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An integrated feature selection
approach to high water stress
yield prediction

Zongpeng Li, Xinguo Zhou, Qian Cheng, Weiguang Zhai,
Bohan Mao, Yafeng Li and Zhen Chen*

Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
The timely and precise prediction of winter wheat yield plays a critical role in

understanding food supply dynamics and ensuring global food security. In recent

years, the application of unmanned aerial remote sensing has significantly

advanced agricultural yield prediction research. This has led to the emergence

of numerous vegetation indices that are sensitive to yield variations. However,

not all of these vegetation indices are universally suitable for predicting yields

across different environments and crop types. Consequently, the process of

feature selection for vegetation index sets becomes essential to enhance the

performance of yield predictionmodels. This study aims to develop an integrated

feature selection method known as PCRF-RFE, with a focus on vegetation index

feature selection. Initially, building upon prior research, we acquired

multispectral images during the flowering and grain filling stages and identified

35 yield-sensitive multispectral indices. We then applied the Pearson correlation

coefficient (PC) and random forest importance (RF) methods to select relevant

features for the vegetation index set. Feature filtering thresholds were set at 0.53

and 1.9 for the respective methods. The union set of features selected by both

methods was used for recursive feature elimination (RFE), ultimately yielding the

optimal subset of features for constructing Cubist and Recurrent Neural Network

(RNN) yield prediction models. The results of this study demonstrate that the

Cubist model, constructed using the optimal subset of features obtained through

the integrated feature selection method (PCRF-RFE), consistently outperformed

the RNN model. It exhibited the highest accuracy during both the flowering and

grain filling stages, surpassing models constructed using all features or subsets

derived from a single feature selection method. This confirms the efficacy of the

PCRF-RFEmethod and offers valuable insights and references for future research

in the realms of feature selection and yield prediction studies.

KEYWORDS

multispectral, PCRF-RFE, Cubist, RNN, performance
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1289692/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1289692/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1289692/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1289692&domain=pdf&date_stamp=2023-12-04
mailto:chenzhen@caas.cn
https://doi.org/10.3389/fpls.2023.1289692
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1289692
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2023.1289692
1 Introduction

Winter wheat holds tremendous significance in agriculture as

one of the most widely cultivated and consumed food crops across

the globe. It plays a pivotal role in providing a substantial portion of

food and energy to the world’s population and constitutes an

integral part of people’s daily diets (Liu et al., 2023). The

production of winter wheat also carries great importance for a

nation’s food supply and the overall food security of its citizens (Li

et al., 2022). In recent years, the rise in climate-related disasters,

marked by frequent extreme weather events such as severe droughts

and excessive precipitation, poses a substantial threat to the stability

of agricultural yields (King et al., 2015; Lesk et al., 2022; Wu et al.,

2022). Therefore, the timely and precise monitoring of crop yields

holds the key to empowering farmers and agricultural producers to

make well-informed decisions based on yield data. Furthermore, it

aids governments and policymakers in comprehending the food

supply status and implementing preemptive measures to ensure

food security for their populations.

Traditional methods of monitoring crop yields typically

necessitate labor-intensive and costly procedures involving

destructive sampling and measurements. Moreover, these

conventional techniques are constrained by their limited capacity

to obtain samples, often leading to incomplete and non-real-time

yield data. They can also inadvertently cause soil compaction and

damage (Ma et al., 2023). The emergence of drone remote sensing

technology has revolutionized agricultural practices. UAV remote

sensing offers the capability to swiftly cover vast farmland areas and

deliver high-resolution spectral images and data, including

multispectral imagery (Su et al., 2023). This innovative

technology significantly mitigates long-term operational costs and

provides timely, accurate, and comprehensive crop monitoring

data, thereby driving progress in the field of agriculture. Multi-

spectral sensors, as one of the sensors in UAV remote sensing, are

used in yield prediction (Shafiee et al., 2023), environmental

monitoring (Lo et al., 2023) and pest and disease monitoring

(Barreto et al., 2023). Multispectral sensors are adept at capturing

spectral information across multiple bands, typically including the

visible and near-infrared ranges, each with distinct reflective

characteristics on vegetation. Simultaneously, these sensors can

detect finer surface details such as crop rows and vegetation plots.

