of the
image texture.

Second
Moment
(SM)

SM =o
Ng

i=1
o
Ng

j=1

P(i, j)½ �2
The uniformity of greyscale
in
the GLCM window.

Correlation
(Cor)

Cor =
o
Ng

i=1
o
Ng

j=1

(i, j)� P(i, j) − uiuj

sisj

The linear dependency of
greyscale on those of
neighboring pixels in the
GLCM window.
P(i,j) represents the probability of each pixel pair (i,j) value and i, j are the gray tones in the windows,
which are also the coordinates of the co-occurrence matrix space; Ng represents the number of
distinct grey levels in the quantized image, which has a gray value range of the original image; m and
s represents the mean and standard deviation of P(i,j), respectively.
TABLE 1 The flight details during the whole growth season.

Dates Growth stages Height(m)
Spatial

resolution
(cm*cm)

07/25/20 Late Tillering (LT)

30 1.70

08/23/20 Booting (B)

08/31/20
Heading to

Flowering (HtF)

09/09/20 Early Filling (EF)
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principal components from the PCA analysis of the multispectral

imagery. After calculation, a total of 240 [2 (principal components

of PCA) × 8 (texture features) × 3 (window sizes) × 5 (directions) =

240] TFs were generated for each growth stage.
2.5 AGB estimation model

2.5.1 Random Forest model
Random Forest (RF) is an ensemble learning algorithm

proposed by Breiman and is based on multiple decision trees and

Bagging technology (Breiman, 2001). In the model, decision trees

are built in parallel, with each tree trained on a different subset of

data. Thus, each decision tree is unique, reducing the model’s

variance and lowering prediction errors (Yu et al., 2016). For

regression models, the main advantages of RF are as follows: 1)

lack of sensitivity to collinearity among multiple variables; 2)

presence of few parameters that require tuning, with only one

hyperparameter in this study; 3) effective reduction of the risk of

overfitting; 4) automatic calculation of variable importance scores

to assess the contribution of individual predictors to the model (Liu

Y. et al., 2019; Burdett and Wellen, 2022; Borrmann et al., 2023).

The RF model comprises two crucial hyperparameters: the

number of decision trees (ntree) and the number of input

variable features at each node (mtry). When adjusting ntree to a

sufficiently large value, it primarily impacts the modeling time

rather than the modeling accuracy (Wang et al., 2016; Zhang
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et al., 2021). Therefore, following its application in other studies,

we set ntree to 1,000 (Li et al., 2019; Zhu et al., 2023). On the other

hand, the value of mtry significantly affects the modeling accuracy

of RF. Thus, it should be adjusted based on the number of input

variable sets to optimize the RF model. The determination of the

parameter mtry involves a grid search for parameter optimization.

2.5.2 Accuracy assessment
Cross-validation (CV) was employed based on 70% of samples

to determine the AGB monitoring model with the highest

determination coefficient (R2) and lowest root mean squared

error (RMSE) for improving the model’s stability. The RF model

was then evaluated on the remaining 30% of samples

(Supplementary Table 2). This approach effectively enhances the

applicability of the RF algorithm on small datasets.

Richter et al. (2012) recommends a set of statistical test metrics

that can comprehensively quantify the performance of models

through literature review and experimental calculation. In this

study, we adopt three recommended metrics: R2, RMSE, and

relative root mean squared error (rRMSE). Their calculation

formulas are presented as Equations (2–4)).

R2 =
o
n

i=1
(AGBi

obs − AGBobs)� (AGBi
est − AGBobs)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(AGBi

obs − AGBobs)
2 �o

n

i=1
(AGBi

est − AGBobs)
2

s (2)
FIGURE 3

Details of GLCM-based texture features calculation.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(AGBi

est − AGBi
obs
)2

s
(3)

rRMSE = 100� RMSE

AGBobs
(4)

where n represents the number of samples in RF model; AGBi
obs

and AGBi
est represent the truth ground AGB measurement and the

estimated AGB value of i sample, respectively; and AGBobs and

AGBest represent the average truth ground AGB measurement and

the average estimated AGB value of all samples, respectively.

The normalized increase in mean square error (%IncMSE)

ranging from 0 to 100 is used to assess the importance of

variables in the RF model. %IncMSE is calculated by permuting

out-of-bag (OOB) data, where higher percentages indicate greater

importance of variables. For a detailed description of %IncMSE,

please refer to the literature (Breiman, 2001). All data analyses were

conducted using R programming language (https://www.r-

project.org) in RStudio software (Version 4.2).
3 Results

3.1 Effects of growth stages and nitrogen
levels on rice AGB

Figure 4 shows the changes in rice AGB of all rice plots under

different growth stages and treatments. AGB increased rapidly with

the development of growth stages, ranging from 1921.42 kg/ha to

11179.76 kg/ha, with a standard deviation of 4,009.28 kg/ha. The

coefficient of variation (CV) exhibited a gradual decline during the
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crop growth stages, diminishing from 0.35 at the LT stage to 0.21 at

the EF stage (Figure 4A and Supplementary Table 3). With the

increase of N fertilization, the AGB exhibited the same change

pattern as the growth stage, yet CV values were higher between

different nitrogen levels (CV:0.45 ~ 0.55) (Figure 4B and

Supplementary Table 4).
3.2 Effects of the window size parameter
on the accuracy of rice AGB estimation

To determine the appropriate window size for extracting TFs

frommultispectral PCA images (PC1 and PC2 images), we calculated

TFs using three different window sizes. The RF estimation model

integrated 240 extracted TFs to evaluate the window size that yielded

the most optimal model performance (Table 3). Notably, the

appropriate window size exhibited dynamic variations across

different growth stages. Small window size demonstrated superior

performance during the vegetative growth period, while large window

size performed better during the reproductive growth period.

Interestingly, the monitoring accuracy of AGB was the lowest when

TFs derived from a medium-size window were used during the four

crucial growth periods. At the LT stage, the highest precision for AGB

monitoring was achieved from a small window size, with R2=0.82,

RMSE=378.64 kg/ha, and rRMSE=20.3%. Similarly, the best accuracy

of R2=0.82, RMSE=1173.01 kg/ha, and rRMSE=13.62% was also

achieved from a small window size at the B stage. At the HtF and

EF stages, the highest estimation accuracy was achieved both from

large window size that R2=0.75, RMSE=1658 kg/ha and

rRMSE=19.42% and R2=0.58, RMSE=1848.66 kg/ha and

rRMSE=18.28%, respectively.
A B

FIGURE 4

Rice AGB variation with (A) growth stages and (B) N treatments over the experimental plots. LT, Late Tillering stage; B, Booting stage; HtF, Heading
to Flowering stage; EF, Early Filling stage.
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3.3 Effects of the direction parameter on
the accuracy of rice AGB estimation

TFs possess inherent directional properties, and the influence of

directional parameters on rice AGB estimation was complex

(Table 3). Taking into account the 4 growth stages, 3 window

sizes, and 5 directions, there was a three-fourth probability (among

the 12 optimal models, 8 models achieved the highest accuracy) that

AGB estimation models exhibited greater accuracy in the D2

direction (45°), especially during the intermediate periods of rice

growth (from B stage to HtF stage in this study). Taking the

example of large window size, at the B stage, the highest accuracy

for AGB estimation was achieved in the D2 direction, with R2 =

0.83, RMSE = 1,198.83 kg/ha, and rRMSE = 13.92%. Similarly, at

the HtF stage, the highest accuracy for AGB estimation was also

observed in the D2 direction, with R2 = 0.75, RMSE = 1,658.00 kg/

ha, and rRMSE = 19.42%. Acceptable estimation accuracy was

achieved for rice AGB in the D4 direction (135°, orthogonal to

the D2 direction) as well. In contrast, the poorest performing

directions did not exhibit a consistent pattern, as it occurred with

a probability of 5 out of 12 optimal models in both D1 (0°) and D3

(90°) directions. Taking the large window size as an example, the

TFs from D1 direction exhibited the lowest monitoring accuracy for

AGB during the LT and HtF stages, with R2 =0.67 and 0.67, and

rRMSE = 24.74% and 21.12%, respectively. Moreover, the TFs from

the D3 direction demonstrated the lowest monitoring accuracy for
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AGB during the B and EF stages, with R2 = 0.71 and 0.41, and

rRMSE = 20.52% and 19.28%, respectively. The accuracy of the

AGB estimation model based on ND TFs fell between the best and

worst accuracy across the three window sizes.
3.4 Importance analysis of texture features
for rice AGB estimation

In this study, we evaluated the importance scores of TFs at different

growth stages in the D2 direction based on the RFmodels(Figure 5). The

importance scores of TFs varied with window sizes. For small window

size, the important TFs were PC1Cor, PC2Con, and PC2Dis. For

medium window size, PC2Con and Cor were found to be important

TFs. For large window size, PC2Dis, PC2Con, and PC1Cor were

identified as significant TFs. The Hom, Ent, Cor, and Var from the

PC2 image demonstrated a moderate level of importance scores.

