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Eriobotrya is an evergreen fruit tree native to South-West China and adjacent

countries. There are more than 26 loquat species known in this genus, while E.

japonica is the only species yet domesticated to produce fresh fruits from late

spring to early summer. Fruits of cultivated loquat are usually orange colored, in

contrast to the red color of fruits of wild E. henryi (EH). However, themechanisms

of fruit pigment formation during loquat evolution are yet to be elucidated. To

understand these, targeted carotenoid and anthocyanin metabolomics as well as

transcriptomics analyses were carried out in this study. The results showed that

b-carotene, violaxanthin palmitate and rubixanthin laurate, totally accounted for

over 60% of the colored carotenoids, were the major carotenoids in peel of the

orange colored ‘Jiefangzhong’ (JFZ) fruits. Total carotenoids content in JFZ is

about 10 times to that of EH, and the expression levels of PSY, ZDS and ZEP in JFZ

were 10.69 to 23.26 folds to that in EH at ripen stage. Cyanidin-3-O-galactoside

and pelargonidin-3-O-galactoside were the predominant anthocyanins

enriched in EH peel. On the contrary, both of them were almost undetectable

in JFZ, and the transcript levels of F3H, F3’H, ANS, CHS and CHI in EH were 4.39

to 73.12 folds higher than that in JFZ during fruit pigmentation. In summary,

abundant carotenoid deposition in JFZ peel is well correlated with the strong

expression of PSY, ZDS and ZEP, while the accumulation of anthocyanin

metabolites in EH peel is tightly associated with the notably upregulated

expressions of F3H, F3’H, ANS, CHS and CHI. This study was the first to
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demonstrate themetabolic background of how fruit pigmentations evolved from

wild to cultivated loquat species, and provided gene targets for further breeding

of more colorful loquat fruits via manipulation of carotenoids and

anthocyanin biosynthesis.
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Introduction

Accumulation of pigments including anthocyanins, chlorophylls,

and carotenoids is an essential process regulating plant growth and

development, as well as for adjusting to environmental stresses. For

example, anthocyanin is a popular pigment enriched in organs like

fruit, leaf, and petal to attract pollinating insects and foragers to

guarantee successful pollination and seed spread, or oppose

herbivores (Tanaka et al., 2008). In addition, high enrichment of

these pigments also improves fruit appearance and flavor, and

supports human beings with health nutrients. Traditional breeding

(Bang et al., 2007), biofortification (Römer et al., 2000), and agronomic

protocols (Luan et al., 2020) have been long used to enhance pigment

accumulation in plant products. The identification of specific chemical

basis and gene regulation of specific pigments accumulated in plant

tissues is vital for health pigments improvement.

Carotenoids are mostly C40 terpenoids essential for plant life and

human health. These compounds often participate in various biological

processes, such as photosynthesis, photomorphogenesis,

photoprotection, and development (Nisar et al., 2015). Furthermore,

they also serve as precursors for plant hormones (abscisic acid and

strigolactone) and for a diverse set of apocarotenoids (Nisar et al.,

2015). For human beings, carotenoids are critical components

abundantly enriched in diverse foods to supply antioxidants and

provitamin A (Römer et al., 2000; Hermanns et al., 2020). These

compounds are derived from the isoprene precursors, isopentenyl

diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate

(DMAPP). To date, dozens of enzymes have been identified with a

function in carotenoid biosynthesis and metabolism (Nisar et al., 2015;

Hermanns et al., 2020). For fruit production crops, natural variations in

IPI (Isopentenyl diphosphate isomerase), PSY (phytoene synthase),

CRTISO (carotenoid isomerase), LCYB (lycopene b-cyclase), ZEP
(zeaxanthin epoxidase), OR (Orange), and NCED/CCD (9-cis-

epoxycarotenoid dioxygenase/carotenoid cleavage dioxygenase) genes

resulted in diverse colored fruits ranging from white, yellow, pink,

orange to red in tomato (Pankratov et al., 2016; Yoo et al., 2023),

pepper (Lee et al., 2021), watermelon (Bang et al., 2007; Liu et al., 2021),

melon (Tzuri et al., 2015), citrus (Zheng et al., 2019), peach (Falchi

et al., 2013), papaya (Wu et al., 2017) and loquat (Fu et al., 2014). These

genes encode enzymes that function in the carotenoid biosynthesis and

metabolism pathway. Definitely, three IPP units and one DMAPPwere

condensed into GGPP (geranylgeranyl pyrophosphate) via GGPP

synthase (GGPPS). Condensation of two GGPP molecules by PSY
02
led to the formation of phytoene (the first carotenoid compound), PDS

(phytoene desaturase) and Z-ISO (z-carotene isomerase), then

phytoene was introduced into z-carotene. ZDS (z-carotene
desaturase) and CRTISO catalyzed phytoene into red-pigmented

lycopene. Lycopene was further cyclized by LCYB and converted to

orange-pigmented g- and b-carotene. BCH (b-carotene hydroxylase)

then catalyzed b-carotene to form yellow-pigmented b-cryptoxanthin
and zeaxanthin, and zeaxanthin was further converted into

antheraxanthin and violaxanthin by ZEP. NSY (neoxanthin

synthase) subsequently catalyzed violaxanthin into neoxanthin.

Finally, neoxanthin and some other carotenoids were turned into

apocarotenoids by NCED/CCD (Nisar et al., 2015; Hermanns et al.,

2020; Sun et al., 2022). Function or expression variations of these genes

might regulate carotenogenic metabolic flux to abundantly enrich

specific carotenoid metabolites in above-mentioned fruit crops,

which subsequently resulted into different colored fruits.