Drawing from the findings of prior research(Wang et al., 2016;

Zheng et al., 2019), it became evident that vegetation indices derived

from UAV multispectral imagery exhibited varying performance

across different crop types and environmental settings. Hence, it

becomes imperative to select these features judiciously to eliminate

redundancies. For instance, Zhang et al. (Zhang et al., 2020)

employed the PC method within a filtering approach to calculate

correlation coefficients between the Absorbance Difference

Vegetation Index (ADVI) and conventional vegetation indices

and their association with Cu content in soil and leaves. Their

findings revealed that ADVI exhibited a significantly stronger

correlation compared to other vegetation indices, showcasing its

effectiveness in distinguishing between Cu and Pb stress. In a

similar vein, Chen et al. (Chen et al., 2022) adopted the random
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forest importance method as a screening technique within the

embedding process to optimize variables for leaf Na+ extraction.

Their study observed significant enhancements in both models,

with the Support Vector Machine (SVM) model emerging as the

most effective choice. Leo et al. (Leo et al., 2021) employed RFE

within the packing method to choose spectral indices. This led to an

improved prediction accuracy for the model when assessing the

correlation between predicted and observed scores. It’s noteworthy

that all three of the aforementioned feature selection methods have

consistently displayed strong performance in previous studies. They

have proven to be instrumental in obtaining feature sets that are

both reliable and highly effective. Cubist models have found

applications in a wide range of fields, including forestry (Ou et al.,

2019), soil science (Sarkodie et al., 2023), crop research (Xiao et al.,

2020), environmental studies (Azizi et al., 2022), and more.

Presently, RNN models have demonstrated strong performance in

tasks such as sound activity detection (Mihalache and Burileanu,

2022), image retrieval, natural language processing (Mao et al.,

2014), and crop yield prediction (Khaki et al., 2020). Drawing from

the collective insights of prior studies, it becomes evident that the

majority of research tends to follow one of two approaches. In most

cases, studies either exclusively rely on a single feature selection

method (Abdel-Rahman et al., 2013; Cabezas et al., 2016), or they

engage in comparative analyses involving multiple feature selection

methods (Bai et al., 2022; Li et al., 2022). Unfortunately, what’s

often missing is the integration and synergistic utilization of diverse

feature selection methods to leverage their unique strengths and

yield a more rational and dependable subset of features. This,

undoubtedly, presents a challenge and an opportunity for further

research in our field.

Hence, in this study, we will integrate a combination of feature

selection methods, including the filtering method (PC), embedding

method (RF importance), and the packing method (RFE), all applied

to the selection of features from a pool of 35 multispectral indices.

Subsequently, we will employ these different feature subsets to

construct Cubist and RNN models for yield prediction. Our aim is

twofold: first, to generate feature subsets through the application of

various feature selection methods; and second, to establish an

integrated feature selection approach that effectively derives these

subsets. Ultimately, we intend to evaluate the accuracy of yield

prediction models, offering a theoretical foundation for the

utilization of multispectral remote sensing in wheat yield monitoring.
2 Materials and methods

2.1 Experimental area and design

This experiment was conducted in 2023 at the Xinxiang

Comprehensive Experimental Base of the Chinese Academy of

Agricultural Sciences, located in Xinxiang City, Henan Province,

at coordinates 113°45′38″E and 35°8′10″N (Figure 1), This region

boasts extensive plains and a moderate climate that is particularly

well-suited for the cultivation of winter wheat. It is recognized as a

national high-quality specialty wheat production base.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1289692
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1289692
The experiment consisted of 120 plots. To investigate the impact of

