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spot disease in
complex backgrounds
Bo Liu1,2†, Hongyu Fan1,2†, Yuting Zhang1,2, Jinjin Cai3

and Hong Cheng1,2*

1College of Information Science and Technology, Hebei Agricultural University, Baoding, China,
2Hebei Key Laboratory of Agricultural Big Data, Baoding, China, 3College of Mechanical and
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Introduction: In precision agriculture, accurately diagnosing apple frog-eye

leaf spot disease is critical for effective disease management. Traditional

methods, predominantly relying on labor-intensive and subjective visual

evaluations, are often inefficient and unreliable.

Methods: To tackle these challenges in complex orchard environments, we

develop a specialized deep learning architecture. This architecture consists

of a two-stage multi-network model. The first stage features an enhanced

Pyramid Scene Parsing Network (L-DPNet) with deformable convolutions for

improved apple leaf segmentation. The second stage utilizes an improved U-

Net (D-UNet), optimized with bilinear upsampling and batch normalization,

for precise disease spot segmentation.

Results: Our model sets new benchmarks in performance, achieving a mean

Intersection over Union (mIoU) of 91.27% for segmentation of both apple

leaves and disease spots, and a mean Pixel Accuracy (mPA) of 94.32%. It also

excels in classifying disease severity across five levels, achieving an overall

precision of 94.81%.

Discussion: This approach represents a significant advancement in

automated disease quantification, enhancing disease management in

precision agriculture through data-driven decision-making.
KEYWORDS

apple disease, severity estimation, deep learning, frog eye leaf spot, two-
stage method
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1 Introduction

Leaves are critical factors in the process of sunlight interception

and its subsequent conversion into biochemical energy, essential for

plant growth and health (Sala et al., 2015). Diseases affecting apple

tree leaves, such as the apple frog-eye leaf spot caused by fungi of

the genus Cercospora, can have a detrimental impact on both the

yield and quality of apple crops (Venkatasubbaiah et al., 1991;

Abbasi et al., 2019). Accurate assessment of disease severity is

therefore imperative for effective disease management (Liu et al.,

2022). Bock et al. (2010) have shown automated disease diagnosis

through computer vision technologies can maintain consistency

with traditional human observations while offering significant

advantages in efficiency.Additionally, automated disease diagnosis

can be optimized over time with more training data. While, manual

visual assessment or measurement of the percentage of leaf area

affected in orchards still relies heavily on human labor,

characterized by low efficiency (Bock et al., 2010). Automated

disease diagnosis through computer vision technologies not only

maintains consistency with traditional human observations but also

offers significant advantages in efficiency Bock et al. (2022).

Moreover, it is important to emphasize the role of accurate

disease severity estimation in determining the right amount of

pesticide. Automated systems contribute to this accuracy, especially

in early disease stages, and thus can significantly reduce pesticide

usage Patil et al. (2011).

In recent years, significant strides have been made in the

development of deep learning-based algorithms for automatic

segmentation and recognition of leaf diseases. Initial efforts, such

as the semantic segmentation model by Lin et al. (2019) and the

traditional threshold segmentation methods by Esgario et al. (2020),

focused on controlled environments with simple backgrounds.

These models have shown high accuracy rates, such as 96.08% in

the case of Lin et al. (2019) and 84.13% for Esgario et al. (2020).

However, their performance is often compromised when applied to

real-world agricultural settings due to the complexity of natural

backgrounds and the diversity of disease symptoms (Thakur et al.,

2022; Wang et al., 2022b). In response to these challenges, recent

research has pivoted toward models that can adapt to the

complexities of field images. One promising approach is the use

of multi-stage models, which significantly enhance disease

recognition by first segmenting leaves and then refining the

identification of disease spots within those segmented areas Wang

et al. (2021). Despite these advancements, certain issues persist,

particularly in handling intricate image contexts. For instance, while

Liu et al. (2022) and Zhu et al. (2023) excel in leaf segmentation,

they struggle with detecting smaller lesions. Similarly, Tassis et al.

(2021) introduced instance segmentation to improve background

handling but at the expense of increased model complexity.

To address these limitations, this paper introduces a novel two-

stage approach for estimating disease severity in complex

environments. In the first stage of our approach, we introduce L-

DPNet, a leaf segmentation model that incorporates deformable

convolutions into the PSPNet architecture. These deformable

kernels adapt dynamically to various leaf shapes and occlusions,
Frontiers in Plant Science 02
enlarging the receptive field to capture more contextual

information. Through end-to-end learning, the model adjusts to

leaf shape variations without manual intervention. As a result, L-

DPNet not only addresses the shortcomings of existing methods but

also enhances segmentation accuracy, setting a precise foundation

for disease diagnosis. In the second stage of our approach, we

employ D-UNet, an enhanced U-Net architecture tailored for

disease segmentation. Building on the strengths of traditional U-

Net models, D-UNet incorporates several key improvements. A

batch normalization layer is integrated to mitigate overfitting,

particularly on complex lesion patterns, ensuring robust

generalization. To refine segmentation quality, especially for

small, dense spots, bilinear upsampling replaces transposed

convolution, eliminating checkerboard artifacts. Additionally, the

model addresses the class imbalance between diseased and healthy

pixels by incorporating Focal loss into the objective function. This

focuses the training on hard-to-classify examples, thereby boosting

the model’s performance on the under-represented diseased class.