Anthocyanins, a clade of flavonoids, are ubiquitous plant

secondary metabolites participating in attracting insect pollinators

and seed dispersers (Tanaka et al., 2008), stress protection (Zhao

et al., 2019; Sun et al., 2023) as well as supporting strong medicinal

value for humans (Giampieri et al., 2018). Generally, anthocyanins

are synthesized by the phenylpropanoid pathway and downstream

flavonoid pathway. Primarily, PAL (phenylalanine ammonia lyase),

C4H (cinnamate 4-hydroxylase) and 4CL (4-coumarate:CoA ligase)

enzymes in the phenylpropanoid pathway convert phenylalanine

into 4-coumaroyl-CoA (Tanaka et al., 2008). Then, CHS (chalcone

synthase), CHI (chalcone isomerase), F3H (flavanone 3-

hydroxylase), F3’H (flavonoid 3′-hydroxylase), F3’5’H (flavonoid

3′5′-hydroxylase), DFR (dihydroflavonol 4-reductase), ANS

(anthocyanidin synthase), UGT (uridine diphosphate-dependent

glucosyltransferase), and other modification enzymes from the

flavonoid pathway catalyze 4-coumaroyl-CoA into anthocyanin

and other flavonoid compounds (Tanaka et al., 2008). Constitute

and content of the flavonoid compound enriched in plant tissue

depend on the capacities of these enzymes. CHS is the first

committed step of flavonoid biosynthesis and plays vital roles in

flavonoid biosynthesis of apple skin and flesh (Dare et al., 2013).

CHI catalyzes the conversion of chalcones to flavanones, as an

example, overexpression of DcCHI1 (isolated from Dragon’s blood)

in tobacco significantly increased flavonoid production (Zhu et al.,

2021). F3H is a key enzyme in directing carbon flow towards the

biosynthesis of 3-hydroxylated flavonoids, since the loss of FvF3H

function blocks anthocyanin biosynthesis in strawberry fruits
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(Xu et al., 2023). F3’H catalyzes the introduction of an additional

hydroxyl group in the B-ring of various flavonoids, and the loss of

function of the F3’H in Arabidopsis inhibits dihydroquercetin

production, and leads to overaccumulation of kaempferol-

3-rhamnoside (Niñoles et al., 2023). ANS is a late key enzyme

in the flavonoid pathway which catalyze the colorless

leucoanthocyanidins to red-, purple- and orange red-colored

anthocyanidins. Loss of function of ANS proteins in raspberry

and eggplant both resulted in loss of visible and detectable

anthocyanin pigments (Rafique et al., 2016; Chen et al., 2018).

UGTs (UDP-glycosyltransferases), include UDP-glucose (UDP-

Glc), UDP-galactose (UDP-Gal), and UDP-rhamnose (UDP-Rha),

are the largest group of plant glycosyltransferases catalyzing

glycosylation of flavonols, which occurs during the later stages of

flavonol biosynthesis (Ren et al., 2022). Among these, MdUGT78T2

functions in transferring galactosyl from UDP-Gal to flavonols to

produce major flavonoid glycol conjugates (quercetin 3-O-

galactoside and cyanidin-3-O-galactoside) in apple fruit (Clayton-

Cuch et al., 2023).

Loquat (Eriobotrya japonica) is a distinctive subtropical fruit

tree (apple subfamily, Rosaceae) native to South-West China, which

supports human with delicious and nutritious fruits from late

spring to early summer (Su et al., 2021b). Carotenoids are one of

the most important nutrients in loquat fruits, and cultivated loquats

are commonly classified into white-, yellow-, orange-, and orange-

red fleshed groups, due to differences in carotenoid amount (Zhou

et al., 2007). Previously, carotenoid quality and quantity assays

identified b-carotene as the predominant pigment of cultivated

loquat and segment mutations in EjPSY2A coding region

principally confers to the variations of total carotenoid content

and flesh color (Fu et al., 2012; Fu et al., 2014). While cultivated

loquat usually harbors yellow or orange fruit, fruits from the wild E.

henryi are generally in red or purple color (Figure 1) (Su et al.,

2021b). However, whether the red and purple colors are derived

from higher accumulation of the well-known carotenoids like the

cultivated loquat or from the accumulation of other pigments, and

how the colorful compounds were enriched in fruit tissues, are still

unknown. Here, we performed integrative analyses of targeted

metabolomics and transcriptomics to identify key pigment

compounds underlying loquat fruit color variation and evolution,

and screened candidate important structure genes responsible for in

vivo biosynthesis of these pigments in loquat fruits. All these data

collectively revealed the metabolic basis of fruit color evolution and

shed light on the breeding for more colorful and nutritious

loquat fruits.
Materials and methods

Plant materials and growth conditions

Ripen fruits of cultivated loquat were collected from

‘Jiefangzhong’ (JFZ) trees planted in the National Germplasm
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Bank of Loquat (Fuzhou, Fujian, China) on 15th April, 2021.

Trees of the wild loquat species, Eriobotrya henryi (EH), were

native grown in Kunming Botanical Garden (Kunming, Yunnan,

China), and red-colored ripen fruits were collected on 24th June,

2021. Fruit cortex samples, including pulp and peel tissues, were

collected and immediately frozen in liquid nitrogen, thereafter

stored at -80°C, three biological repeats were performed for

pigment analysis and RNA library construction, five fruits were

used in each repeat. Fruits from green, color breaker and ripen

stages were collected from JFZ and EH trees during the fruiting

season of 2023 for gene expression analyses.
Carotenoids extraction and targeted
metabolome analysis

Frozen loquat fruit tissues were freeze-dried for 24 h with a

freeze dryer (Labconco, America) and ground at 30 Hz into fine

powder using a mixer mill. The fruit carotenoids were extracted as

previously described (Song et al., 2023) with some modifications. 50

mg fruit powder was added into 500 mL mixed solution of n-hexane:

acetone: ethanol (1:1:1, v/v/v), and 10 mL carotenoids internal

standard (IS) mixed solution (20 mg/mL) was added into the

extracting tube for the quantification. Then they were mixed for

20 min at room temperature with the vortex mixer, centrifuged at

4°C at 12000 r/min for 5 min and the supernatants were collected.