extreme weather conditions, specifically extreme rainfall and severe

drought, on winter wheat yields in the Xinxiang area, four distinct

treatments were established throughout the reproductive stage. These

treatments were as follows: low water stress treatment 1 (W1, with 0%

full water, 0 mm), low water stress treatment 2 (W2, with 30% full

water, 72 mm), full water treatment 3 (W3, with 100% full water, 240

mm), and high water stress treatment 4 (W4, with 200% full water, 480

mm). Each experimental treatment consisted of 30 plots, 3 m long and

1.4 m wide, with an area of 4.2 m2 and a row spacing of 20 cm. Ten

wheat varieties suitable for cultivation in the Yellow and Huaihe wheat

regions were selected as experimental materials. To ensure the

objectivity of the experiment, three replications were established for

each treatment. The experiment was initiated with planting in early

November 2022 and concluded with the harvest on June 10, 2023. In

the production area, pesticides and fertilizers are applied in accordance

with local management practices. Prior to planting, a basal fertilizer is

applied at a rate of 750 kg·ha-1. Wheat is sown at a density of 500 plants

per acre of land. Subsequently, each plot’s harvested wheat was

encapsulated in numbered bags within the laboratory, where it was

dried to a constant mass. The weight of winter wheat in each plot was

then recorded and converted to yield based on the plot’s area.
2.2 UAV multispectral data acquisition

In this experiment, a DJI M210 (Shenzhen DJI Technology Co.,

Ltd., Shenzhen, China) UAV equipped with a Micasense
Frontiers in Plant Science 03
RedEdgeMX multispectral camera was used to collect

multispectral data from winter wheat. The DJI M210 is a high-

performance quadcopter known for its exceptional stability and

precise flight control. The RedEdgeMX sensor is equipped with five

bands: red, green, blue, near-infrared (NIR), and red-edge, making

it particularly well-suited for agricultural and environmental

monitoring. Each band has a precisely designed center

wavelength and bandwidth to meet diverse application

requirements. The red band’s center wavelength is 668nm, the

green band’s center wavelength is 560nm, the blue band’s center

wavelength is 475nm, the NIR band’s center wavelength is 840nm,

and the red-edge band’s center wavelength is 717nm. Importantly,

each channel offers high resolution at 1280×960 pixels with a wide

field of view.

The data collection process involved two flights on May 8, 2023,

coinciding with the flowering stage, and May 20, 2023,

corresponding to the grain-filling stage. These flights were

conducted between 11:00 and 14:00, benefiting from clear and

cloudless weather conditions that minimized shadows and

ensured optimal image quality. Both UAV flights were

maintained at a constant altitude of 30 meters throughout their

missions. To enhance data coverage and overlap, a heading overlap

rate of 85% and a side overlap rate of 85% were established. These

settings were chosen to maximize the comprehensiveness and

accuracy of the imagery, ultimately improving the reliability of

subsequent data processing and analysis. Moreover, the

RedEdgeMX sensor is furnished with Global Navigation Satellite

System (GNSS) technology, ensuring millimeter-level accuracy.
FIGURE 1

Test area and plots.
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When coupled with Ground Control Points (GCPs), this

technology facilitates precise geo-correction during the post-

processing phase. Notably, the sensor operates in the vertical

ground equal time interval photo mode, systematically capturing

images at regular time intervals. This mode is essential for ensuring

uniform spacing of images throughout the flight, enabling the

capture of intricate details and changes within the target area.
2.3 UAV image preprocessing

The data collected from each of the two stages underwent a

systematic process. It commenced with the transfer of the collected

data to a computer and its subsequent import into Pix4DMapper

Pro software (version 4.4.12) (Pix4D SA, Switzerland), two distinct

projects were created, and the necessary project parameters were
Frontiers in Plant Science 04
configured. The alignment of images was achieved through the

utilization of the feature point matching algorithm, as illustrated in

Figure 2. In more detail, the initial step involved generating a sparse

point cloud representing the flight area, which was based on the

UAV imagery and corresponding position data. Subsequently, a

spatial grid was created using the sparse point cloud, and spatial

coordinate information was incorporated. This transformation

resulted in the creation of a sparse point cloud with precise

positions. Following this, the surface geometry of the flight area

was generated. Finally, the process culminated in the creation of

both a high-resolution digital orthophoto (DOM) and a digital

surface model (DSM) encompassing the entire flight area. ArcMap

(version 10.8) (Environmental Systems Research Institute, Inc.,

USA) was used to divide the multispectral high-resolution digital

orthophotos into 120 regions with neighbourhood IDs. Using the

Zonal Statistics as Table function in the ArcMap software, the
FIGURE 2

Research framework and flow chart.
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average value of each plot was calculated for each of the five bands,