Further analysis of the TFs extracted from different principal

component images revealed an inverse variation in the importance

scores of TFs between PC1 and PC2 images (Figure 6). During the

vegetative growth period, the significance of TFs in the PC1 image

exceeded that of the PC2 image. However, the TFs in the PC2 image

were more prominent during the reproductive growth period. For

the PC1 image, the TFs with higher importance scores were Mean,

Cor, Con, and Hom. For the PC2 image, the TFs that stand out were

SM, Ent, Con, Dis, and Hom.
TABLE 3 Estimation accuracy of rice AGB model during the critical growth stages based on texture features.

Windows Directions

Late Tillering stage Booting stage
Heading to Flower-

ing stage
Early Filling stage

RMSE
(kg/ha)

R2 rRMSE
(%)

RMSE
(kg/ha)

R2 rRMSE
(%)

RMSE
(kg/ha)

R2 rRMSE
(%)

RMSE
(kg/ha)

R2 rRMSE
(%)

Small

ND 376.35 0.82 20.17 1401.00 0.79 16.27 1761.93 0.62 20.64 1869.57 0.50 18.49

D1 491.46 0.63 26.35 1410.43 0.73 16.38 1918.14 0.63 22.47 1872.06 0.54 18.51

D2 399.85 0.76 21.43 1173.01 0.82 13.62 1664.21 0.69 19.50 1813.24 0.53 17.93

D3 421.89 0.77 22.62 1552.01 0.77 18.02 1686.04 0.65 19.75 1908.85 0.45 18.88

D4 378.64 0.82 20.3 1511.91 0.77 17.56 1779.76 0.66 20.85 1826.19 0.54 18.06

Middle

ND 431.71 0.73 23.14 1577.41 0.74 18.32 1744.06 0.57 20.43 1897.33 0.51 18.76

D1 436.52 0.7 23.40 1574.8 0.66 18.29 1808.40 0.70 21.19 2019.91 0.53 19.98

D2 397.88 0.76 21.33 1335.28 0.80 15.51 1658.65 0.64 19.43 2038.48 0.44 20.16

D3 442.94 0.73 23.74 1866.81 0.58 21.68 1720.56 0.59 20.16 1928.3 0.44 19.07

D4 443.72 0.69 23.79 1798.19 0.66 20.88 1793.00 0.57 21.00 1848.5 0.56 18.28

Large

ND 426.54 0.71 22.87 1490.65 0.77 17.31 1691.00 0.71 19.81 1870.34 0.55 18.5

D1 461.52 0.67 24.74 1425.64 0.72 16.56 1802.98 0.67 21.12 1848.66 0.58 18.28

D2 453.15 0.65 24.29 1198.83 0.83 13.92 1658.00 0.75 19.42 1919.27 0.47 18.98

D3 410.27 0.79 21.99 1766.66 0.71 20.52 1698.83 0.64 19.90 1949.16 0.41 19.28

D4 381.10 0.81 20.43 1572.64 0.76 18.26 1774.50 0.64 20.79 1879.00 0.56 18.58
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The importance scores of TFs vary with the growth stages

(Figures 5, 6). At the LT stage, TFs such as Cor and Mean derived

from the PC1 imagery demonstrated higher significance. Almost all

TFs extracted from the B stage were found to be important across

three different window sizes, and the most important TFs was Cor.

At the HtF stage, the importance scores of Con, Dis, and Hom were

greater than that of other TFs. At the EF stage, multiple TFs from

the PC2 images show importance, such as SM, Ent, Hom, Dis,

and Con.

Figure 7 shows the spatial distribution of estimated rice AGB at

various growth stages based on TFs derived from the D2 direction.

The selection of the D2 direction allowed for a more effective

assessment of the estimated accuracy in rice AGB throughout the

growth stages, and more details can be found in the Results section

(Section 3.3). The results demonstrated a high spatial consistency

with the observed AGB throughout the entire growth season. AGB

continued to increase, and the differences within subplots

intensified over time. AGB showed correlations with nitrogen

fertilization levels and rice varieties. As nitrogen application

increased, AGB values also increased. Additionally, differences
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were observed among varieties, with V1 often exhibiting higher

AGB values compared to V2 and V3.
3.5 Comparison of spectral-based and
texture-based features for AGB estimation

This study also compared the differences in rice AGB estimation

between TFs derived from optimal texture parameters and spectral

features (SFs) (reflectance of spectral bands) (Table 4). At the LT

stage, both SFs and TFs exhibited comparable accuracy for

estimating AGB (TFs: R2=0.82, SFs: R2=0.82). During the mid-

growth stages (e.g. B stage and HtF stage in this study), TFs tend to

exhibit higher accuracy in AGB estimation compared to SFs (TFs:

R2=0.83, SFs: R2=0.78 at the B stage, and TFs: R2=0.70, SFs: R2=0.47

at the HtF stage). At the EF stage, the accuracy of estimating AGB

using TFs was lower compared to SFs (TFs: R2=0.58, SFs: R2=0.63).

It is noteworthy that the fusion of SFs and TFs does not yield

improved accuracy for rice AGB estimation compared to the use of

either SFs or TFs alone (Supplementary Table 5).
A

B

C

FIGURE 5

Importance analysis of texture features for rice AGB monitoring under small window size (A), middle window size (B), and large window size (C). LT,
Late Tillering stage; B, Booting stage; HtF, Heading to Flowering stage; EF, Early Filling stage.
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A B DC

FIGURE 7

Rice AGB mapping based on field measurement (A) and estimated AGB values with texture features derived from D2 direction (45°); (B) Small
window size; (C) Middle window size, and (D) Large window size. LT, Late Tillering stage; B, Booting stage; HtF, Heading to Flowering stage; EF, Early
Filling stage.
A B

D E F

C

FIGURE 6

Importance analysis of texture features in the first principal component image (A–C) and second principal component image (D–F). (A, D) Small
window size; (B, E) Middle window size, and (C, F) Large window size. LT, Late Tillering stage; B, Booting stage; HtF, Heading to Flowering stage; EF,
Early Filling stage.
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4 Discussion

4.1 The optimal window size for extracting
texture features

Window size is a crucial variable in TFs extraction, as different

window sizes impact the frequency of pixel value occurrences during

the process of texture calculation (Marceau et al., 1990; Liang et al.,

2022; Liu et al., 2022a). To capture the object-specific TFs in an image,

the window size must be smaller than the object’s size but large enough

to include the variability of the features of the object (Rodriguez-

Galiano et al., 2012; Zhou et al., 2017; Zhang et al., 2020; Liang et al.,

2022). This study analyzed the relationship between TFs and AGB

estimation accuracy under different window sizes and found that the

optimal window size for computing TFs was closely related to the crop

growth period (Table 3). During the vegetative growth stage, a small

window size is more suitable, while the large window size appears to

offer advantages in capturing TFs during the reproductive growth stage.