The above steps were repeated twice until the samples is colorless.

Then the supernatant was evaporated to dryness, and reconstituted

in mixed solution of Methanol: Methyl tert-butyl ether (1:1, v/v).

The obtained liquid was filtered through 0.22 mm membrane filter

(Biosharp) before LC-MS/MS analysis.

The carotenoid extracts were analyzed using UPLC-MS/MS

(ExionLC™ AD, UPLC, https://sciex.com.cn/; Applied Biosystems

6500 Triple Quadrupole, MS, https://sciex.com.cn/) system. The

analysis was performed according to Zhou et al. (2020). The YMC

C30 column (3 µm, 100 mm×2.0 mm) was used, with temperature

at 28°C and flow rate at 0.8 ml/min. 2 mL extract was injected for

each detection. The mobile phase was made up of phase A

(methanol: acetonitrile (1:3, v/v) with 0.01% BHT and 0.1%

formic acid) and phase B (methyl tert-butyl ether with 0.01%

BHT). The elution gradient began with 0% phase B from 0 min

to 3 min, then increased to 70% at 3-5 min, then increased to 95% at

5-9 min, and finally ramped back to 0% at 10-11 min.

A QTRAP® 6500+ LC-MS/MS System, equipped with an APCI

Heated Nebulizer, was operated in positive ion mode and controlled

by Analyst 1.6.3 software (Sciex). The following source operation

parameters were used: ion source, APCI+; source temperature, 350°C;

curtain gas (CUR), 25.0 psi; and collision gas (CAD). Carotenoids

data acquisitions were performed using Analyst 1.6.3 software

(Sciex). The integrated peak area of each carotenoid detected in the

samples was substituted into the linear equations of standard curves

for content calculation (see Table S1 for the standard curves). Three

biological repeats were used for each sample.
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Anthocyanins extraction and quantification

Total anthocyanin was extracted as formerly performed (Yi et al.,

2021). 50 mg vacuum freeze-dried fine fruit tissue powder for each

sample was weighted and added into 0.5 mL methanol/water/

hydrochloric acid (500:500:1, V/V/V). The samples were vortexed

for 30 s then immersed in methanol for 30 min. After six rounds of

vortexing-immersing, these samples were placed in a 4°C refrigerator

for overnight extraction. Samples were finally centrifuged at 12,000 g

for 10 min under 4°C. The supernatants were collected, and filtrated

with a microporous membrane (0.22 mm pore size) into injection

bottles before subsequent UPLC-MS/MS analysis.

Anthocyanin UPLC-MS/MS analysis was performed according

to Huang et al. (2019). The anthocyanins in two kinds of loquat fruits

were analyzed by UPLC-MS/MS system comprising the SCIEX ultra-

performance liquid chromatography, the Applied Biosystems 6500

Triple Quadrupole mass spectrometry, and the Waters ACQUITY

BEH C18 column (1.7 µm, 2.1 mm×100 mm). The mobile phase was

made up of phase A (0.1% formic acid in ultrapure water) and phase

B (0.1% formic acid in acetonitrile). The column temperature was 40°

C, with a 0.35 ml/min flow rate. The sample injection volume was 2

mL. The elution gradient began with 5% phase B at 0 min, then

increased to 50% at 6 min, and the proportion of phase B increased to

95% at 12 min and was maintained for 2 min. Anthocyanins contents

were measured using Analyst 1.6.3 software based on the AB Sciex

QTRAP 6500 LC-MS/MS platform.

The ESI source operation parameters were following: ion

source, ESI+; source temperature 550°C; ion spray voltage (IS)

−4500 V (negative ions) and 5500 V (positive ions); curtain gas

(CUR) was set at 35 psi. Anthocyanins were analyzed using multiple

reaction monitoring (MRM). Multiquant 3.0.3 software (Sciex) was

used to quantify all metabolites. The m/z range used in the LC-MS/

MS analysis was 50–1250 Da. The integrated peak area of each

detection was substituted into the linear equations of anthocyanins

standard curves for sample level calculation (see Table S2 for the

standard curves). Three spears were used for each repeat.
RNA extraction and cDNA preparation

Total RNA of these samples was extracted from fine powder

fruit tissues as formerly descripted (Su et al., 2017) with EASYspin

Plus plant RNA kit (Aidlab, China). The 1.5% agarose gel

electrophoresis was performed to evaluate the integrity of the

RNA, and the RNA concentration and purity were then assayed

with a NanoDrop ND-1000 spectrophotometer (NanoDrop

Technologies, Montchanin, DE, USA). A PrimeScript™ RT

reagent Kit with genome DNA wiper (TaKaRa, Japan) was then

used to synthesize the first-strand cDNA of the plant samples

according to the manufacturer’s instructions.

Library construction was performed by BioMarker Co., LTD

(Beijing, China) using NEBNext® UltraTM RNA Library Prep Kit

and sequenced with the Illumina HiSeq 2500 platforms, and 150 bp

paired-end reads were then generated. Low quality reads were

removed from the data sets using Fastp v0.19.3. The high quality
Frontiers in Plant Science 04
clean reads were aligned to the JFZ reference genome (Su et al., 2021a)

released at https://db.cngb.org/search/project/CNP0001531/with

HISAT v2.1.0 software. The transcripts were assembled as formerly

performed (Trapnell et al., 2010). Then the transcriptome data were

analyzed as previously performed by (Peng et al., 2022). Correlation

assessment of sample replicates was performed with edgeR (Robinson

et al., 2010). DESeq2 was used to estimate the differential expressed

genes (DEGs) among fruit samples with more than 2-fold change as

well as FDR (false discovery rate) < 0.01. Gene function was annotated

by aligning the proteins of each gene to the following databases: GO

(http://www.geneontology.org/), KEGG (http://www.genome.jp/kegg/

), KOG (http://www.ncbi.nlm.nih.gov/KOG/), NR (ftp://

ftp.ncbi.nih.gov/blast/db/), Pfam (http://pfam.xfam.org/), Swiss-Prot

(http://www.uniprot.org/). The amino acid sequences from

Arabidopsis (listed in Table S7) were used to BLAST against the

loquat genome to identify carotenoid and anthocyanin biosynthesis

structure gene homologues as formerly performed with e-value<1e-5,

Number of Hits>50 and Number of Alignment>50 (Su et al., 2017).
Quantitative real-time PCR assays

Total RNA of fruits from three developmental stages were

prepared as above performed for RNA-seq library construction.