The main contributions of this paper are as follows:
1. We introduce a two-stage approach for comprehensive

disease analysis in apple leaves, starting with L-DPNet for

leaf segmentation. L-DPNet is a specialized model that

enhances the existing PSPNet by incorporating

deformable convolutions and optimizing pyramid pooling

layers for computational efficiency. This first stage sets the

foundation for the subsequent disease spot segmentation.

2. Alongside L-DPNet, We present D-UNet, an optimized U-

Net architecture for disease spot segmentation. It builds on

the VGG16 architecture and includes batch normalization

and bilinear interpolation to improve segmentation quality

and mitigate overfitting.

3. We integrate L-DPNet and D-UNet into a unified

framework, achieving 98.90% accuracy in leaf

segmentation, 99.89% in lesion segmentation, and 94.81%

in disease severity classification. This provides a robust tool

for apple leaf disease diagnosis and treatment.
The rest of this paper is arranged as follows: Section 2

introduces Materials and Methods, including Data collection/

Datasets pre-processing and Deep-Learning Algorithms. Section 3

introduces Experiment and result analysis, many experiments were

carried out.Finally, some conclusions are drawn in Section 4.
2 Materials and methods

2.1 Data collection and pre-processing

The apple leaf image dataset used in this study is sourced from

the public dataset Plant Pathology 2021, which supplements the

Plant Pathology 2020 dataset (Thapa et al., 2020), originally

provided by the 2020 Kaggle Plant Pathology competition.It

contains RGB images of 4 types of diseases and healthy leaves of

apple, with a total of 23,000 images. The dataset can be downloaded
frontiersin.org
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from the Kaggle website 1,2.The images in the dataset were captured

using professional cameras with varying focal lengths, at a

resolution of 4,000 ×2,672 pixels. Each image focuses on a single

leaf but also contains complicating background elements, such as

grass, healthy leaves, trunks, fruit, and variations in light exposure.

These complex background elements helped train the model to

handle real-world environmental variables, thereby improving its

performance. Figure 1 displays several examples of such images. We

specifically focused on the apple frog-eye leaf spot disease, selecting

1,372 images with complex backgrounds. These images are

randomly divided into training, validation and test sets at a ratio

of 8:1:1, with 1,096, 138 and 138 images in each set.

For deep learning, it is crucial that the image dataset be

manually annotated before training the model (Zou et al.,

2021).Since the original dataset only provides image-level

category labels, while our research goal is to estimate the severity

of the disease on the leaves based on the results of image semantic

segmentation, specifically pixel-level classification of images, the

labels provided in the original dataset are not suitable for our task.

Therefore, we manually label using the pixel-level segmentation tool

LabelMe (Kurtser et al., 2016).The image annotation results match

the annotation content, as shown in Supplementary Figure 1.The

annotation files are in JSON format and can be converted into PNG

(portable network graphics) image files for training purposes. The

labeling results for the leaves and lesions are illustrated in Figure 2.

To enrich the background information of the detected object,

the Mosaic image augmentation method was applied (Bochkovskiy

et al., 2020; Chen et al., 2022; Xing and Chen, 2022). This label-

preserving method, with strong generalization capabilities,

randomly selects four images and performs random cropping and

collaging, thereby enriching the background of the detected objects.

The annotation files for the corresponding collaged images can be

obtained by modifying their ground truth metadata. These spliced

images were then fed into the model for learning. The effect of

mosaic data augmentation is shown in Figure 3. After data

augmentation, a total of 2,192 target images are obtained for

model training. The specific dataset information is shown

in Table 1.
2.2 Diagnosing the severity of the disease

Disease severity classification serves as one of the bases for

developing prevention, control, and treatment strategies. Currently,

no unified classification standard exists for the severity of apple

frog-eye leaf spot disease. According to the literature, one common

method is to calculate the ratio of the diseased area to the total leaf

area on the same leaf. This method forms the basis for accurately

estimating the severity of crop diseases in a given region (Bock et al.,
1 https://www.kaggle.com/competitions/plant-pathology-2020-

fgvc7/data

2 https://www.kaggle.com/competitions/plant-pathology-2021-

fgvc8/data
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2010). Therefore, this study adopts this method, using the ratio of

the diseased area to the total leaf area on the same leaf as the basis

for disease severity classification. The calculation Formula 1 is

presented as follows:

L =
SLeaf
SDisease

(1)

where SLeaf represents the segmented leaf area calculated as the

sum of leaf pixel counts, SDisease represents the segmented disease

spot area calculated as the sum of disease spot pixel counts, and L

represents the ratio of the disease spot area (SDisease) to the total leaf

area (SLeaf).

Based on the reference of relevant disease grading standards

and suggestions from plant protection experts (Liu et al., 2022),

the severity of apple frog eye leaf spot disease is divided into five

levels from level 1 to level 5 as shown in Table 2. The severity of

the disease is determined based on the degree of damage to apple

leaves, using the proportion of apple frog eye leaf spot disease

damage to the total leaf area. Level 1 refers to damage below

0.95%; Level 2 refers to 0.95%-1.50% damage; Level 3 refers to

1.50%-2.15% damage; Level 4 refers to 2.15%-3.00% damage;