and the five spectral bands corresponding to each plot were

identified and exported.
2.4 Vegetation index acquisition

Drawing from previous research findings, we compiled a

comprehensive set of 35 yield-sensitive multispectral vegetation

indices. These indices were derived from the acquired reflectance

data spanning five bands within the multispectral spectrum. They

serve as the primary input feature set for our prediction model. A

detailed listing of all the vegetation indices utilized in this study is

provided in Table 1, including simple vegetation indices, modified

vegetation indices, and functional vegetation indices.
2.5 Modeling framework

In this section, we provide an overview of our proposed

modeling framework, as depicted in Figure 2. The set of 35 yield-

sensitive vegetation indices, constructed within this study, may

potentially contain redundant features. Utilizing all these indices

as direct input features can be detrimental to the performance of

our yield prediction model. Consequently, a data pre-processing

approach is imperative to select and refine the features within the

dataset. Feature selection methods include filtering, embedding and

packing methods. Our proposed modeling framework primarily

consists of two key steps. First, we employ an integrated feature

selection method that leverages the PC and RF importance to filter

and screen the vegetation indices, ultimately identifying the features

crucial for yield prediction. Subsequently, based on the refined

feature subset obtained through feature selection, we proceed with

recursive feature elimination to further optimize the feature subset.

Upon the completion of feature selection, both the full feature

subset and the subsets obtained through various feature selection

methods are used as input features for both the Cubist and RNN

models. To assess model performance, the feature subset is

randomly divided using the 10-fold cross-validation method. In

this approach, each of the 10 folds serves as the validation set, while

the remaining 9 folds constitute the training set for ten iterations.

The results obtained across these iterations are consolidated, and

the mean value is considered as the final accuracy measure for

the model.

2.5.1 Pearson correlation coefficient and random
forest importance

PC falls under the category of filtered feature selection methods.

It stands as one of the most commonly employed statistical tools for

quantifying the relationships between linearly correlated variables.

This coefficient provides a numerical measure of the strength of the

relationship between variables. In the context of feature selection,

the PC proves valuable in assessing the linear correlation between

each feature and the target variable. This information aids in the

selection of highly correlated features with the target variable,
Frontiers in Plant Science 05
TABLE 1 Information about the MS features.

Features Formulas References

Normalized
difference
vegetation
index

NDVI = (NIR − R)=(NIR + R)
(Li Z.

et al., 2023)

Normalized
Difference
Red-Edge

NDRE = (NIR − RE)=(NIR + RE)
(Li Z.

et al., 2023)

Green NDVI GNDVI = (NIR − G)=(NIR + G)
(Hancock and
Dougherty,

2007)

Canopy
chlorophyll
content index

CCCI = (NIR − RE)=(NIR + RE)=

(NIR − R)=(NIR + R)

(Li Z.
et al., 2023)

Green ratio
vegetation
index

GRVI = NIR=G
(Nguyen

et al., 2023)

Red-
Green Ratio

RGR = R=G
(Gamon and
Surfus, 1999)

RedEdge Ratio
Index 1

RRI1 = NIR=RE
(Ehammer
et al., 2010)

RedEdge Ratio
Index 2

RRI2 = RE=R
(Ehammer
et al., 2010)

Adjusted
transformed
soil-adjusted
Vegetation

Index

ATSAVI = 1:22(NIR − 1:22R − 1:22)=

(1:22NIR + R − 1:22*0:03 + 0:08*

(1 + 1:222))

(He et al., 2007)

Chlorophyll
Index Green

CIg = (NIR=G) − 1
(Jr. Hunt

et al., 2011)

Chlorophyll
IndexRedEdge

CIre = (NIR=RE) − 1
(Jr. Hunt

et al., 2011)

Ideal
vegetation
index

IVI = (NIR − 0:03)=(1:22R)
(Main

et al., 2011)

Difference
vegetation
index

DVI = NIR − R (Tucker, 1979)

Weighted
Difference
Vegetation

Index

WDVI = NIR − 1:22R
(Ehammer
et al., 2010)

Transformed
Vegetation

Index
TVI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDVI + 0:5

p (Tran
et al., 2022)

Wide
Dynamic
Range

Vegetation
Index

WDRVI = (0:1NIR − R)=(0:1NIR + R)
(Ahamed
et al., 2011)

Transformed
NDVI

TNDVI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(NIR − R)=(NIR + R + 0:5)

p (LUO
et al., 2006)

Soil-adjusted
vegetation
index

SAVI = 1:5� (NIR − R)=(NIR + R + 0:16)
(Li Z.

et al., 2023)

(Continued)
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thereby enhancing the performance and explanatory capacity of the

model (Zhang et al., 2020). Its formula is as follows:

r(X,Y) =
Cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(X)Var(Y)
p Eq:1

Where Cov (X, Y) represents the covariance of X and, Y VAR(X)

is the variance of X, and VAR(X) is the variance of Y.