Quantitative real-time RT-PCR analysis was performed as

previously done (Su et al., 2019). Integrated DNA Technologies

software (https://sg.idtdna.com/pages) was applied to design the

primers for quantitative real-time polymerase chain reaction (qRT-

PCR). EjACT2 (AB710173.1) was used as the reference gene. Primer

information for all the interested biosynthesis genes were listed in

Table S8. Each value confers to the mean of three biological replicates

captured by the LightCycler480 Q-PCR system (Roche, Sweden) using

iTaq™ universal SYBR Green Supermix purchased from Bio-Rad.
DNA extraction and PSY2A genotyping

Genomic DNA samples were extracted from young leaves of

JFZ and EH with a M5 CTAB plant gDNA extract Kit (Mei5

Biotechnology, Beijing, China) according to the user’s protocol.

Genotyping of PSY2A, a candidate gene formerly confirm by (Fu

et al., 2014) to underlie flesh color and carotenoid variation of

cultivated loquat fruits, with forward primer: 5’-ATTTGCCA

ACTACCACTGCTTTCA-3 ’ and reve r se pr imer : 5 ’ -

TACACCACATAAGAAACAAGCA-3’. The PCR amplicons were

monitored on 1.5% agarose gels.
Results

Fruit appearance of wild and
cultivated loquats

In general, fruits of the cultivated Eriobotrya japonica are

mostly in yellow to orange-red colors, globose to obovate shape,

and 2.0-5.0 cm fruit size. For example, one of the traditional main
frontiersin.org
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cultivars, JFZ, is about 5 cm in transverse diameter and both its peel

and flesh are orange (Figures 1A, C). While the E. japonica is

domesticated for fruit production, most wild loquat species set

small fruits with very thin flesh and cannot meet consumption

demands. Among these species, E. henryi possess attractive red

pigmented fruits in oval shape, and the flesh from their fruit is light

yellow or white (Figures 1B, C).
Carotenoid components accumulated in
peel of wild and cultivated loquat fruits

To understand what pigments contribute to the color changes of

the two loquat species, targeted carotenoid metabolomics was firstly

performed on peel of ripen fruits. Obviously, more and higher

carotenoid compound peaks were detected in JFZ, among which b-
carotene is the highest at 6.21 min by UPLC-MS/MS (Figure 2A). In
Frontiers in Plant Science 05
total, 38 carotenoid components were identified from the fruit peel of

the two loquat species, including b-carotene, violaxanthin palmitate,

rubixanthin laurate, b-cryptoxanthin laurate, b-cryptoxanthin,
rubixanthin palmitate, b-cryptoxanthin palmitate, lutein dilaurate,

b-cryptoxanthin oleate, violaxanthin-myristate-caprate, (E/Z)-

phytoene, b-cryptoxanthin myristate, lutein dipalmitate, lutein, etc.

(Figure 2B, Tables S1, 2). And the majority of these compounds

existed in both of the two species (little in EH), while the total

carotenoid content in JFZ (410.70mg·g-1) was about twelve folds

higher to that in EH (Figure 2C). For both of them, b-carotene
accounted for more than 42% of the total carotenoids, and b-carotene
content in JFZ is thirteen folds to that in EH (Figure 2D). Metabolites

derived from g-carotene (including b-carotene, b-cryptoxanthin,
violaxanthin, rubixanthin and zeaxanthin) accounted for more than

90% of the total carotenoids in JFZ. The top 15 highly enriched

carotenoids compounds, except for lutein, were significantly

accumulated at higher levels in JFZ (Figure 2E).
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FIGURE 1

Trees and fruits of cultivated and wild loquats. (A) Large tree and orange-colored fruits of the ‘Jiefangzhong’ cultivar. (B) Small tree and red-colored
fruits of Eriobotrya henryi. (C) Fruit weight and fruit diameter of JFZ and EH.
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Identification of anthocyanins components
enriched in peel of wild loquat fruits

Lower carotenoid accumulation in above detection confirmed

that carotenoid was not the major pigment explaining the deeper

color of EH fruits. Since anthocyanins are the major pigments for

the red color of apple and pear fruits (both of them are relatives of

loquat from the apple subfamily) (Espley et al., 2007; Ni et al., 2023),

we then carried out flavonoids metabolomics to understand the

metabolite basics for red coloring of wild loquat fruits. The UPLC-

MS/MS detection showed abundant and high anthocyanin

compound peaks in peel of EH fruits, among which cyanidin-3-

O-galactoside was the highest at 5.11 min, however the second

highest peak at 9.48 min is an unknown compound very similar to

naringenin-7-O-glucoside (9.16 min) (Figure 3A). In total, 34

flavonoids components were identified from the two loquat

species, including 8 cyanidins, 6 flavonoids, 5 procyanidins, 4

delphinidins, 4 peonidins, 4 petunidins, and 3 pelargonidins

(Figure 3B, Tables S3, 4). In sum, the total flavonoids in EH fruits

were 4.31 folds to that in JFZ fruits while it is unexpected that the

cultivated JFZ contained similar levels of flavonoid in mature fruit

compared to the wild loquat (Figures 3C, D). Most of the

anthocyanin compounds (cyanidin, delphinidin, peonidin and

pelargonidin) were trace or undetectable in peel of JFZ, and

cyanidin compounds accounted for 69% of total flavonoids in EH

(Figure 3C). Cyanidin (thousands of times higher) and pelargonidin

levels were significantly higher accumulated in EH compared with

that in JFZ (Figure 3D). Cyanidin-3-O-galactoside (659.07 mg·g-1),
cyanidin-3-O-arabinoside (4.47 mg·g-1) and cyanidin-3-O-