The reason could be explained by the relative relationship between the

rice canopy cover of different growth stage and window size. In general,

at the early stage of rice growth (e.g., LT stage, Figures 8A–D), the rice

plant were relatively small, and the canopy was partly closed. Small

window size primarily captured the green information of rice plant,

while minimizing the influence of water-soil background noise. This

scale provided a more precise representation of the plant’s growth

status and improved the AGB estimation. However, when using the

large window size that exceeded the scope of the rice canopy, significant

interference related to water-soil background noise occurred. This led

to a decrease in the signal-to-noise ratio of the TFs, reducing the AGB

estimation accuracy. At the mid-to-late stage of rice growth (e.g., EF

stage, Figures 8E–H), the rice plant experienced vigorous growth,

resulting in the formation of a dense canopy. At a small window

scale, which mainly comprised panicles and some leaf organs, the TFs

were insufficient to capture the macroscopic characteristics of rice

plant. However, using a large window size that covers the entire canopy

of rice plant, with minimal inclusion of background soil and water

information, a more comprehensive depiction of plant structure is

achieved. This scale allowed a more comprehensive characterization of

the rice canopy, which increased the accuracy of AGBmonitoring. This

provided a brief explanation of the findings described in Result 3.2,

which matched the findings of Yue et al. (2019) and Zhou et al. (2017).

Given the growth of rice plant, there exists a specific period

during which the extent of rice plant coverage aligns with a window
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of moderate size. The medium-sized window was expected to yield

the highest accuracy in AGB monitoring during this particular

stage. However, we did not observe this outcome during our four

growth stages, mainly because the sampling periods did not

encompass this critical growth stage. We hypothesized that there

might be an offsetting effect between the optimal texture window

scales during the early and late stages of rice growth. As a result, the

medium-sized window would provide the optimal AGB monitoring

accuracy throughout the entire growth season. To further validate

this hypothesis, we conducted RF model using all data collected

throughout the growth season (Table 5); as anticipated, it has been

found that the best accuracy in monitoring AGB can be achieved

through the extraction of TFs at the intermediate window scale.

Therefore, we suggested that it is imperative to consider using the

appropriate window sizes for calculating texture parameters at

different growth stages, particularly when utilizing these

parameters for rice AGB estimation.
4.2 The optimal direction parameter for
extracting texture features

As one of the crucial research questions, the influence of

direction on AGB monitoring is multifaceted and warrants

thorough investigation (Hall-Beyer, 2007; Zheng et al., 2020;

Liang et al., 2022; Liu et al., 2022a). Our findings suggested that

D2 was the optimal direction for TFs extraction (Table 3), which

matched the conclusions of Fu et al. (2020) and Fu et al. (2021).

However, no definitive results have been obtained regarding the

worst direction for TFs computations in this study. As we all know,

rice plant naturally expands their growth in confined spaces; the

planting distance between individual plants was smaller than the

spacing between rows. Thus, they tended to close the spaces along

the rows at the early growth stage, whereas, in the direction

perpendicular to the planting rows, the plants closed the spaces

during the middle period of growth. The diagonal directions (D2

and D4), which encompass both lateral and row-wise growth,

offered a comprehensive reflection of the rice canopy distribution,

making them more widely applicable for monitoring rice AGB.

Along the planting rows, rice plant grow close together, reducing

the influence of soil-water background noise. Even with the larger

window size, canopy closes up in the early growth stage along the

rows, and the pixel values become more similar, leading to
TABLE 4 Estimation accuracy of rice AGB model during the critical growth stages based on spectral features.

Stages
Calibration set Validation set

RMSE (kg/ha) R2 rRMSE (%) RMSE (kg/ha) R2 rRMSE (%)

LT 237.56 0.89 12.21 343.95 0.82 18.44

B 779.01 0.90 9.09 1339.28 0.78 15.55

HtF 827.80 0.87 8.65 1931.32 0.47 22.62

EF 1021.92 0.87 8.77 1857.75 0.63 18.37

All 755.29 0.97 9.96 1938.27 0.79 23.96
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decreased possibility of capturing spatial variations in rice canopy

using TFs (Guo et al., 2021; Luo et al., 2022). The direction

perpendicular to the planting rows (D3) is susceptible to

background noise, significantly reducing the accuracy of AGB

monitoring (Zheng et al., 2018; Zheng et al., 2020). The observed

differences between the D2 and D4 directions may be attributed to
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the geometric relationship of the sun, sensor, and rice plant. We

conducted all flights before noon (local time) when the sun was

positioned in the southeast direction. The flight routes were

perpendicular to the rows of rice plant, from northwest to

southeast. Therefore, the D2 direction was closer to the backward

observation, which led to consistently higher and brighter values
A

B D

E

F

G

H

C

FIGURE 8

Dynamic changes of rice plant coverage with growth stage under different texture window sizes. The uppercase letters (A, B) represent two analysis
points where the details within the respective window scales are examined at different magnification levels. (A, E) represent the full-view window at
LT stage and EF stage, respectively; (B, F) represent the view window enlarged by 500%; (C, D, G, H) represent the view window enlarged by 2000%.
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were observed. This finding aligns with the conclusion drawn by

Liang et al. (2022), who summarized that the most accurate

estimation of rubber plantation AGB using TFs were achieved

when conducting flight operations in the afternoon(local time)

with 135° direction. We proposed this hypothesis to capture the

interest of other researchers and encourage further investigation.

To further demonstrated the advantages of calculating TFs in the

D2 direction, we conducted unified modeling throughout the whole

growth season (Table 5). The results consistently showed that the D2

direction had the highest accuracy in AGB estimation, irrespective of

the window size. This provided evidence supporting the rationale for

considering the D2 direction as the optimal direction. Contrary to our

finding, Zheng et al. (2020) found that texture information computed

along the planting row direction (D1) is more advantageous for

estimating rice leaf nitrogen content (LNC) and plant nitrogen

content (PNC). This can be attributed to the lower imagery spatial

resolution (5.4cm) in Zheng et al.’s study, they extracted TFs from 3 ×

3 window size (approximately 16cm × 16cm), which primarily exhibit

information pertaining to the row direction. Luo et al. (2022)

suggested that TFs computed perpendicular to the ridges exhibited

higher accuracy in estimating potato AGB. In contrast, Liu et al.

(2022a) demonstrated that the direction selection did not affect the

accuracy of TFs-based potato AGB estimation. The differences

between these studies can be comprehensively considered from the

perspective of image spatial resolution, crop type, planting pattern,

and fertilizer application. Particularly, the significant impact of

different spatial resolutions on GLCM-based TFs has been

confirmed by previous studies (Yue et al., 2019; Liu et al., 2022a).
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4.3 Important texture features for
estimating rice AGB

Although the tremendous potential of TFs in estimating crop

growth parameters has been repeatedly demonstrated, there has

been limited research on the physical meanings of these important

features (Zheng et al., 2018; Liu C et al., 2019; Yang et al., 2019; Guo

et al., 2021; Liu et al., 2022a). In light of this, this study focused on

analyzing the mechanistic of TFs that are of significant value for rice

AGB estimation (Figure 9).

Compared to the PC1 image, the PC2 image expresses more edge

information of internal organs within the rice plant, between rice plant,

and between rice and background (Figures 9A, J). It represents high-

frequency information in the image and can better capture structural

difference in the field. Therefore, TFs derived from the PC2 image have

higher importance for rice AGB estimation compared to the TFs

derived from the PC1 image (Figure 6). The importance analysis of TFs

has identified three texture metrics that are consistently important

throughout the entire growth period: PC1Cor, PC2Con, and PC2Dis

(Figure 5). From the calculation form, it can be observed that Cor does

not assign weights to the difference in digital numbers (DN) between

neighboring pixels (Table 2). Unlike other TFs, Cor focuses on internal

texture (Hall-Beyer, 2007; Hall-Beyer, 2017), which is consistent with

the fact that PC1 image primarily reflects internal information within

the plants or the background (Figures 9A, B). Indeed, internal texture

primarily represents low-frequency information within a specific

window, reflecting gradual changes within the rice plant (Figure 9C).

It focuses on capturing information within the plants rather than
TABLE 5 Estimation results of rice AGB during the growth season based on texture features.