The RF is a potent machine learning algorithm widely used for

feature selection and predictive tasks. By integrating multiple

decision trees (Chen et al., 2022), it enables more accurate and

robust predictions. In a RF, feature importance is a crucial concept

used to assess each feature’s contribution to the model’s predictive

performance. This model is composed of several decision trees, each

constructed using random subsets of data and features, which

enhances generalization and mitigates overfitting.To quantify a

feature’s importance, the model computes the difference in

prediction error when the feature is included versus when it is

excluded in all decision trees. These differences are averaged to

determine the feature’s importance. Features with higher

importance values play a more significant role in the model’s

predictive power. These importance scores offer insights into

which features have a greater impact on the target variable, aiding

in feature selection and model interpretation. The RF is a

comprehensive model that combines various decision trees, each

constructed using bagging, and calculates the cumulative

importance score for each feature based on their impurity

reduction values across all the trees. This score provides an

overall measure of a feature’s impact on the model’s predictive

performance. We utilized R (version 4.3) for computing the

importance scores in the Random Forest model.

2.5.2 Integrated feature selection based on
Pearson correlation coefficient and random
forest importance

The integrated feature selection method, which combines the

PC and RF importance, constitutes the first step of our proposed

feature selection approach. In this initial phase, we exclusively

utilize the 35 vegetation index features spanning the five bands of

the multispectral data to ensure the retention of crucial spectral

information. Subsequently, we calculate the importance of each

feature independently using both the PC and RF techniques. The

importance scores are then ranked and visualized, facilitating the

selection of a threshold that distinguishes obviously less important

features from others. Features with importance scores exceeding the

chosen threshold are retained, while those falling below are

eliminated. We posit that there may be significant features

present within the subset selected through both the PC and RF

metrics. Hence, we use their union as a foundation for further

feature optimization.

The second step in our integrated feature selection method

involves the RFE technique. RFE, a wrapper-type feature selection

method, progressively identifies the features that have the most

substantial impact on model performance by iteratively removing

less important features (Li Y. et al., 2023). This method operates by
TABLE 1 Continued

Features Formulas References

Green
difference
vegetation
index

GDVI = NIR − G
(Tucker

et al., 1979)

Green soil
adjusted
vegetation
index

GSAVI = 1:5� (NIR − G)=(NIR + G + 0:5)
(Da Luz

et al., 2022)

Norm G NormG = G=(NIR + R + G)
(Abdollahi and
Zakeri, 2022)

Norm NIR NormNIR = NIR=(R + G + NIR)
(Abdollahi and
Zakeri, 2022)

Norm R NormR = R=(R + G + NIR)
(Abdollahi and
Zakeri, 2022)

Normalized
green red
difference
index

NGRDI = (G − R)=(G + R)
(Ahamed
et al., 2011)

Redness Index RI = (R − G)=(R + G)
(Tran

et al., 2022)

Chlorophyll
vegetation
index

CVI = NIR(R=G2)
(Datt

et al., 2003)

Ratio
Vegetation
Index

RVI = NIR=R
(Haboudane
et al., 2004)

Nonlinear
Vegetation

Index
NLI = (0:12NIR − R)=(0:12NIR + R)

(Roujean and
Breon, 1995)

Modified
Nonlinear
Vegetation

Index

MNLI = (1:5NIR2 − 1:5G)=

(NIR2 + R + 0:5)

(Jordan, 1969)

Optimized
Soil-Adjusted
Vegetation

Index

OSAVI = (NIR − R)=(NIR + R + 0:16)
(Ihuoma and
Madramootoo,

2019)

Transformed
Chlorophyll
Absorption
Ratio Index

TCARI = 3((RE − R)−

0:2(RE − G)(RE=R))

(Bagheri, 2020)

Modified
Chlorophyll
Absorption
Ratio Index

MCARI = ((RE − R)−

0:2(RE − G))(RE=R)

(Li et al., 2019)

Green
Chlorophyll
Index

GCI = (NIR=G) − 1
(Raper and
Varco, 2015)

Red Edge
Chlorophyll

Index
RECI = (NIR=RE) − 1

(Jiang
et al., 2008)

Modified Ratio
Vegetation

Index
MRVI = (NIR=R − 1)=(NIR=R + 1)

(Baret and
Guyot, 1991)
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constructing a model and selecting and eliminating features based

on their importance within the model, continuing until a

predetermined number of features or a stopping condition is met.