glucoside (2.53 mg·g-1) accounted for more than 97% of the total

anthocyanin enriched in EH while pelargonidin-3-O-galactoside

(14.56 mg·g-1) accounted for 2.14% (Figure 3E).
Transcriptome sequencing data assembly
and annotation

Transcriptome sequencing analysis was carried out on mature

JFZ and EH fruit peel samples. A total of 29.47 Gb raw reads with

sequencing error rate lower than 0.03% were obtained from the

sequencing of all six libraries, and the biological replicates of

different samples were clustered together to show high

reproducibility (Figure S1A). A total of 28.30 Gb clean reads were

obtained with Q20>97.68%, Q30>93.42% after filtering and the GC

content ranged from 46.87% to 47.26% (Table S5). More than 91%

of the clean reads from JFZ could be unique mapped to reference

genome, while only about 77% for that of the wild EH (Table S6).

Differentially expressed gene (DEG) analysis identified 12,888

DEGs between the two ripen fruit samples, among these 6113

were down-regulated in JFZ and 6775 were up-regulated (Figure

S1B). KEGG, and GO databases annotation showed that lots of

DEGs were significantly enriched in pigment metabolism related

pathways like ‘pigment metabolic process’, ‘pigment biosynthetic

process’, ‘phenylpropanoid biosynthesis’, ‘isoflavonoid biosynthesis’

and ‘terpenoid biosynthesis’ (Figures S1C, D). To further explore
Frontiers in Plant Science 07
the mechanism of carotenoids and flavonoids accumulating in

loquat fruits, the expression patterns of enzyme encoding genes in

the carotenoid and flavonoid pathways were analyzed.
Expression analysis of carotenoid
metabolic pathway genes

The amino acid sequences of carotenoid metabolic enzymes

from Arabidopsis were first used to identify carotenoid metabolism

pathway genes in loquat. A total of 81 genes were identified,

including six DXS, two DXR, two HDS, two HDR, two IPI, eight

GGPS, six PSY, one PDS, one Z-ISO, three ZDS, four CRTISO, one

LYCB, two LCYE, three BCH, two CYP97A, one CYP97B, one

CYP97C, nine ZEP, two VDE, twenty-one NCED/CCD and one

NSY (Figure 4, Table S7). Many of these genes were differentially

expressed in peel between JFZ and EH. Among them, the expression

patterns of DXR (Ej00026206), GGPS (Ej00042678 and

Ej00095981), PSY (Ej00015134), ZDS (Ej00041636 and

Ej00073339), BCH (Ej00051281 and Ej00006398), ZEP

(Ej00019538, Ej00054248 and Ej00004893) and NCED/CCD

(Ej00040698, Ej00005370 and Ej00034109) were associated with

carotenoid metabolites changes between JFZ and EH (Figure 4).

Among these, the expression levels of DXR, GGPS, PSY, ZDS and

ZEP were significantly up-regulated while those of NCED/CCD

were significantly down-regulated in JFZ (Figure 4).
qRT-PCR validated key carotenoid
metabolic structural genes

DNA genotyping showed that JFZ is an EjPSY2A-EjPSY2Ad

heterozygous plant while EH is EjPSY2A-EjPSY2A homozygous

species (Figure 5A). This result indicated that the weak carotenoid

contents in EH were not caused by the loss of PSY enzyme function

as white-fleshed cultivars performed. Instead, it may be induced by

the difference in gene expression levels. To further confirm whether

the above-mentioned significantly expressed genes contributed

to the carotenoid accumulation divergence of different loquat

species, we then collected fruit samples from orange-, red- and

purple-coloring varieties at green-, color breaker- and ripen stages

for gene expression analyses (Figure 5B). Gene expression assays

showed that DXR, GGPS, PSY, ZDS and ZEP were significantly up-

regulated from green to color breaker and/or ripen stages, and

expressed highest in JFZ (Figure 5C). While DXR, GGPS and ZDS

were obviously down-regulated in EH as fruits ripening. On the

contrary, the expression levels of both of the active NCED/CCDs

(Ej00040698 and Ej00005370) were increased during fruit

maturation in both of the two varieties, and they expressed at

higher levels in EH than in JFZ. In addition, the transcript levels of

PSY (Ej00015134), ZDS (Ej00041636) and ZEP (Ej00004893) in JFZ

were more than 5.8 folds to that of EH. Meanwhile, the transcript

levels of NCED/CCDs (Ej00040698, Ej00005370 and Ej00034109,

function in carotenoids degradation) in EH were 7.88~460.77 folds

higher to that in JFZ during fruit coloring.
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FIGURE 3
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Expression analysis of anthocyanin
biosynthesis enzyme encoding genes

55 enzyme encoding genes (six PAL, four C4H, three 4CL, six CHS,

ten CHI, three F3H, six F3’H, three DFR, two ANS, six UGT78, three

FNS, one F3’5’H and three LAR) throughout the anthocyanin and

flavonoid biosynthesis pathway were identified (Figure 6, Table S7).