Level 5 refers to damage equal to or greater than 3.00%. The

complete severity estimation process and workflow are shown in

Supplementary Figure 2.
2.3 Methods

Different semantic segmentation models possess distinct

network architectures, which can influence the segmentation

accuracy of leaves and disease spots. Utilizing the same

segmentation model for both stages might compromise the

model’s feature extraction capability due to the differing

segmentation objectives (Wang et al., 2022a). Therefore, a more

suitable semantic segmentation model is chosen for each stage,

tailored to the specific features to be extracted. Liu et al. (2022)

segmented apple tree leaves in complex backgrounds using various

deep learning algorithms. Their experimental results showed that

the PSPNet model excelled in leaf segmentation, while the UNet

model was superior for predicting disease areas. However, there

were still some errors in handling occlusions and small spots,

leading to incomplete and inaccurate segmentation. Further

improvements in accuracy are needed. Moreover, current research

on identification and diagnosis of apple frog-eye leaf spot disease

remains insufficient, without application to semantic segmentation

and severity assessment. Building on their work, this study aims to

improve the PSPNet model by incorporating deformable

convolutions to segment apple leaves under challenging field

conditions. This addresses issues such as low segmentation

accuracy arising from factors like occlusion, capture level, and

lighting conditions. The segmented results are subsequently fed

into D-UNet network for disease spot detection. The severity of

apple frog-eye leaf spot disease is then assessed based on the ratio of

the segmented leaf area to the disease spot area. The network

architecture is depicted in Figure 4.
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2.3.1 Leaf segmentation based on L-DPNet
The dataset for apple frog-eye leaf spot disease presents several

challenges, including varied image acquisition environments,

diverse leaf colors and shapes, non-uniform backgrounds, and

inconsistent lighting conditions. The PSPNet network, which uses

a pyramid pooling module to capture local features at multiple

scales, offers a foundation for tackling these issues (Zhao et al.,
Frontiers in Plant Science 04
2017). PSPNet, short for Pyramid Scene Parsing Network, is a

convolutional neural network architecture designed for semantic

segmentation. The goal of PSPNet is to address scene parsing

challenges in semantic segmentation tasks. In complex scene

images, the same object may appear at different scales and spatial

locations. To correctly segment these objects, the model needs to

understand the global contextual information in the image. The
BA

FIGURE 3

Mosaic method for data augmentation: (A) Enhanced rgb image; (B) Enhanced mask image.
B C

D E F

A

FIGURE 1

Representative image of apple leaves in a complex environment: (A) Green grass on the ground; (B) Tree trunk; (C) Shadow; (D) Healthy leaves;
(E) Apple fruit; (F) Obstruction.
B CA

FIGURE 2

Leaf and disease labels in the dataset: (A) Original images; (B) Leaf labels; (C) Disease spot labels.
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pyramid pooling module in PSPNet can capture global contextual

information at different scales of the image, enabling both local and

global receptive fields to extract multi-scale features for more

accurate scene parsing and semantic segmentation. Building on

this foundation, this study introduces key improvements tailored to

the specific characteristics of apple leaves in various environmental

settings. These improvements enhance both shallow and deep

feature extraction capabilities of the core pyramid pooling

module. As a result, we develop an improved model, referred to

as L-DPNet, which is subsequently employed for accurate

leaf segmentation.

Improvement 1: The task of segmenting target leaves from the

background in this study is essentially a binary classification

problem. In the original PSPNet network, the multi-scale pyramid
Frontiers in Plant Science 05
pooling layer introduces computational redundancies, as

demonstrated in Figure 5A. To streamline this, we made an

improvement to the model’s architecture (as illustrated in

Figure 5B). Specifically, the number of pyramid pooling layers

was reduced from four to two, with retained pooling kernel sizes

of 1×1 and 6×6.

The 1 × 1 pooling represents the coarsest level of global pooling,

integrating global spatial information to generate a single feature

map. The 6 × 6 pooling divides the feature map into 6 × 6 sub-

regions, where each sub-region undergoes pooling. This allows the

model to capture both local and global information. To maintain

channel consistency during the subsequent upsampling process, the

input feature map first undergoes compression through two

different scale pooling layers. This is followed by a 1 × 1
TABLE 1 Dataset information.

Level
Training Validation

Test
Test

Total

Original Augmented Original Augmented

Level 1 238 476 36 38 312 550

Level 2 241 482 35 30 306 547

Level 3 219 438 33 30 282 501

Level 4 196 392 25 30 251 447

Level 5 202 404 9 10 221 423

Total 1096 2192 138 138 1372 2468
B

C

D

A

FIGURE 4

L-DPNet+D-UNet network model architecture. (A) Input image. (B) Backbone. (C) Output leaf image. (D) Output disease image.
frontiersin.org
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convolution to halve the number of channels. The feature map is

then upsampled back to its original dimensions using bilinear

interpolation, ensuring that it matches the size of the initial input

feature map. The final output feature map is obtained by

concatenating these two processed feature maps.

Improvement 2: In segmenting leaves affected by apple frog-

eye leaf spot disease against a complex background, traditional
Frontiers in Plant Science 06
convolution units sample the input feature map at fixed locations,

maintaining a uniform receptive field size across the same

convolution layer. Given the complex backgrounds and potential

occlusions of target leaves, an adaptive method is required to

prevent issues like incomplete leaf segmentation and low

accuracy. Typically, the implementation of 2D convolution

comprises two steps: 1) sampling the input feature map xusing a

regular grid R; 2) multiplying the sampled values by the

corresponding weights w and then summing. For each position p0
on the output feature map y, we have the calculation Formula 2:

y(p0) = o
pn∈R

w(pn) x(p0 + pn) (2)

where x(p0 + pn) enumerates different positions on the input

feature map, w (pn) denotes the weight values of the convolution

kernel, and y (p0) enumerates different positions on the output

feature map. Deformable convolution networks address this by

allowing each convolution operator to have a learnable offset,

adaptively learned from the data (Dai et al., 2017). An offset {Dpn|
B

A

FIGURE 5

Comparison of multi-scale convolutional layers between PSPNet and our proposed method: (A) PSPNet (pyramid pooling structure); (B) Our
optimized structure.
TABLE 2 Criteria for disease severity classification based on the ratio of
diseased area to leaf area.