In our approach, we employ the subset of union features obtained

from the PC and RF importance methods as input features for RFE.

The RFE method utilizes all available features to train the base

model, which encompasses both the Cubist and RNN models.

Within this base model, the importance of each feature is

assessed, and less important features are systematically eliminated

through iterative steps. This process culminates in the identification

of the subset of features that most effectively enhance the

performance of both the Cubist and RNN models.

2.5.3 Cubist model
Cubist model is an integrated learning method that combines

the advantages of decision tree. It serves as a versatile machine

learning model designed for regression tasks and excels at capturing

complex non-linear relationships. This is achieved through the

fusion of regression trees and the identification of interactions

between features, making it less susceptible to the influence of

outlier noise. The Cubist model often demonstrates robust

performance (Ou et al., 2019). In addition, the Cubist model

requires less scaling and normalisation of the data. This can save

time and effort in data pre-processing in practical applications. The

basic principle of Cubist is to first divide the dataset into regions

based on similarity and then use ordinary least squares regression to

predict the variables of interest within each region. The Cubist

model is as follows:

If ½condition is true�
     then ½regress�
else ½apply next rule�

The continuous and categorical variables can be used in

conditions, but only continuous variables can be used in

regression equations (Han et al., 2023).

2.5.4 RNN model
RNN is a deep learning model well-suited for handling

sequential data. Its standout feature lies in its inherent memory,

allowing it to consider prior information, which influences present

predict ions or outputs . RNN is typical ly trained via
Frontiers in Plant Science 07
backpropagation algorithms. RNN is composed of three key

components: the input layer, the hidden layer, and the output

layer, with its essential cyclic structure facilitating the transfer of

information across different time steps (Murata et al., 2023). The

structure of RNN is depicted in Figure 3.
2.6 Model accuracy assessment

To gauge the predictive performance of our model, we have

chosen two key parameters for evaluation: R-squared (R2) and Root

Mean Square Error (RMSE). A higher R2 value, closer to 1, signifies

a better fit of the model to the data. Conversely, a lower RMSE

value, closer to 0, indicates greater accuracy in the model’s

predictions. In essence, these parameters provide essential metrics

for assessing the model’s effectiveness. Conversely, if the R2 is low

and the RMSE is high, it implies that the model lacks accuracy and

fails to deliver the anticipated predictive power. The formulas for

these parameters are as follows:

R2 = 1 −o
n
i=1(y

⌢
i − yi)

2

on
i=1(yi − �y)2

Eq: 2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(ŷ i − yi)
2

N

s
Eq: 3

where yi is the observed value, is the predicted value, where ŷi is the

predicted value, is the mean of the observed values, and N is the

sample size. �y is the mean of the observed values, and N is

the sample size.
3 Results

3.1 Descriptive statistics

Figure 4 and Table 2 present the descriptive statistics for wheat

yield across 120 plots subjected to four different treatments. The

average yield across all sampled plots in this experiment stood at

8.31 t·ha-1. It’s noteworthy that wheat yield exhibited variations

among the three extreme climate treatments and the treatments

with sufficient water. Treatment W3 boasted the highest average
FIGURE 3

RNN structure.
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wheat yield at 8.97 t·ha-1, whereas treatment W1 had the lowest

average yield at 7.77 t·ha-1. Interestingly, the mean yield under

treatment W4 was slightly lower than that of treatment W2, but

significantly higher than the yield in treatment W1. This

observation suggests that, in this experiment, the extreme drought

treatment (W2) had a more pronounced impact on yield compared

to the extreme rainfall treatment (W4). Analyzing the range,

standard deviation (SD), quantitative statistics, and coefficient of

variation (CV) for all plots and plots under each water treatment

reveals significant differences in yields among the various

experimental treatments, with distinct data separation.