Transcriptome data showed that the expression patterns of UGT78

(Ej00006885 and Ej00057656), ANS (Ej00061364), DFR (Ej00081751
Frontiers in Plant Science 10
and Ej00054205), F3’H (Ej00076015 and Ej00065084), F3H

(Ej00042569 and Ej00026228), CHI (Ej00071798 and Ej00070948),

CHS (Ej00014264, Ej00014720, Ej00054582, Ej00014465 and

Ej00054946), 4CL (Ej00013378 and Ej00005091), PAL (Ej00021556,

Ej00051389 and Ej00064002) were notably associated with the higher

anthocyanin accumulation in peel of EH (Figure 6, Figure S2). Among

these, the higher transcript levels of UGT78, DFR, F3’H, F3H, CHI, and

CHSwere positively associated with high cyanidin-3-O-galactoside and

pelargonidin-3-O-galactoside in the red-colored EH (Figure 6).
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qRT-PCR validated key anthocyanin
biosynthesis enzyme encoding genes

To further investigate whether the above identified genes

contributed to anthocyanin accumulation in loquat fruits, qRT-

PCR was carried out to verify their expression patterns of genes in

the last seven steps of anthocyanin biosynthesis pathway as

formerly performed for carotenoid metabolic genes. The

expression data showed that CHS (Ej00054582 and Ej00014720),

CHI (Ej00071798), F3H (Ej00026228 and Ej00042569), F3’H

(Ej00065084), DFR (Ej00081751), ANS (Ej00061364), and UGT78

(Ej00006885) were significantly up-regulated in peel of both red-

colored EH and purple-colored ES while down-regulated in JFZ as

fruits ripen. Another F3’H (Ej00076015) was sharply down-

regulated from green stage to ripen stage in JFZ, while gently in

EH. Moreover, the transcript levels of all these genes were

significantly higher in EH than in JFZ (Figure 7). The expression

levels of ANS (Ej00061364), F3H (Ej00042569), F3’H (Ej00065084),

CHS (Ej00054582) and CHI (Ej00071798) in EH were notably

7.4~8.9, 4.4~7.0, 4.4~4.9, 7.5~27.0 and 55.0~73.1 folds to that in
Frontiers in Plant Science 11
JFZ as fruits start coloring. In addition, the expression level of

UGT78 (Ej00057656) in EH was more than 4.6 folds to that in JFZ.
Discussion

Evolution of anthocyanin and carotenoid
biosynthesis underlies fruit color variation
from ancient loquat to modern cultivar

Commonly, cultivated loquat fruits are classified into white-,

yellow-, orange-, and orange-red fleshed groups, due to variations in

carotenoid accumulation capabilities of their fruits. Sadana (1949)

first revealed that b-carotene is the predominant pigment positively

associated with fruit color of cultivated loquats. Then, 23 (Zhou et al.,

2007), 25 (De Faria et al., 2009) and 30 (Hadjipieri et al., 2017)

carotenoid compounds were identified via HPLC and HPLC-PDA-

MS/MS. With violaxanthin palmitate, rubixanthin laurate, b-
cryptoxanthin laurate, b-cryptoxanthin, rubixanthin palmitate, b-
cryptoxanthin palmitate, lutein dilaurate, b-cryptoxanthin oleate,
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violaxanthin-myristate-caprate, b-cryptoxanthin myristate and lutein

dipalmitate newly identified here, we identified the most carotenoid

constituents (38 molecules) from loquat fruit via UPLC-MS/MS

(Figures 2A, B, Table S1). In accordance with former researches in

loquat (Zhou et al., 2007; De Faria et al., 2009; Fu et al., 2012), b-
carotene was found to be the most abundant compound in both JFZ

and EH fruits (Figure 2). b-Carotene is also the most abundant

carotenoids of apple (Ampomah-Dwamena et al., 2012) and apricot

(Zhou et al., 2020), which greatly contributed to their flesh

pigmentation. In contrast, lutein and b-cryptoxanthin were the

main carotenoid components of peach (Wu et al., 2022) and cherry

(Demir, 2013). b-carotene, violaxanthin palmitate and rubixanthin

are the top three carotenoids detected in the cultivated JFZ, while

lutein is the second most carotenoid of EH (Figure 2E). These results

suggest that Rosaceae fruit trees are conserved in carotenoid

production. Different accumulation capacity of each component,

and fold changes of the major carotene constitutes are responsible

for flesh color variation of these fruits. The variations in contents of

major carotenoid, b-carotene and b-cryptoxanthin, were discovered
to underlie the flesh color difference between white and orange-red

fleshed cultivars (Zhou et al., 2007; De Faria et al., 2009; Fu et al.,
Frontiers in Plant Science 12
2012). The 10-fold variation of b-carotene and total carotenoid

results in white-fleshed wild loquat fruits and orange-fleshed JFZ

fruits (Figure 2).

It has also been well known that the accumulation of carotenoid

compounds results in yellow, orange and orange-red color of loquat

fruit (Zhou et al., 2007; Fu et al., 2012; Fu et al., 2014). However, the

chemical compounds responsible for red and purple pigmentation of

wild loquat remain unclear. Anthocyanin is another types of pigment

confers to red pigmentation on plant organs and greatly benefit plant

pollination, seed dispersal and so on. Notably, some anthocyanins

were abundantly enriched in fruits including apple (Clayton-Cuch

et al., 2023), pear (Ni et al., 2023), peach (Cheng et al., 2014), citrus

(Huang et al., 2019), grape (Ono et al., 2010), waxberry (Ren et al.,

2022), litchi (Li et al., 2016) and longan (Yi et al., 2021) to improve

their commodity and bioactivity value. In the present study, 34

flavonoid compounds including 8 cyanidin, 6 flavonoid, 5

procyanidin, 4 delphinidin, 4 peonidin, 4 petunidin and 3

pelargonidin were identified by UPLC-MS/MS, and anthocyanins

were identified in Eriobotrya genus for the first time (Figures 3A, B,

Tables S3, 4). Cyanidin is generally reported to be the most abundant

anthocyanin of many fruits, among these, apple (Clayton-Cuch et al.,
Green
Breaker