Windows Directions

Calibration set Validation set

RMSE
(kg/ha)

R2 rRMSE
(%)

RMSE
(kg/ha)

R2 rRMSE
(%)

Small

ND 624.4 0.98 8.23 2077.88 0.76 25.68

D1 667.89 0.97 8.81 1956.36 0.79 24.18

D2 560.70 0.99 7.39 1838.56 0.81 22.73

D3 666.55 0.97 8.79 2162.41 0.74 26.73

D4 686.44 0.97 9.05 1949.04 0.79 24.09

Middle

ND 565.31 0.98 7.45 1766.42 0.82 21.83

D1 529.04 0.98 6.98 1746.74 0.83 21.59

D2 565.59 0.98 7.46 1704.28 0.84 21.07

D3 596.49 0.98 7.87 1769.39 0.83 21.87

D4 596.03 0.98 7.86 1836.60 0.81 22.70

Large

ND 572.97 0.98 7.56 1758.00 0.83 21.73

D1 624.10 0.98 8.23 1825.55 0.81 22.56

D2 573.87 0.98 7.57 1711.52 0.84 21.16

D3 611.56 0.98 8.06 1796.42 0.82 22.20

D4 593.81 0.98 7.83 1823.08 0.81 22.53
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between plant organs or between plants and background. Cor

represents the vigorously growing portions of the rice plant, closely

correlated with high AGB values. As for PC1Mean, a metric indicating

internal uniformity (Figure 9F), has the same physical meaning as

PC1Cor. These findings align consistently with the conclusions from

Xu T. et al. (2022); Zhou L. et al. (2023), and Zhu et al. (2022). Unlike

Cor and Mean, Con and Dis were utilized to enhance the edge

information in the image (Figures 9N, P) (Haralick et al., 1973; Hall-

Beyer, 2007; Hall-Beyer, 2017; Guo et al., 2021), indicating high-

frequency information within the specific window, that is consistent

with the PC2 image representing edge information. Both Con and Dis

precisely described the relationship between pixel frequency and the

distance from the diagonal, thereby enhancing the effectiveness of AGB

estimation. These findings align with the results from Guo et al. (2021),

where the performance of Con outperformed other TFs.

Similar to Cor, HOM is a metric that quantifies the

homogeneity of the grey level in the GLCM window. The HOM

calculated from the PC1 image reflects the uniformity of rice

growth. Higher HOM values indicate more uniform rice growth,

which is typically associated with higher AGB, consistent with the

findings in previous study (Wang F. et al., 2021). The HOM

calculated from the PC2 image reflects the relatively smooth
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portion of high-frequency information, which represents the

information on rice plant or the soil background in mixed pixels.

Studies by WangW. et al. (2021) and Liu S. et al. (2023) respectively

demonstrate that adjusted vegetation indices considering rice green

plants abundance information or soil background in mixed pixel,

such as adjusted abundance vegetation index (AAVI), and adjusted

vegetation indices considering soil background (VICS), contribute to

improving the estimation accuracy of key crop growth parameters.

This could be a potential reason for the importance scores of

PC2HOM. However, this conclusion has not been confirmed for

AGB estimation and will be one of our future research endeavors.

SM shares similar physical implications with HOM, while Ent

exhibits contrasting characteristics to HOM. Hence, both SM and

Ent attain significant importance scores in estimating rice AGB.
4.4 Difference for rice AGB estimation
between SFs and TFs

SFs derived from UAVs-based multispectral images are widely

used in crop biophysical parameters estimation (Han et al., 2019;

Maimaitijiang et al., 2019; Wang F. et al., 2022; Wang et al., 2023).
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FIGURE 9

Important texture features for rice AGB estimation. The texture metrics Cor (C, K), Hom (D, L), Con (E, M), Mean (F, N), Dis (G, O) and SM (H, P) are
from the principal component images; The PC1 (A, B) and PC2 (I, J) represent the first principal component image (PC1) and second principal
component image (PC2); The red asterisks represent important texture features for rice AGB estimation, and the red multiplication symbol
represents an important directional field object.
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This study compared the RF models’ performance between SFs and

TFs for estimating the rice AGB (Tables 3–5). The result showed

that the different performance between SFs and TFs was stage-

specific. During the early stages of crop growth, the high leaf-stem

density plays a significant role in determining a substantial portion

of the AGB (Zhu et al., 2023). The SFs and TFs can reflect the

reflectance attribute and spatial variation of rice canopy well, and

the correlation between them is high (Bai et al., 2021). As a result,

this explains the comparable relationship between these features

when estimating AGB. For the mid-growth stages, the complex

nature of the canopy during this stage makes it challenging for SFs

alone to capture the spatial variability and intricate details, whereas

TFs excel in capturing these fine-grained characteristics (Liu Y.

et al., 2019; Yue et al., 2019; Zhang et al., 2021). Consequently, the

superior performance of TFs in estimating AGB is observed during

the mid-growth stages, particularly during the HtF stage. At the EF

stage, the dense rice canopy imposes certain limitations on the

representation of spatial heterogeneity by TFs, even in the presence

of large windows.

However, in contrast to previous findings (Dube and Mutanga,

2015; Liu et al., 2018; Liang et al., 2022; Xu L. et al., 2022), the fused

features did not exhibit superiority in estimating AGB, which may

be attributed to that this study exclusively utilized band reflectance

instead of vegetation indices, information overlap occurred between

spectral reflectance and TFs, resulting in limited improvement in

the predictive accuracy of rice AGB through feature fusion, which

matched the findings of Mao et al. (2021). In addition, variations in

the results can occur due to different crop types and regression

algorithms used (Liu et al., 2018; Liang et al., 2022; Liu et al., 2022b;

Xu L. et al., 2022; Liu Y. et al., 2023).
4.5 Limitations and directions of
future work

Our findings provided compelling evidence of the influence of

texture window size and direction on the rice AGB estimation using

GLCM-based TFs. However, it is crucial to further validate its

general applicability in terms of spatial and temporal transferability.

In the future, the impact of texture parameters on crop AGB

estimation still needs to be tested across diverse ecological

conditions, multiple rice genotypes, and various crop types.

Compared to high-resolution RGB images, multispectral imagery

generally has lower spatial resolution (Lu et al., 2019; Liang et al.,

2022; Gan et al., 2023). Therefore, further research is needed to

investigate whether the conclusions based on multispectral imagery

also apply to high-resolution RGB images.

Although the RF algorithm has strong regression capabilities (Liu

Y. et al., 2019; Burdett and Wellen, 2022; Borrmann et al., 2023), this

study has highlighted the potential issues of overfitting when dealing

with small sample size. In order to improve the reliability of the RF

model, it is essential to conduct additional field experiments across

various locations, years, and crop varieties for further evaluation.

Surprisingly, unlike previous studies, the incorporation of fused

features did not notably improve the accuracy of AGB estimation

(Dube and Mutanga, 2015; Liu et al., 2018; Liang et al., 2022; Xu L.
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et al., 2022). In addressing this issue in future research, two potential

approaches can be considered. Firstly, before training the estimation

models, an analysis can be conducted to assess the correlation among

the input predictor variables, utilizing techniques such as Variance

Inflation Factor (VIF) or feature selection methods. Secondly, the

inclusion of modeling techniques with non-linear structures, such as

Support Vector Regression (SVR), Extreme Learning Machines

(ELM), and XGBoost, can be explored extensively to evaluate their

impact on the estimation results.
5 Conclusions

Accurately assessment of AGB could provide valuable insights into

the estimation and management of crop health and productivity. To

resolve the saturation issue of spectral information, TFs were introduced

to bridge this gap. This study provided a comprehensive evaluation of

how GLCM-based TFs with different window size and direction

parameters influence the accuracy of rice AGB estimation. The

findings revealed that the appropriate window size for extracting TFs

varies according to the rice growth stage, highlighting the need to

incorporate multi-scale texture to capture the spatial variations of the

rice canopy throughout the growing season. Additionally, the diagonal

direction at 45° (D2) was identified as the optimal direction for

estimating AGB. The important features of rice AGB estimation were

Con, Dis, and Cor, which are mainly derived from the PC2 principal

component image, which can better capture edge information. TFs were

served as a valuable alternative or complement to spectral features,

demonstrating estimation accuracy comparable to spectral reflectance

for rice AGB estimation. These findings might help identify the best

configuration of GLCM parameters to enhance the accuracy of

estimating AGB, which can provide valuable insights for efficient

monitoring of crop information in precision agriculture.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