Disease
severity level

Ratio L of disease area to total leaf area

Level 1 0%<= L< 0.95%

Level 2 0.95%<= L< 1.50%

Level 3 1.50%<= L< 2.15%

Level 4 2.15%<= L< 3.00%

Level 5 L >= 3.00%
frontiersin.org
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n = 1,…,N} is added to the regular grid R, where N = |R|. Here, Dp
nrepresents the learnable offset at each standard convolution

sampling position. Given a position p n in R, the position on the

grid becomes p0 + pn+ Dpn, and each output image position is

represented as p0. The convolution expression is Formula 3:

y(P0) = o
pn∈R

w (pn) · x   (p0 + pn + Dpn) (3)

After learning, the obtained offsets Dpn are typically decimals.

The pixel values at the sampling positions x (p0 + pn+ Dpn) are then
bilinearly interpolated. For notational convenience, let p = p0 + pn+

Dpn, which corresponds to the nearest pixel point. The equations for
interpolation are Formula 4:

x(p) =o
qi

wi(qi, p) · x   (qi),  wi (qi, p) = ɡ   (qix , px) · g   (qiy , py) (4)

where qi enumerates all integer spatial positions in the feature

map x, specifically the four surrounding integer points of p. The

bilinear interpolation kernel function wi (qi,p) is obtained by

multiplying the kernel functions in the XY directions. It can be

defined using the function ɡ (a,b) = max(0,1 − |a − b|).

In Figure 6, a comparison between standard and deformable

convolution for leaf sampling is presented. The receptive field of

standard convolution maintains a fixed rectangular shape, in contrast

to the polygonal shape exhibited by the deformable convolution’s

receptive field. This adaptability in the shape of the receptive field

allows the network to better capture the irregular features of leaves.

The introduction of deformable convolution enhances the L-DPNet

model’s ability to adapt to the unique features of apple leaves in

complex natural environments. Given that the shape and structure of

apple leaves are often irregular, traditional fixed-shape receptive fields

might not adequately capture these details. Moreover, deformable

convolution enables the network to adjust the shape of the receptive

field adaptively at each position, thus improving the capture of the

leaves’ irregular features.
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The decoding phase of the L-DPNet comprises two layers - a

1x1 pooling layer and a DPNet layer as shown in Figure 7. After

obtaining the 6x6 pooled representation, we incorporate a

deformable convolution layer, then element-wise add the resulting

features to the convolved feature map to obtain the corresponding

feature map. The deformable convolution layer aims to learn more

complex features. Essentially, it is a PSPNet model enhanced with

deformable convolution.

2.3.2 Segmentation of lesions based on improved
U-Net

Due to the inherent structural constraints and limited semantic

richness of apple frog eye leaf spot disease, both high-level semantic

information and low-level features are crucial for accurate

segmentation (Liu et al., 2020). U-Net is a fully convolutional

network architecture for medical image segmentation consisting

of an encoder and decoder in a u-shaped structure (Long et al.,

2015). By fusing shallow and deep feature maps, it combines low-

level features such as points, lines, and edge contours with high-

level semantics. The shallow feature maps tend to represent basic

building units and contain more spatial information, while the deep

feature maps encode more semantic information with less spatial

resolution. This architecture is especially suitable for segmenting

small targets and effectively concatenates high-level semantics with

low-level features (Anwar et al., 2018; Liu et al., 2020).

Furthermore, when dealing with limited data, U-Net can

achieve satisfactory performance when trained end-to-end after

data augmentation (Ronneberger et al., 2015). Therefore, the

convolutional neural network employed in the second stage of

this study for lesion segmentation is primarily based on U-Net.

To leverage pre-trained models and accelerate training, this study

integrates the U-Net architecture with the VGG16 network model

(Simonyan and Zisserman, 2014). The VGG16 network itself is a

classification network with 16 layers, including 13 convolutional layers,

5 max pooling layers, and 3 fully connected layers. Specifically, the
BA

FIGURE 6

Comparison of receptive field distribution between traditional and deformable convolutions on leaves: (A) Traditional convolutions; (B)
Deformable convolution.
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detailed structure, image size, and convolution kernel size are shown in

Supplementary Table 1. In the Encoder section, the D-UNet model

uses the 13 convolutional layers and 4 max pooling layers of VGG16,

discarding the 5th max pooling layer and 3 fully connected layers to

complete the downsampling feature extraction of the DUNet network.

To prevent overfitting, we introduce a batch normalization layer BN

(Batch Normalization) before each activation layer ReLU. Through the

Encoder part, five preliminary valid feature layers can be obtained, as

shown in Figure 4. The Decoder part of D-UNet utilizes the five

preliminary valid feature layers obtained from the backbone to perform

bilinear interpolation upsampling instead of the transpose convolution

upsampling used in the original network, and then feature fusion to

obtain a final valid feature layer that integrates all features.

The segmentation of lesion regions is essentially a binary

classification problem for each pixel. However, the number of

pixels in the lesion region is smaller than that in the non-diseased

region. This imbalance can lead to lower accuracy for the class with

fewer samples, reducing the overall recognition accuracy for the

disease region. To mitigate this issue, the D-UNet model employed

in this study uses a Focal loss function FL(pt) (Lin et al., 2017),

which is defined as Formula 5:

FL   (pt) = −   (1 − pt)
g log  (pt) (5)

where pt represents the probability (confidence) of the predicted

class by the model. g is used to adjust the problem of imbalanced

samples between difficult and easy classes, and in this study,g is set
to 2 to lower the loss of easy samples by a power function.