Ripen

noisserpxe
evitale

R

0

1

2

3

4

5

6

Green
Breaker

Ripen

noisser pxeevital e
R

0.0

0.5

1.0

1.5

2.0

2.5

2D Graph 13

Green
Breaker

Ripen

no isserp xe
ev itale

R

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Green

Breaker
Ripen

noisse rpxe
evitale

R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Green
Breaker

Ripen

n oisserpxe
evitale

R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Green
Breaker

Ripen

noisserp xeevi tale
R

0

2

4

6

8

10

12

14

2D Graph 9

Green
Breaker

Ripen

noisserpxe
evitale

R

0

1

2

3

4

Green
Breaker

Ripen

noisserpxe
evitale

R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Green
Breaker

Ripen

noisserpxeevital e
R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Green
Breaker

Ripen

noisserpxe
evitale

R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Green
Breaker

Ripen

noisserpxe
evitale

R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Green
Breaker

Ripen

nois serpx e
evitale

R

0.0

0.5

1.0

1.5

2.0

2.5
CHS_Ej00054582

ANS_Ej00061364

DFR_Ej00081751F3'H_Ej00065084

F3H_Ej00026228

JFZ EH

CHI_Ej00071798CHS_Ej00014720

CHI_Ej00070948

UGT78_Ej00057656 UGT78_Ej00006885

F3H_Ej00042569

F3'H_Ej00076015

FIGURE 7

Expression patterns of significantly expressed anthocyanin biosynthesis genes in peel of fruits at three developmental stages.
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2023), pear (Ni et al., 2023) and chokeberry (Wen et al., 2020) mainly

accumulated C3Ga (cyanidin-3-O-galactoside), while citrus (Huang

et al., 2019), peach (Cheng et al., 2014), litchi (Li et al., 2016) and

longan (Yi et al., 2021) predominantly accumulated C3G (cyanidin-

3-O-glucosid), and jujube (Shi et al., 2020) primarily accumulated

cyanidin-3-O-rutinoside (C3R). Here, we discovered that C3Ga is the

most abundant anthocyanin in EH, followed by pelargonidin-3-O-

galactoside (P3Ga), cyanidin-3-O-arabinoside (C3A) and C3G. On

the contrary, all these anthocyanins were trace or undetectable in JFZ,

and total anthocyanin content in EH was thousands of times higher

than that in JFZ (Figures 3C-E).

As b-carotene and cyanidin-3-O-galactoside themselves show

orange or red colors (Tanaka et al., 2008), the metabolic analysis

here reveals that b-carotene and its derivatives contribute to orange

flesh of cultivated loquat (Figure 4), while cyanidin-3-O-galactoside

underlies red pigmentation of the wild species (Figure 6). The red

appearance of wild loquat with high concentrations of anthocyanins

is promising to meet current consumer expectations for novel color.
Key carotenoid biosynthesis steps in
loquat fruits

Carotenoids are derived from IPP and its allylic isomer

DMAPP. The primary metabolic pathways of carotenoids have

been widely studied in fruit crop and other horticulture plants

(Nisar et al., 2015; Hermanns et al., 2020). Among dozens of

carotenoid metabolic steps, PSY is regarded as a main rate-

limiting enzyme, and variations in Psy-A1, MePSY2 and ClPSY1

resulted in greatly changes of total carotenoids content in wheat (He

et al., 2007), cassava (Welsch et al., 2010) and watermelon (Liu et al.,

2021). In addition, transcript levels of PSY homologues were also

positively associated with fruit carotenoid content in citrus (Peng

et al., 2013) and apple (Ampomah-Dwamena et al., 2015). In loquat,

a segment deletion in C-terminal of EjPSY2A was discovered to

cause lower carotenoid accumulation in fruits of white-fleshed

loquat varieties (Fu et al., 2014). In this study, both JFZ and EH

showed dominant genotype in EjPSY2A locus (Figure 5A), while the

white EjPSY2A transcript level in JFZ was more than 11-fold higher

than that in EH (Figure 5C). This suggests that low transcript level

of key carotenoid biosynthesis gene acts as another candidate

mechanism for weak carotenoid-pigmentation of wild loquat fruit.

Compared to EH, ZDS (z-Carotene desaturase) and ZEP

(zeaxanthin epoxidase) expression levels in JFZ were more than 7-

fold higher during fruits coloration (Figures 4, 5B, C). As a key

enzyme in the carotenoid biosynthesis pathway, ZDS can catalyze z-
carotene to form lycopene. EjZDS was also up-regulated during fruit

pigmentation of the orange-colored ‘Obusa’ loquat (Hadjipieri et al.,

2017). Overexpression of apple MdZDS notably improved both

carotenoid biosynthesis and saline–alkali stress tolerance in

transgenic plants (Wang et al., 2023). In addition, ZEP paralog in

yellow−fleshed sweet potato promoted carotenoid accumulation

through the epoxidation of b-carotene and b-cryptoxanthin
(Suematsu et al., 2020). While mutation in CaZEP contributes to

orange coloration by improving carotenoid contents in pepper fruit

(Lee et al., 2021).
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On the other hand, NCED/CCD family proteins include

NCEDs, CCD7, CCD8, CCD4, and CCD1 function in degradation

of carotenoids into apocarotenoids. Carotenoid levels were

negatively correlated with NCED/CCD expression, and natural

variations in PpCCD4, CrCCD4b and SiCCD1 strongly enhanced

carotenoid content in peach (Falchi et al., 2013), citrus (Zheng et al.,

2019) and millet (He et al., 2022). Corresponding to the very low

carotenoid levels in white-fleshed fruit (Figure 2), transcript levels of

NCED/CCDs in white-fleshed EH were 7.88 to 460.77 folds higher

to that in orange-fleshed JFZ during fruit coloring (Figure 5C).