JLiu: Conceptualization, Data curation, Formal analysis,

Methodology, Validation, Writing – original draft, Writing – review

& editing. YZ: Data curation, Formal analysis, Funding acquisition,

Investigation, Methodology, Software, Visualization, Writing – original

draft, Writing – review & editing. LS: Funding acquisition,

Methodology, Project administration, Software, Supervision, Writing

– review & editing. XS: Formal analysis, Investigation, Visualization,

Writing – review & editing. JLi: Formal analysis, Investigation, Writing

– review & editing. JZ: Formal analysis, Software, Writing – review &

editing. XZ: Investigation, Writing – review & editing. LR: Formal

analysis, Writing – review & editing. WW: Conceptualization, Formal

analysis, Funding acquisition, Methodology, Supervision, Writing –
frontiersin.org

https://doi.org/10.3389/fpls.2023.1284235
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1284235
review & editing. XL: Conceptualization, Funding acquisition,

Investigation, Project administration, Supervision, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by scientific research projects in higher

education institutions of Anhui Province (no. 2022AH051623;

2023AH051855); Provincial Scientific Research Service Expense

Project (no. CZKYF2021-2-B010); Anhui Province Crop

Intelligent Planting and Processing Technology Engineering

Research Center Open Research Project(no. ZHZZKF202306);

Natural Science Foundation of Hebei Province (no. C2020408006;

C2023408010), and College Students' Innovation and Entrepreneur

ship Training Project (no. 202210879043).
Acknowledgments

We are very grateful to Xiaofang Chen, Ying Nian, Yongkang Li,

and Weiqiang Wang for their assistance in data collection.
Frontiers in Plant Science 17
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The reviewer HZ declared a past collaboration WW to the

handling editor.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1284235/

full#supplementary-material
References
Alebele, Y., Zhang, X., Wang, W., Yang, G., Yao, X., Zheng, H., et al. (2020).
Estimation of canopy biomass components in paddy rice from combined optical and
sar data using multi-target gaussian regressor stacking. Remote Sensing. 12, 2564.
doi: 10.3390/rs12162564

Bai, X., Chen, Y., Chen, J., Cui, W., Tai, X., Zhang, Z., et al. (2021). Optimal window
size selection for spectral information extraction of sampling points from UAV
multispectral images for soil moisture content inversion. Comput. Electron.
Agriculture. 190, 106456. doi: 10.1016/j.compag.2021.106456

Bao, Y., Gao, W., and Gao, Z. (2009). Estimation of winter wheat biomass based on
remote sensing data at various spatial and spectral resolutions. Front. Earth Sci. China.
3, 118–128. doi: 10.1007/s11707-009-0012-x

Borrmann, P., Brandt, P., and Gerighausen, H. (2023). Mispel: a multi-crop spectral
library for statistical crop trait retrieval and agricultural monitoring. Remote Sensing.
15, 3664. doi: 10.3390/rs15143664

Breiman, L. (2001). Random forests. Mach. Learning. 45, 5–32. doi: 10.1023/
A:1010933404324

Burdett, H., andWellen, C. (2022). Statistical and machine learning methods for crop
yield prediction in the context of precision agriculture. Precis. Agriculture. 23, 1553–
1574. doi: 10.1007/s11119-022-09897-0

Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., et al. (2021). Integrating multi-
source data for rice yield prediction across China using machine learning and deep learning
approaches. Agric. For. Meteorology. 297, 108275. doi: 10.1016/j.agrformet.2020.108275

Cheng, T., Song, R., Li, D., Zhou, K., Zheng, H., Yao, X., et al. (2017). Spectroscopic
estimation of biomass in canopy components of paddy rice using dry matter and
chlorophyll indices. Remote Sensing. 9, 319. doi: 10.3390/rs9040319

Cui, Z., and Kerekes, J. P. (2018a). Potential of red edge spectral bands in future
landsat satellites on agroecosystem canopy green leaf area index retrieval. Remote
Sensing. 10 (9), 1458. doi: 10.3390/rs10091458

Cui, Z., and Kerekes, J. P. (2018b). Impact of wavelength shift in relative spectral
response at high angluaves of incidence in landsat-8 operational land imager and future
landsat design concepts. IEEE Trans. Geosci. Remote Sensing. 56, 5873–5883.
doi: 10.1109/tgrs.2018.2827394

Di Gennaro, S. F., Toscano, P., Gatti, M., Poni, S., Berton, A., and Matese, A. (2022).
Spectral comparison of -based hyper and multispectral cameras for precision
viticulture. Remote Sensing. 14, 449. doi: 10.3390/rs14030449
Dube, T., and Mutanga, O. (2015). Investigating the robustness of the new
landsat-8 operational land imager derived texture metrics in estimating
plantation forest aboveground biomass in resource constrained areas. ISPRS J.
P h o t o g r amm e t r y R em o t e S e n s i n g . 1 0 8 , 1 2 – 3 2 . d o i : 1 0 . 1 0 1 6 /
j.isprsjprs.2015.06.002

Fu, Y., Yang, G., Li, Z., Song, X., Li, Z., Xu, X., et al (2020). Winter Wheat Nitrogen
Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression.
Remote Sens. 12, 3778. doi: 10.3390/rs12223778

Fu, Y., Yang, G., Song, X., Li, Z., Xu, X., Feng, H., et al. (2021). Improved estimation
of winter wheat aboveground biomass using multiscale textures extracted from UAV-
based digital images and hyperspectral feature analysis. Remote Sensing. 13, 581.
doi: 10.3390/rs13040581

Fu, Y., Yang, G., Wang, J., Song, X., and Feng, H. (2014). Winter wheat biomass
estimation based on spectral indices, band depth analysis and partial least squares
regression using hyperspectral measurements. Comput. Electron. Agriculture. 100, 51–
59. doi: 10.1016/j.compag.2013.10.010

Gan, Y., Wang, Q., Matsuzawa, T., Song, G., and Iio, A. (2023). Multivariate
regressions coupling colorimetric and textural features derived from UAV-based rgb
images can trace spatiotemporal variations of lai well in a deciduous forest. Int. J.
Remote Sensing. 44, 4559–4577. doi: 10.1080/01431161.2023.2208709

Gnyp, M. L., Miao, Y., Yuan, F., Ustin, S. L., Yu, K., Yao, Y., et al. (2014).
Hyperspectral canopy sensing of paddy rice aboveground biomass at different
growth stages. Field Crops Res. 155, 42–55. doi: 10.1016/j.fcr.2013.09.023

Guo, Y., Fu, Y. H., Chen, S., Robin Bryant, C., Li, X., Senthilnath, J., et al. (2021).
Integrating spectral and textural information for identifying the tasseling date of
summer maize using UAV based RGB images. Int. J. Appl. Earth Observation
Geoinformation. 102, 102435. doi: 10.1016/j.jag.2021.102435

Hall-Beyer, M. (2007) GLCM Texture: A Tutorial v. 1.0 through 2.7. Available at:
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm.