Multiplying with (1 − pt)
gmakes the model more focused on

difficult samples.
3 Experiment and result analysis

3.1 Model training

The hardware platform for the experiments comprises an Intel

Core i9-9900X CPU and an NVIDIA GeForce RTX 2080 Ti GPU.
Frontiers in Plant Science 08
The software environment includes a 64-bit Ubuntu 20 system with

the PyTorch deep learning framework. Table 3 lists specific

modeling parameters such as batch size for training and

validation, base learning rate, and the maximum number of

iterations, which are set based on the GPU’s capacity and the

dimensions of the sample images.

The original images have dimensions of 4,000×2,672,

necessitating scaling or cropping to fit the model’s input size.

This step reduces computational complexity and ensures

compatibility with the model’s input layer. While downscaling

image size does result in some loss of detail, preprocessing and

model training strategies are employed to maintain the accuracy of

results, even with smaller input images.
3.2 Evaluation metrics

To test the performance of the model used in this study,

Precision (%), Recall (%), Mean Intersection over Union (mIoU,

%), and average Pixel Accuracy (mPA, %) were selected as the

indicators Wang et al. (2020c).

3.2.1 Precision and recall
Our model has two segmentation stages. In both stages, true

positives (TP) are pixels correctly identified as the target, false

positives (FP) are incorrectly identified pixels, and false negatives

(FN) are missed target pixels. In stage one, TP are leaf pixels, FP are

background pixels incorrectly marked as leaf, and FN are leaf pixels

missed. In stage two, TP are diseased spots correctly identified, FP

are healthy leaves incorrectly marked diseased, and FN are missed

diseased spots. We evaluate our model’s performance using

Precision and Recall as Formulas 6 and 7:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
FIGURE 7

Configuration of deformable convolutions in our L-DPNet model(DP Module).
frontiersin.org
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Precision assesses the accuracy in classifying pixels, indicating

the likelihood that pixels identified as leaf tissue (first stage) or

diseased spots (second stage) are accurately classified, which in turn

reduces false positives. Recall measures the model’s capability to

detect all relevant pixels, reflecting the probability of correctly

identifying all leaf pixels (first stage) and diseased spots (second

stage), which helps in minimizing false negatives.

3.2.2 mIoU and mPA
mIoU is a standard metric used to evaluate the performance of

image segmentation. It represents the ratio of the intersection area

between the input label mask and the prediction result mask to their

union area. A larger value of mIoU indicates better segmentation.

mPA measures the average Pixel Accuracy across all categories,

where a larger value signifies better classification performance by

the model. For ease of explanation, let’s assume that the dataset

contains k + 1 categories. Here, pij denotes the number of pixels

where category i is predicted as category j. pii represents the number

of pixels correctly predicted, while pij and pji stand for the numbers

of false-negative and false-positive pixels, respectively mIoU and

mPA as Formulas 8 and 9:

mIoU =
1

k + 1o
k

i=0

pii

ok
j=0   pij +ok

j=0  pji − pii
(8)
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mPA =
1

k + 1o
k

i=0

pii

ok
j=0   pij

(9)

In the first stage of our model, mIoU measures accuracy in

distinguishing leaf versus non-leaf areas; higher values indicate

more precise leaf segmentation. mPA assesses success in

classifying pixels as leaf or background, with higher values

signifying greater accuracy. In the second stage, mIoU is key for

assessing precision in differentiating diseased spots versus healthy

tissue; higher values reflect more accurate identification of diseased

regions. mPA evaluates the effectiveness in classifying pixels as

diseased or healthy, where higher values show improved detection

of disease spots.
3.3 Experiment and analysis

3.3.1 Experimental analysis for leaf segmentation
To evaluate the impact of the number of pyramid pooling layers

and pooling kernel size on apple leaf segmentation, we employ

ResNet50 as the backbone network and consider both the number

of pooling layers and kernel sizes as variable parameters. We design

11 distinct experimental settings, as outlined in Table 4. The first

experimental scheme employs the original 4-scale pyramid pooling

layers of PSPNet, consisting of [1 × 1,2 × 2,3 × 3,6 × 6]. Experiments

2-7 feature combinations of any two sizes from these four scales,

while Experiments 8-11 incorporate combinations of any three

sizes. By evaluating the segmentation performance across these

configurations, we gain insights into the sensitivity of PSPNet to

different pyramid pooling setups. This analysis aids in optimizing

the network architecture specifically for the task of apple leaf

segmentation. Our results suggest that both the presence and

sizes of pooling layers substantially affect model performance on

the apple leaf disease dataset. Optimal performance can be observed

with pooling kernel sizes of [1 × 1,6 × 6].

In Table 5, we conduct ablation studies on the deformable

convolution layer. Specifically, we design 3 experiments that add the
TABLE 3 Modeling parameters for L-DPNet and D-UNet.

Modeling Parameters L-DPNet Model D-
UNet Model

Input size 473x473 512x512

Training number of epochs 200 200

Base learning rate 0.0001 0.0001

Image input batch size 16 4

Gamma 0.1 0.96

Number of classes 2 2
TABLE 4 The pyramid pooling layer ablation experiment.