Collectively, the strongly positive correlations of key biosynthesis

gene expression patterns and negative correlations of metabolic gene

expression patterns with carotenoid level changes in the loquat fruits

suggest that PSY, ZDS, ZEP and NCED/CCD may be key

biosynthesis/metabolic genes in loquat carotenoid accumulation.
Key steps for anthocyanin biosynthesis in
wild loquat fruits

Generally, anthocyanins biosynthesis can be divided into the

early general phenylpropanoid pathway and the late flavonoid

pathway (Figure 6). The key enzymes in the phenylpropanoid

pathway, PAL, C4H and 4CL, convert phenylalanine to 4-

coumaroyl-CoA (Tanaka et al., 2008). Then, 4-coumaroyl-CoA

combines malonyl-CoA are catalyzed by a series of enzymes (CHS,

CHI, F3H, F3’H, F3’5’H, DFR, ANS, UGT, etc.) to synthesize

anthocyanin and other flavonoid compounds (Tanaka et al., 2008).

UGT78 is the last and key enzyme for the biosynthesis of cyanidin-3-

O-galactoside and pelargonidin-3-O-galactoside (Figure 6). VvGT6

(Ono et al., 2010), CsUGT78A15 (He et al., 2021), MrUGT78W1

(Ren et al., 2022) and MdUGT78T2 (Clayton-Cuch et al., 2023) all

function in transferring galactosyl from UDP-Gal to flavonols to

produce quercetin 3-O-galactoside and cyanidin-3-O-galactoside in

grape, tea, waxberry and apple. EH accumulated a large amount of

cyanidin-3-O-galactoside in its fruits (Figure 3). Correspondingly,

notably high UGT78 transcription was detected in this species

(Figures 6, 7). ANS is a key enzyme at the end of the plant

anthocyanin biosynthetic pathway that catalyzing the colorless

leucoanthocyanidins into red-colored cyanidins. In this study, we

identified two ANS homologues in loquat genome, and one of them

(Ej00061364) highly expressed in red-colored EH, while it was

undetectable in JFZ during fruit coloring (Figures 6, 7). Mutations

in the coding region of RiANS and SmeFAS resulted in loss of

function of ANS protein and leads to loss of anthocyanin pigments

in raspberry fruit (Rafique et al., 2016) and eggplant flower (Chen

et al., 2018). On the other hand, overexpression of ANS dramatically

elevated anthocyanin concentration in strawberry fruit (Giampieri

et al., 2018) and silencing of SlANS expression significantly decreased

anthocyanin accumulation in tomato (Sun et al., 2023).

Moreover, the expression levels of many enzyme-encoding genes

upstream ofANSwere also notably upregulated in EH as fruits initiated

coloring (Figures 6, 7). Among these, CHS and CHI were the mostly

upregulated at both color breaker and ripen stages (7.5~27.0 and

8.6~105.7 folds compared to JFZ, see in Figure 7). CHS is the first

committed step offlavonoid biosynthesis. Tobacco plants constitutively
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expressing McCHS (isolated from crabapple) displayed a higher

anthocyanins accumulation and a deeper red petal color (Tai et al.,

2014). Fruit collected fromCHS-silenced apple line lacked flavonoids in

the skin and flesh (Dare et al., 2013). DcCHI1 (Zhu et al., 2021) or

CnCHI4 (Yu et al., 2022) overexpression significantly increased

flavonoid production in tobacco. Furthermore, the red-pigmented

EH also increased F3H and F3’H transcript levels to 4.4~9.9 or

4.4~22.6 folds higher than that in JFZ (Figure 7). Up-regulating the

expression of CitF3H improves anthocyanin accumulation in blood

orange (Ma et al., 2023), oppositely, mutation in FvF3H blocks

anthocyanin biosynthesis and results in pink strawberry fruits (Xu

et al., 2023). DlF3′H plays important role in selecting which

anthocyanins component to be accumulated in red longan pericarp

(Yi et al., 2021), loss of function of the F3’H (tt7) inArabidopsis restricts

catalyzation from dihydrokaempferol to dihydroquercetin, and leads to

overaccumulation of kaempferol-3-rhamnoside in seed coat to

compromise seed longevity (Niñoles et al., 2023). Totally, gene

expression assays here demonstrate that UGT78 (Ej00057656), ANS

(Ej00061364), F3H (Ej00042569), F3’H (Ej00065084), CHS

(Ej00054582) and CHI (Ej00071798) play crucial roles in

anthocyanin biosynthesis flux determining in the red-colored

wild loquat.
Conclusion

In this study, we used fruits of an orange-colored loquat cultivar

(JFZ) and a red-colored wild species (EH) to conduct carotenoid- and

anthocyanin-targeted metabolomics analysis and transcriptome

sequencing. The results showed that carotenoids including b-
carotene (43.96%), violaxanthin palmitate (14.25%), rubixanthin

laurate (5.26%), b-cryptoxanthin laurate (5.25%) and b-
cryptoxanthin (5.08%) were the core metabolites leading to the

orange colored fruits of JFZ. PSY, ZDS and ZEP were the key

candidate genes responsible for carotenoid accumulation. Cyanidin-

3-O-galactoside (96.75%), cyanidin-3-O-arabinoside, cyanidin-3-O-

glucoside and pelargonidin-3-O-galactoside were the predominant

anthocyanins contributed to the red pigmentation of the wild loquat

fruits. Up-regulation of ANS, UGT78, F3H, F3’H, CHS and CHI

expressions was tightly associated with anthocyanin content elevation

in the red-colored EH fruits. In addition, these data implies that

carotenoids might be positively selected during loquat domestication.
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