Hall-Beyer, M. (2017). Practical guidelines for choosing glcm textures to use in
landscape classification tasks over a range of moderate spatial scales. Int. J. Remote
Sensing. 38, 1312–1338. doi: 10.1080/01431161.2016.1278314

Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., et al. (2019). Modeling maize
above-ground biomass based on machine learning approaches using UAV remote-
sensing data. Plant Methods 15, 1–19. doi: 10.1186/s13007-019-0394-z
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1284235/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1284235/full#supplementary-material
https://doi.org/10.3390/rs12162564
https://doi.org/10.1016/j.compag.2021.106456
https://doi.org/10.1007/s11707-009-0012-x
https://doi.org/10.3390/rs15143664
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s11119-022-09897-0
https://doi.org/10.1016/j.agrformet.2020.108275
https://doi.org/10.3390/rs9040319
https://doi.org/10.3390/rs10091458
https://doi.org/10.1109/tgrs.2018.2827394
https://doi.org/10.3390/rs14030449
https://doi.org/10.1016/j.isprsjprs.2015.06.002
https://doi.org/10.1016/j.isprsjprs.2015.06.002
https://doi.org/10.3390/rs12223778
https://doi.org/10.3390/rs13040581
https://doi.org/10.1016/j.compag.2013.10.010
https://doi.org/10.1080/01431161.2023.2208709
https://doi.org/10.1016/j.fcr.2013.09.023
https://doi.org/10.1016/j.jag.2021.102435
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
https://doi.org/10.1080/01431161.2016.1278314
https://doi.org/10.1186/s13007-019-0394-z
https://doi.org/10.3389/fpls.2023.1284235
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1284235
Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for
image classification. IEEE Trans. On Systems Man Cybernetics. 3, 610–621.
doi: 10.1109/TSMC.1973.4309314

Jangra, S., Chaudhary, V., Yadav, R. C., and Yadav, N. R. (2021). High-throughput
phenotyping: a platform to accelerate crop improvement. Phenomics. 1, 31–53.
doi: 10.1007/s43657-020-00007-6

Jin, X., Zarco-Tejada, P., Schmidhalter, U., Reynolds, M. P., Hawkesford, M. J.,
Varshney, R. K., et al. (2020). High-throughput estimation of crop traits: a review of
ground and aerial phenotyping platforms. IEEE Geosci. Remote Sens. Magazine 9 (1),
200–231. doi: 10.1109/MGRS.2020.2998816

Kelsey, K. C., and Neff, J. C. (2014). Estimates of aboveground biomass from texture
analysis of landsat imagery. Remote Sensing. 6, 6407–6422. doi: 10.3390/rs6076407

Lakhiar, I. A., Jianmin, G., Syed, T. N., Chandio, F. A., Buttar, N. A., and Qureshi, W.
A. (2018). Monitoring and control systems in agriculture using intelligent sensor
techniques: a review of the aeroponic system. J. Sensors. 2018, 1–18. doi: 10.1155/2018/
8672769

Li, B., Xu, X., Zhang, L., Han, J., Bian, C., Li, G., et al. (2020). Above-ground biomass
estimation and yield prediction in potato by using UAV-based RGB and hyperspectral
imaging. ISPRS J. Photogrammetry Remote Sensing. 162, 161–172. doi: 10.1016/
j.isprsjprs.2020.02.013

Li, S., Yuan, F., Ata-UI-Karim, S. T., Zheng, H., Cheng, T., Liu, X., et al. (2019).
Combining color indices and textures of UAV-based digital imagery for rice lai
estimation. Remote Sensing. 11, 1763. doi: 10.3390/rs11151763

Li, Z., Zhao, Y., Taylor, J., Gaulton, R., Jin, X., Song, X., et al. (2022). Comparison and
transferability of thermal, temporal and phenological-based in-season predictions of
above-ground biomass in wheat crops from proximal crop reflectance data. Remote
Sens. Environ. 273, 112967. doi: 10.1016/j.rse.2022.112967

Liang, Y., Kou, W., Lai, H., Wang, J., Wang, Q., Xu, W., et al. (2022). Improved
estimation of aboveground biomass in rubber plantations by fusing spectral and
textural information from UAV-based RGB imagery. Ecol. Indicators. 142, 109286.
doi: 10.1016/j.ecolind.2022.109286

Liao, C., Wang, J., Dong, T., Shang, J., Liu, J., and Song, Y. (2019). Using spatio-
temporal fusion of landsat-8 and modis data to derive phenology, biomass and yield
estimates for corn and soybean. Sci. Total Environment. 650, 1707–1721. doi: 10.1016/
j.scitotenv.2018.09.308

Liu, Y., Feng, H., Yue, J., Fan, Y., Bian, M., Ma, Y., et al. (2023). Estimating potato
above-ground biomass by using integrated unmanned aerial system-based optical,
structural, and textural canopy measurements. Comput. Electron. Agriculture. 213,
108229. doi: 10.1016/j.compag.2023.108229

Liu, Y., Feng, H., Yue, J., Jin, X., Li, Z., and Yang, G. (2022a). Estimation of potato
above-ground biomass based on unmanned aerial vehicle red-green-blue images with
different texture features and crop height. Front. Plant Science. 13. doi: 10.3389/
fpls.2022.938216

Liu, Y., Feng, H., Yue, J., Li, Z., Yang, G., Song, X., et al. (2022b). Remote-sensing
estimation of potato above-ground biomass based on spectral and spatial features
extracted from high-definition digital camera images. Comput. Electron. Agriculture.
198, 107089. doi: 10.1016/j.compag.2022.107089

Liu, S., Jin, X., Bai, Y., Wu, W., Cui, N., Cheng, M., et al. (2023). UAV multispectral
images for accurate estimation of the maize LAI considering the effect of soil
background. Int. J. Appl. Earth Observation Geoinformation. 121, 103383.
doi: 10.1016/j.jag.2023.103383

Liu, Y., Liu, S., Li, J., Guo, X., Wang, S., and Lu, J. (2019). Estimating biomass of
winter oilseed rape using vegetation indices and texture metrics derived from UAV
multispectral images. Comput. Electron. Agriculture. 166, 105026. doi: 10.1016/
j.compag.2019.105026

Liu, C., Yang, G., Li, Z., Tang, F., Feng, H., Wang, J., et al. (2019). “Monitoring of
winter wheat biomass using UAV hyperspectral texture features,” in. Li, D., and Zhao,
C. Computer and Computing Technologies in Agriculture XI. CCTA 2017. IFIP
Advances in Information and Communication Technology, vol 546. Springer, Cham.
doi: 10.1007/978-3-030-06179-1_25

Liu, C., Yang, G., Li, Z., Tang, F., Wang, J., Zhang, C., et al. (2018). Biomass
estimation in winter wheat by UAV spectral information and texture information
fusion. Scientia Agricultura Sin. 51, 3060–3073. doi: 10.3864/j.issn.0578-
1752.2018.16.003

Liu, J., Zhu, Y., Tao, X., Chen, X., and Li, X. (2022). Rapid prediction of winter wheat
yield and nitrogen use efficiency using consumer-grade unmanned aerial vehicles
multispectral imagery. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1032170

Lu, D. (2005). Aboveground biomass estimation using landsat tm data in the
Brazilian amazon. Int. J. Remote Sensing. 26, 2509–2525. doi: 10.1080/
01431160500142145

Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., et al. (2019). Improved estimation of
aboveground biomass in wheat from rgb imagery and point cloud data acquired with a
low-cost unmanned aerial vehicle system. Plant Methods 15, 1–16. doi: 10.1186/s13007-
019-0402-3

Luo, S., Jiang, X., He, Y., Li, J., Jiao, W., Zhang, S., et al. (2022). Multi-dimensional
variables and feature parameter selection for aboveground biomass estimation of
potato based on UAV multispectral imagery. Front. Plant Science. 13. doi: 10.3389/
fpls.2022.948249
Frontiers in Plant Science 18
Maes, W. H., and Steppe, K. (2019). Perspectives for remote sensing with unmanned
aerial vehicles in precision agriculture. Trends Plant Science. 24, 152–164. doi: 10.1016/
j.tplants.2018.11.007

Maimaitijiang, M., Sagan, V., Sidike, P., Maimaitiyiming, M., Hartling, S., Peterson,
K. T., et al. (2019). Vegetation index weighted canopy volume model (CVMVI) for
soybean biomass estimation from unmanned aerial system-based rgb imagery. ISPRS J.
Photogrammetry Remote Sensing. 151, 27–41. doi: 10.1016/j.isprsjprs.2019.03.003

Mao, P., Qin, L., Hao, M., Zhao, W., Luo, J., Qiu, X., et al. (2021). An improved
approach to estimate above-groundvolume and biomass of desert shrub communities
based on UAV RGB images. Ecol. Indicators. 125, 107494. doi: 10.1016/
j.ecolind.2021.107494

Marceau, D. J., Howarth, P. J., Dubois, J. M., and Gratton, D. J. (1990). Evaluation of
the grey-level co-occurrence matrix method for land-cover classification using spot
imagery. IEEE Trans. On Geosci. Remote Sensing. 28, 513–519. doi: 10.1109/
TGRS.1990.572937