Experiment settings The number of pools Pool core size mIoU (%) mPA (%) Precision (%) Recall (%)

Setting 1 4 [1x1, 2x2, 3x3, 6x6] 94.57 97.10 97.59 97.10

Setting 2 2 [1x1,2x2] 92.04 95.44 95.13 95.44

Setting 3 2 [1x1,3x3] 93.39 96.49 96.36 96.49

Setting 4 2 [1x1,6x6] 94.64 97.19 97.61 97.19

Setting 5 2 [2x2,3x3] 93.58 96.41 97.01 96.41

Setting 6 2 [2x2,6x6] 93.42 96.60 96.98 96.60

Setting 7 2 [3x3,6x6] 93.31 96.43 96.82 96.43

Setting 8 3 [1x1,2x2,3x3] 93.60 96.77 96.83 96.77

Setting 9 3 [1x1,2x2,6x6] 93.54 96.60 97.32 96.60

Setting 10 3 [2x2,3x3,6x6] 92.19 95.53 96.12 95.53

Setting 11 3 [1x1,3x3,6x6] 93.98 96.85 97.34 96.85
Best values are in bold.
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deformable convolution after the 1x1 pooling layer, after the 6x6

pooling layer, and after both 1x1 and 6x6 pooling layers,

respectively. By comparing segmentation performance, we can

validate the effectiveness of adding deformable convolutions to

different levels of the feature pyramid, as well as investigate if

concurrent deformation modeling on multiple levels can achieve

complementary benefits. This ablation study provides insights on

how to best incorporate deformable convolutions into the network

architecture for enhanced modeling capability. Based on the data in

Tables 4, 5, we conclude that for the apple frog eye leaf spot dataset,

excessive pyramid pooling layers are not advantageous. Best results

were achieved with 1×1 and 6×6 kernel sizes and by incorporating

deformable convolutions alongside the 6x6 pooling layer. This

streamlined model structure eliminated redundancy and

improved recognition performance, especially for occluded leaves.

Compared to the original PSPNet, our modified model

demonstrates improvements across all metrics, achieving scores of

97.74%, 98.82%, 98.90% and 98.82%, thereby confirming the

benefits of integrating deformable convolutions.

The change in training loss with iteration is depicted in Figure 8.

This figure aims to compare the segmentation performance between
Frontiers in Plant Science 10
the improved model, L-DPNet, and the original model, PSPNet.

The graph reveals significant fluctuations in training loss during the

early stages (0 to 75 iterations), followed by a gradual convergence.

PSPNet shows higher loss and slower convergence, stabilizing after

approximately 125 iterations. In contrast, L-DPNet demonstrates a

more rapid decrease in loss during the 0 to 75 iteration range, with

relative stability achieved between 75 to 200 iterations,

indicating convergence.

In summary, the model’s performance has been optimized

effectively through judicious adjustments to the pyramid pooling

layers and the introduction of deformable convolutions. This has

not only improved the accuracy of apple leaf recognition but has

also significantly enhanced various evaluation metrics. These results

strongly support the model’s utility for apple leaf disease

segmentation tasks.

3.3.2 Experimental analysis for
disease segmentation

In the second stage of our work, we introduce a modified U-Net

architecture, which we refer to as D-UNet, to handle the greater

complexity in shape and size of disease spots compared to the apple
TABLE 5 Ablation experiment of deformable convolution layer.

Experiment Setting 1x1 6x6 mIoU(%) mPA(%) Precision(%) Recall(%)

Setting 1 ✓ 95.12 98.26 97.55 98.26

Setting 2 ✓ 97.74 98.82 98.90 98.82

Setting 3 ✓ ✓ 94.09 96.37 97.55 96.37
f

Best values are in bold.
FIGURE 8

Convergence comparison between PSPNet and our proposed L-DPNet.
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leaves segmented in the first stage. In D-UNet, we incorporated

batch normalization layers before each activation layer to mitigate

overfitting. We also opted for bilinear interpolation over transposed

convolutions for upsampling tasks in the decoder section. For D-

UNet, we conduct four ablation studies: original UNet, replacing

transpose convolution with bilinear interpolation only, using

normalization layers only, and finally combining normalization

with bilinear interpolation upsampling. Through comparing

segmentation performance, we can validate the individual

contribution of bilinear upsampling and normalization, as well as

the combined effects when both enhancements are incorporated

together. This systematic ablation study provides insights on the

optimal configurat ion to improve upon the origina l

UNet architecture.

The ablation study results for these D-UNet modifications are

presented in Table 6. The results indicate that the introduction of

batch normalization layers led to a 0.07% increase in mIoU, a 0.17%

increase in mPA, a 1.34% increase in precision, and a 0.17%

increase in recall. These enhancements are particularly beneficial

for our task of segmenting apple frog eye leaf spots, where high

pixel-level accuracy on unseen images is crucial.Furthermore, in D-

UNet, the use of bilinear interpolation for upsampling in the

decoder yielded more consistent and artifact-free results

compared to transposed convolutions. This improvement was

reflected in significant enhancements in all evaluation metrics:

mIoU increased by 1.32%, mPA by 2.59%, precision by 1.35%,

and recall by 2.59%.

3.3.3 Experimental analysis for L-DPNet+D-
UNet architecture

To validate the effectiveness of the proposed improvements in

segmenting apple leaves and frog eye spots, we include comparisons

with other state-of-the-art algorithms in our analysis to provide

comprehensive evaluation (PUNet (Liu et al., 2022) and LD-

DeepLabv3+ (Zhu et al., 2023)).

Both of these methods are specifically designed for disease

severity estimation. PUNet employs PSPNet for leaf area

extraction and U-Net for disease spot segmentation. LD-

DeepLabv3+ uses an enhanced version of DeepLabv3+ to

segment both the leaf and disease areas. Moreover, We

included SOLOv2 (Wang et al., 2020b) and YOLACT (Bolya

et al., 2019) to validate the effectiveness of one-stage instance

segmentation methods in leaf and disease segmentation.SOLOv2

is an improved version of the original SOLO (Wang et al., 2020a)

method. It is a one-stage instance segmentation approach that

eliminates the need for anchor boxes and is known for its
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efficiency and accuracy. YOLACT is another one-stage instance

segmentation method. It employs a mask coefficients to refine

segmentation boundaries. To keep our comparison upto-date,

we have included the latest version of the YOLO object detection

algorithm, YOLOv8 (Jocher et al., 2023), which is known for its

speed and accuracy. Although YOLO series methods are

originally designed for object detection, we adapted it for our

segmentation task. Specifically, we retained YOLOv8’s backbone,

data augmentation, and training strategies, but replaced its

detection head with YOLACT’s mask prediction head to better

suit our segmentation needs.

As illustrated in Table 7, our approach surpasses competing

methods across nearly all evaluation metrics, demonstrating its

efficacy in segmenting both background and object classes, such

as leaves and diseases. In general, two-stage algorithms like

PUNet and LD-DeepLabv3+ achieve superior mIOU and mPA

scores when compared to one-stage counterparts like SOLOv2

and YOLACT. Although YOLOv8 excels over SOLOv2 and

YOLACT in several aspects, it doesn ’t quite match the

performance of two-stage models. This enhanced precision in

two-stage methods likely arises from their step-by-step

procedure: initially identifying the leaf area and subsequently

focusing on disease spot segmentation.

3.3.4 Experimental analysis for the estimation of
disease severity levels

The severity predicted by the trained model was compared with

manually labeled severity levels for 138 images in the test set to

calculate the model’s classification accuracy. The results are

presented in Table 8, which lists the number of datasets used for

testing and validating severity levels, the number of correctly

classified images, and the accuracy ratio derived from these

two values.

The average Precision for all levels and for levels 1-3 are

94.81% and 96.90%, respectively. Although the combined L-

DPNet+D-UNet architecture achieved high classification

accuracy in estimating the severity of apple frog-eye leaf spot

disease, we can observe a tendency for Level 1 samples to be

misclassified as Level 2, as shown in Figure 9. A likely reason for

this is the similarity in the areas of lesions for Levels 1 and 2,

which can lead to misdiagnosis. Generally, misclassified samples

are confused with labels that are adjacent in severity, which is

mainly due to segmentation errors but remains within an

acceptable margin of error.

However, the accuracy for classifying severity Levels 4 and 5 is

lower than that for Levels 1-3. This discrepancy is attributed to the
TABLE 6 D-UNet model ablation experiment.

Experiment Setting Normalized layer Bilinear interpolation mIoU(%) mPA(%) Precision(%) Recall(%)

Experiment Setting 1 88.90 91.47 97.20 91.47

Experiment Setting 2 ✓ 89.86 92.37 98.20 92.37

Experiment Setting 3 ✓ 88.97 91.64 98.54 91.64

Experiment Setting 4 ✓ ✓ 90.29 94.23 99.89 94.23
f

Best values are in bold.
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higher proportion of Levels 1-3 in the dataset used for training,

thereby limiting the model’s proficiency in recognizing Levels 4 and

5. The performance of the proposed model could be enhanced by

incorporating datasets that cover a broader range of apple frog-eye

leaf spot disease severity levels. Additionally, leveraging prior

knowledge from fields like plant protection, along with advanced

computer vision techniques, could contribute to a more effective

severity assessment process.

3.3.5 Visual Evaluation of L-DPNet and D-
UNet models

Visualization of segmentation results: We have expanded

our analysis to include a more nuanced evaluation of the

segmentation results, focusing on both leaves and lesions.

Considering that we have conducted comparisons with

representative two-stage and one-stage methods, Figures 10, 11

respectively display the visual results of leaf and disease spot
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segmentation using two-stage methods. Meanwhile, Figure 12

presents the comparative results with one-stage segmentation

methods. Specifically, we discuss the performance of different

methods under five distinct scenarios:

As shown in Level 1, 4 and 5 of Figure 10, when leaf overlap

exists, both PUNet and LD-DeepLabv3+ exhibit recognition

errors to some extent. In Level 1 and Level 5, the leaf edges are

over-segmented, while in Level 4, the overlapping leaf edges are

under-segmented. In contrast, our proposed model can

accurately segment the leaf edges, laying the foundation for

subsequent lesion segmentation. In Level 3 of Figure 10, the

shadow areas formed by il lumination lead to under-

segmentation of leaves in PUNet and LD-DeepLabv3+ which

fail to identify the shadowed regions. Comparatively, our

improved model can better restore the complete leaf shapes

when dealing with illumination variations. When natural edge

defects (Figure 10 Level 2) caused by leaf curling exist, PUNet

wrongly recognizes the missing edges as complete leaf regions.

As for edge defects resulting from lesions (Figure 10 Level 2),

LD-DeepLabv3+ cannot effectively identify such edges. Our

model can effectively distinguish between these two edge cases

and produce superior segmentation. On leaves with mild

diseases, tiny lesion spots often appear (Figure 11 Level 1).