Mercier, A., Betbeder, J., Baudry, J., Le Roux, V., Spicher, F., Lacoux, J., et al. (2020a).
Evaluation of sentinel-1 & 2 time series for predicting wheat and rapeseed phenological
stages. ISPRS J. Photogrammetry Remote Sensing. 163, 231–256. doi: 10.1016/
j.isprsjprs.2020.03.009

Mercier, A., Betbeder, J., Rapinel, S., Jegou, N., Baudry, J., and Hubert-Moy, L.
(2020b). Evaluation of sentinel-1 and -2 time series for estimating lai and biomass of
wheat and rapeseed crop types. J. Appl. Remote Sensing. 14, 1. doi: 10.1117/
1.JRS.14.024512

Mukherjee, A., Misra, S., and Raghuwanshi, N. S. (2019). A survey of unmanned
aerial sensing solutions in precision agriculture. J. Network Comput. Applications. 148,
102461. doi: 10.1016/j.jnca.2019.102461

Naidoo, L., Main, R., Cho, M. A., Madonsela, S., and Majozi, N. (2021). “Estimating
South African maize biomass using integrated high-resolution UAV and sentinel 1 and
2 datasets,” 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, Brussels, Belgium, 2021,1594-1596. doi: 10.1109/IGARSS47720.2021.9554261

Pacifici, F., Chini, M., and Emery, W. J. (2009). A neural network approach using
multi-scale textural metrics from very high-resolution panchromatic imagery for urban
land-use classification. Remote Sens. Environment. 113, 1276–1292. doi: 10.1016/
j.rse.2009.02.014

Peng, S., Tang, Q., and Zou, Y. (2009). Current status and challenges of rice
production in China. Plant Production Science. 12, 3–8. doi: 10.1626/pps.12.3

Qiu, R., Wei, S., Zhang, M., Li, H., Sun, H., Liu, G., et al. (2018). Sensors for
measuring plant phenotyping: a review. Int. J. Agric. Biol. Engineering. 11, 1–17.
doi: 10.25165/j.ijabe.20181102.2696

Richter, K., Atzberger, C., Hank, T. B., and Mauser, W. (2012). Derivation of
biophysical variables from earth observation data: validation and statistical measures. J.
Appl. Remote Sensing. 6, 63557. doi: 10.1117/1.JRS.6.063557

Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M.,
and Jeganathan, C. (2012). Random forest classification of mediterranean land cover
using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environment.
121, 93–107. doi: 10.1016/j.rse.2011.12.003

Seck, P. A., Diagne, A., Mohanty, S., and Wopereis, M. C. (2012). Crops that feed the
world 7: rice. Food Secur. 4, 7–24. doi: 10.1007/s12571-012-0168-1

Spiertz, J. H. J., and Ewert, F. (2009). Crop production and resource use to meet the
growing demand for food, feed and fuel: opportunities and constraints. Njas -
Wageningen J. Life Sci. 56, 281–300. doi: 10.1016/S1573-5214(09)80001-8

Teng, X., Dong, Y., and Meng, L. (2015). “The study of winter wheat biomass
estimation model based on hyperspectral remote sensing,” in Eds. D. Li and Z. Li
Computer and computing technologies in agriculture IX. CCTA 2015. IFIP advances in
information and communication technology, vol. 479 (Springer, Cham). doi: 10.1007/
978-3-319-48354-2_17

Wang, D., Li, R., Zhu, B., Liu, T., Sun, C., and Guo, W. (2023). Estimation of wheat
plant height and biomass by combining UAV imagery and elevation data. Agriculture.
13, 9. doi: 10.3390/agriculture13010009

Wang, Q., Putri, N. A., Gan, Y., and Song, G. (2022). Combining both spectral and
textural indices for alleviating saturation problem in forest lai estimation using
sentinel-2 data. Geocarto Int. 37, 10511–10531. doi: 10.1080/10106049.2022.2037730

Wang, W., Wu, Y., Zhang, Q., Zheng, H., Yao, X., Zhu, Y., et al. (2021). AAVI: A
novel approach to estimating leaf nitrogen concentration in rice from unmanned aerial
vehicle multispectral imagery at early and middle growth stages. IEEE J. Selected Topics
Appl. Earth Observations Remote Sensing. 14, 6716–6728. doi: 10.1109/
JSTARS.2021.3086580

Wang, F., Yang, M., Ma, L., Zhang, T., Qin, W., Li, W., et al. (2022). Estimation of
above-ground biomass of winter wheat based on consumer-grade multi-spectral UAV.
Remote Sensing. 14, 1251. doi: 10.3390/rs14051251

Wang, F., Yi, Q., Hu, J., Xie, L., Yao, X., Xu, T., et al. (2021). Combining spectral and
textural information in UAV hyperspectral images to estimate rice grain yield. Int. J.
Appl. Earth Observation Geoinformation. 102, 102397. doi: 10.1016/j.jag.2021.102397

Wang, W., Zheng, H., Wu, Y., Yao, X., Zhu, Y., Cao, W., et al. (2022). An assessment
of background removal approaches for improved estimation of rice leaf nitrogen
concentration with unmanned aerial vehicle multispectral imagery at various
observation times. Field Crops Res. 283, 108543. doi: 10.1016/j.fcr.2022.108543
frontiersin.org

https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1007/s43657-020-00007-6
https://doi.org/10.1109/MGRS.2020.2998816
https://doi.org/10.3390/rs6076407
https://doi.org/10.1155/2018/8672769
https://doi.org/10.1155/2018/8672769
https://doi.org/10.1016/j.isprsjprs.2020.02.013
https://doi.org/10.1016/j.isprsjprs.2020.02.013
https://doi.org/10.3390/rs11151763
https://doi.org/10.1016/j.rse.2022.112967
https://doi.org/10.1016/j.ecolind.2022.109286
https://doi.org/10.1016/j.scitotenv.2018.09.308
https://doi.org/10.1016/j.scitotenv.2018.09.308
https://doi.org/10.1016/j.compag.2023.108229
https://doi.org/10.3389/fpls.2022.938216
https://doi.org/10.3389/fpls.2022.938216
https://doi.org/10.1016/j.compag.2022.107089
https://doi.org/10.1016/j.jag.2023.103383
https://doi.org/10.1016/j.compag.2019.105026
https://doi.org/10.1016/j.compag.2019.105026
https://doi.org/10.1007/978-3-030-06179-1_25
https://doi.org/10.3864/j.issn.0578-1752.2018.16.003
https://doi.org/10.3864/j.issn.0578-1752.2018.16.003
https://doi.org/10.3389/fpls.2022.1032170
https://doi.org/10.1080/01431160500142145
https://doi.org/10.1080/01431160500142145
https://doi.org/10.1186/s13007-019-0402-3
https://doi.org/10.1186/s13007-019-0402-3
https://doi.org/10.3389/fpls.2022.948249
https://doi.org/10.3389/fpls.2022.948249
https://doi.org/10.1016/j.tplants.2018.11.007
https://doi.org/10.1016/j.tplants.2018.11.007
https://doi.org/10.1016/j.isprsjprs.2019.03.003
https://doi.org/10.1016/j.ecolind.2021.107494
https://doi.org/10.1016/j.ecolind.2021.107494
https://doi.org/10.1109/TGRS.1990.572937
https://doi.org/10.1109/TGRS.1990.572937
https://doi.org/10.1016/j.isprsjprs.2020.03.009
https://doi.org/10.1016/j.isprsjprs.2020.03.009
https://doi.org/10.1117/1.JRS.14.024512
https://doi.org/10.1117/1.JRS.14.024512
https://doi.org/10.1016/j.jnca.2019.102461
https://doi.org/10.1109/IGARSS47720.2021.9554261
https://doi.org/10.1016/j.rse.2009.02.014
https://doi.org/10.1016/j.rse.2009.02.014
https://doi.org/10.1626/pps.12.3
https://doi.org/10.25165/j.ijabe.20181102.2696
https://doi.org/10.1117/1.JRS.6.063557
https://doi.org/10.1016/j.rse.2011.12.003
https://doi.org/10.1007/s12571-012-0168-1
https://doi.org/10.1016/S1573-5214(09)80001-8
https://doi.org/10.1007/978-3-319-48354-2_17
https://doi.org/10.1007/978-3-319-48354-2_17
https://doi.org/10.3390/agriculture13010009
https://doi.org/10.1080/10106049.2022.2037730
https://doi.org/10.1109/JSTARS.2021.3086580
https://doi.org/10.1109/JSTARS.2021.3086580
https://doi.org/10.3390/rs14051251
https://doi.org/10.1016/j.jag.2021.102397
https://doi.org/10.1016/j.fcr.2022.108543
https://doi.org/10.3389/fpls.2023.1284235
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1284235
Wang, L., Zhou, X., Zhu, X., Dong, Z., and Guo, W. (2016). Estimation of biomass in
wheat using random forest regression algorithm and remote sensing data. Crop J. 4,
212–219. doi: 10.1016/j.cj.2016.01.008