PUNet can identify small spots but fails to fully segment them,

which will affect the final severity assessment. LD-DeepLabv3+,

on the other hand, directly misses some lesions (Figure 11 Level

4). In contrast, our D-UNet can not only accurately locate the

spots, but also segment them precisely. When dense spots occur

(Figure 12 Level 4), PUNet will erroneously group adjacent spots

into a single large one, and also fails to segment small spots. LD-
TABLE 7 Performance of apple leaf and frog eye spot segmentation under different model architectures.

Methods class IoU(%) PA(%) Precision(%) Recall(%) mIoU(%) mPA(%) mPrecision(%) mRecall(%)

PUNet

Background
Leaf

Disease

97.89
92.45

98.96
94.78

99.02
95.02

98.96
94.78 89.44 92.43 92.65 92.43

77.98 83.56 83.90 83.56

LD-DeepLabv3+

Background
Leaf

Disease

97.55
91.58

97.89
94.01

98.78
94.82

97.89
94.01 88.94 91.70 92.46 91.66

77.69 83.20 83.77 83.09

SOLOv2

Background
Leaf

Disease

97.12
91.05

97.35
93.47

97.78
93.30

97.52
93.47 88.35 91.08 91.33 91.14

76.89 82.43 82.90 82.43

YOLACT

Background
Leaf

Disease

96.93
90.10

97.06
92.90

97.28
92.92

97.06
92.90 87.87 90.71 90.98 90.71

76.59 82.18 82.75 82.18

YOLOv8

Background
Leaf

Disease

97.19
91.26

97.52
93.58

97.98
93.49

97.35
93.58 88.60 91.40 91.71 91.38

77.34 83.09 83.67 83.20

Ours

Background
Leaf

Disease

98.81
96.67

98.98
98.66

99.50
98.30

98.98
98.66 91.27 94.32 94.19 94.32

78.33 85.32 84.77 85.32
Best values are in bold.
TABLE 8 Performance for disease severity classification.

Disease
Classification

Number
of dataset

Correct
Grading

Precision
(%)

Level 1 38 37 97.37

Level 2 30 29 96.67

Level 3 30 29 96.67

Level 4 30 28 93.33

Level 5 10 9 90.00

Total 138 132 94.81
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FIGURE 9

Confusion matrix for classification of apple frog eye leaf spot severity.
FIGURE 10

Visual results of leaf segmentation using two-stage methods. This figure compares the predictions made by PUNet, LD-DeepLabV3+, and our
approach, L-DPNet+D-UNet, for apple leaves. Areas marked with blue boxes indicate false positives, while areas marked with yellow boxes indicate
false negatives.
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DeepLabv3+ causes spot merging. Our model achieves finer

segmentation of dense disease spots, which further improves

the accuracy of severity estimation.

Additionally, owing to the capability of two-stage methods to

accurately localize objects with varying scales, such as leaves and

disease spots, our proposed two-stage method results in fewer false

positives for both leaf (Figure 12 Level 1) and disease spot areas

(Figure 12 Level 5), as well as fewer false negatives for leaf (Figure 12

Level 2) and disease spot regions (Figure 12 Level 4).

Visualization of feature maps: To elucidate the differences in

leaf segmentation capabilities between the original PSPNet and the

improved L-DPNet, we visualized the feature maps of both models.

The results are displayed in Supplementary Figure 3. In the feature

map of the original PSPNet, as seen in Supplementary Figure 3A,

the extracted features appear relatively blurry, providing only a

rough localization of the leaves and limited detail. In contrast, the

feature map of L-DPNet, shown in Supplementary Figure 3B,

demonstrates significant improvements. By incorporating

deformable convolution kernels that adaptively adjust their shape

and size, L-DPNet is better attuned to the leaves’ shape and

structure. This results in feature maps with clearer leaf edges and
Frontiers in Plant Science 14
enhanced detail, effectively differentiating the apple leaves from

the background.

4 Conclusion

In this study, we introduced a two-stage approach using L-

DPNet and D-UNet for automated apple disease severity

assessment. The first stage employs L-DPNet, achieving a leaf

segmentation accuracy of 98.30%. This model is particularly

effective in separating apple leaves from complex natural

backgrounds, setting the foundation for subsequent disease spot

segmentation. The second stage utilizes D-UNet, which builds upon

the VGG16 architecture and includes batch normalization and

bilinear interpolation to achieve a lesion segmentation accuracy of

84.77%. Finally, our models contribute to an overall severity

classification accuracy of 94.81% across five severity levels.

Compared to individual models, our collaborative framework

demonstrates stronger adaptability to complex backgrounds and

accurate identification of fine details. Segmentation-based severity

computation enables more delicate and continuous disease

quantification, guiding precision treatment. The proposed
FIGURE 11

Visual results of disease spot segmentation using two-stage methods. This figure compares the disease spot predictions made by PUNet, LD-
DeepLabV3+, and our approach, L-DPNet+D-UNet. Areas marked with blue boxes indicate false positives, while areas marked with yellow boxes
indicate false negatives.
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framework has the potential to be integrated into orchard

inspection robots or intelligent monitoring systems for early

disease detection and treatment. Our upcoming research will

focus on optimizing the computational efficiency of the model

without compromising its accuracy. We also aim to extend the

model’s capabilities to include dynamic monitoring of leaf areas and

the recognition of multiple diseases on the same leaf.
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FIGURE 12

Visual comparison between our two-stage method and one-stage methods, using different color masks for different instances. This figure compares
the predictions made by YOLACT,SOLOv2,YOLOv8 and our approach, L-DPNet+D-UNet, for apple leaves and disease spots. Areas marked with blue
boxes indicate false positives, while areas marked with yellow boxes indicate false negatives.
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