Xu, T., Wang, F., Xie, L., Yao, X., Zheng, J., Li, J., et al. (2022). Integrating the textural
and spectral information of UAV hyperspectral images for the improved estimation of
rice aboveground biomass. Remote Sensing. 14, 2534. doi: 10.3390/rs14112534

Xu, L., Zhou, L., Meng, R., Zhao, F., Lv, Z., Xu, B., et al. (2022). An improved
approach to estimate ratoon rice aboveground biomass by integrating UAV-based
spectral, textural and structural features. Precis. Agriculture. 23, 1276–1301.
doi: 10.1007/s11119-022-09884-5

Yang, J., Ding, F., Chen, C., Liu, T., Sun, C., Ding, D., et al. (2019). Correlation of
wheat biomass and yield with UAV image characteristic parameters. Trans. Chin. Soc.
Agric. Engineering. 35, 104–110. doi: 10.11975/j.issn.1002-6819.2019.23.013

Yu, N., Li, L., Schmitz, N., Tian, L. F., Greenberg, J. A., and Diers, B. W. (2016).
Development of methods to improve soybean yield estimation and predict plant
maturity with an unmanned aerial vehicle based platform. Remote Sens.
Environment. 187, 91–101. doi: 10.1016/j.rse.2016.10.005

Yue, J., Yang, G., Tian, Q., Feng, H., Xu, K., and Zhou, C. (2019). Estimate of winter-
wheat above-ground biomass based on UAV ultrahigh-ground-resolution image
textures and vegetation indices. ISPRS J. Photogrammetry Remote Sensing. 150, 226–
244. doi: 10.1016/j.isprsjprs.2019.02.022

Zhang, D. Y., Han, X. X., Lin, F. F., Du, S. Z., Zhang, G., and Hong, Q. (2022). Estimation
of winter wheat leaf area index using multi-source UAV image feature fusion. Trans. Chin.
Soc. Agric. Eng. 38, 171–179. doi: 10.11975/j.issn.1002-6819.2022.09.018

Zhang, C., Huang, C., Li, H., Liu, Q., Li, J., Bridhikitti, A., et al. (2020). Effect of
textural features in remote sensed data on rubber plantation extraction at different
levels of spatial resolution. Forests. 11, 399. doi: 10.3390/f11040399

Zhang, J., Qiu, X., Wu, Y., Zhu, Y., Cao, Q., Liu, X., et al. (2021). Combining texture,
color, and vegetation indices from fixed-wing uas imagery to estimate wheat growth
parameters using multivariate regression methods. Comput. Electron. Agriculture. 185,
106138. doi: 10.1016/j.compag.2021.106138
Frontiers in Plant Science 19
Zhang, Y., Ta, N., Guo, S., Chen, Q., Zhao, L., Li, F., et al. (2022). Combining spectral
and textural information from UAV RGB images for leaf area index monitoring in
kiwifruit orchard. Remote Sensing. 14, 1063. doi: 10.3390/rs14051063

Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., Cao, W., et al. (2018). Combining
unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based
hyperspectral data for plant nitrogen concentration estimation in rice. Front. Plant
Sci. 9. doi: 10.3389/fpls.2018.00936

Zheng, H., Cheng, T., Zhou, M., Li, D., Yao, X., Tian, Y., et al. (2019). Improved
estimation of rice aboveground biomass combining textural and spectral analysis of
UAV imagery. Precis. Agriculture. 20, 611–629. doi: 10.1007/s11119-018-9600-7

Zheng, H., Ma, J., Zhou, M., Li, D., Yao, X., Cao, W., et al. (2020). Enhancing the
nitrogen signals of rice canopies across critical growth stages through the integration of
textural and spectral information from unmanned aerial vehicle (UAV) multispectral
imagery. Remote Sensing. 12, 957. doi: 10.3390/rs12060957

Zhou, J., Yan, G., Sun, M., Di, T., Wang, S., Zhai, J., and Zhao, Z. (2017). The effects
of GLCM parameters on LAI estimation using texture values from Quickbird satellite
imagery. Sci. Rep. 7, 7366. doi: 10.1038/s41598-017-07951-w

Zhou, L., Nie, C., Su, T., Xu, X., Song, Y., Yin, D., et al. (2023). Evaluating the canopy
chlorophyll density of maize at the whole growth stage based onmulti-scale UAV image feature
fusion and machine learning methods. Agriculture. 13, 895. doi: 10.3390/agriculture13040895

Zhou, M., Zheng, H., He, C., Liu, P., Awan, G. M., Wang, X., et al. (2023). Wheat
phenology detection with the methodology of classification based on the time-series
UAV images. Field Crops Res. 292, 108798. doi: 10.1016/j.fcr.2022.108798

Zhu, Y., Liu, J., Tao, X., Su, X., Li, W., Zha, H., et al. (2023). A three-dimensional
conceptual model for estimating the above-ground biomass of winter wheat using
digital and multispectral unmanned aerial vehicle images at various growth stages.
Remote Sensing. 15, 3332. doi: 10.3390/rs15133332

Zhu, W., Rezaei, E. E., Nouri, H., Sun, Z., Li, J., Yu, D., et al. (2022). UAV-based
indicators of crop growth are robust for distinct water and nutrient management but
vary between crop development phases. Field Crops Res. 284, 108582. doi: 10.1016/
j.fcr.2022.108582
frontiersin.org

https://doi.org/10.1016/j.cj.2016.01.008
https://doi.org/10.3390/rs14112534
https://doi.org/10.1007/s11119-022-09884-5
https://doi.org/10.11975/j.issn.1002-6819.2019.23.013
https://doi.org/10.1016/j.rse.2016.10.005
https://doi.org/10.1016/j.isprsjprs.2019.02.022
https://doi.org/10.11975/j.issn.1002-6819.2022.09.018
https://doi.org/10.3390/f11040399
https://doi.org/10.1016/j.compag.2021.106138
https://doi.org/10.3390/rs14051063
https://doi.org/10.3389/fpls.2018.00936
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.3390/rs12060957
https://doi.org/10.1038/s41598-017-07951-w
https://doi.org/10.3390/agriculture13040895
https://doi.org/10.1016/j.fcr.2022.108798
https://doi.org/10.3390/rs15133332
https://doi.org/10.1016/j.fcr.2022.108582
https://doi.org/10.1016/j.fcr.2022.108582
https://doi.org/10.3389/fpls.2023.1284235
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery
	1 Introduction
	2 Materials and methods
	2.1 Experimental design
	2.2 Main workflow
	2.3 Data acquisition and preprocessing
	2.3.1 UAVs data acquisition and preprocessing
	2.3.2 AGB measurement

	2.4 Feature extraction
	2.5 AGB estimation model
	2.5.1 Random Forest model
	2.5.2 Accuracy assessment


	3 Results
	3.1 Effects of growth stages and nitrogen levels on rice AGB
	3.2 Effects of the window size parameter on the accuracy of rice AGB estimation
	3.3 Effects of the direction parameter on the accuracy of rice AGB estimation
	3.4 Importance analysis of texture features for rice AGB estimation
	3.5 Comparison of spectral-based and texture-based features for AGB estimation

	4 Discussion
	4.1 The optimal window size for extracting texture features
	4.2 The optimal direction parameter for extracting texture features
	4.3 Important texture features for estimating rice AGB
	4.4 Difference for rice AGB estimation between SFs and TFs
	4.5 Limitations and directions of future work

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