The yield data for ten wheat cultivars under varying water

treatments is presented in Table 3. We observed that the highest

yields were achieved in the W3 treatment, with the exception of

Denghai202, Bainong207, Jimai22, and Shannong36. Denghai202

performed best in the W1 treatment, while Shannong36 excelled in

the W2 treatment. These results indicate that Denghai202 and

Shannong36 exhibit notable drought tolerance. Additionally,

Bainong207 and Jimai22 produced the highest yields in the W4

treatment, suggesting their high water tolerance.
3.2 Feature screening combination

PC and RF importance were employed to rank the importance

of vegetation indices at the two fertility stages. The rankings

indicated that the NLI was the most important feature during the

flowering stage, while the ATSAVI, NLI, and OSAVI were the most

significant during the grain filling stage according to the PC

ranking. In contrast, the RF importance ranking identified

ATSAVI as the primary feature during the flowering stage and

GSAVI as the most important during the grain filling stage.

However, there were some features with low importance rankings
Frontiers in Plant Science 08
in both the PC and RF importance, which could potentially impact

the model’s performance negatively. The significance of the

correlation between vegetation indices and yield was also

considered (Table 4). To mitigate the potential impact of these

less important features on the prediction accuracy of the model, we

introduced thresholds of 0.53 and 1.9 for the two feature selection

methods to filter the importance of features. As demonstrated in

Figures 5 and 6, this approach retained features with importance

coefficients exceeding 0.53 in the PC ranking and features with

coefficients exceeding 1.9 in the RF importance ranking. Features

that fell below these thresholds were removed from consideration,

resulting in the creation of four feature subsets. During the

flowering stage, the PC method retained 16 features, while the RF

importance method retained 20 features. The intersection of these

methods, as seen in Figure 7A, identified 10 common features. The

union of features from both methods totaled 25 features. Similarly,

during the grain filling stage, the PC method retained 24 features,

and the RF importance method retained 15 features. The

intersection of these methods, as shown in Figure 7B, revealed 13

common features. The union of these features resulted in a total of

26. This comprehensive feature subset obtained by combining

results from both fertility stages serves as a foundation for the

subsequent step of feature selection and refinement.

In the PCRF integration step, we obtained two feature subsets

containing 25 and 26 features for the vegetation indices during the

flowering and grain filling stages, respectively. Subsequently, we

performed wrapper-based RFE feature selection on each of these

two feature subsets individually. The feature selection was carried

out using the same random seeds in the experiment and a patience

parameter of 10. In other words, the RFE process was terminated if

there was no improvement in performance over a cumulative span

of 10 iterations. Following the feature selection process, we had

subsets of features for both the Cubist and RNN models. The subset
FIGURE 4

Observed yield distribution in 2023.
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derived from the flowering stage contained 13 features for Cubist

and 11 features for RNN. Meanwhile, the subset obtained during

the grain filling stage comprised 15 features for Cubist and 18

features for RNN (Table 5). These feature sets were utilized for the

final construction of the yield prediction model.
3.3 Model validation analysis

Cubist and RNN yield prediction models were constructed

based on all the features at the flowering and filling stages, the

feature subsets selected by the PC and the RF importance method,

and the feature subsets selected by the PCRF-RFE method proposed

in this study, respectively. The accuracies of the prediction models

are shown in Table 6. The accuracy of the Cubist yield prediction

model constructed based on the feature subset selected by the

PCRF-RFE method at the flowering stage was the best (R2 =

0.635, RMSE = 0.681 t·ha-1) (Figure 8A). This was followed by

the accuracy of the RNN yield prediction model constructed based

on the feature subset obtained by the PCRF-RFE method, with an

R2 of 0.607, slightly higher than that of the Cubist model

constructed based on the feature subset obtained by the PC

method. During the grain filling stage, the Cubist yield prediction

model constructed based on the subset of features selected by the

PCRF-RFE method had the best performance (R2 = 0.667,

RMSE = 0.661 t·ha-1) (Figure 8B). In contrast, the RNN yield

prediction model constructed based on all features had the worst

accuracy, with an R2 of 0.512. The Cubist and RNN yield prediction

models constructed based on the subset of features obtained by the

same feature selection method at the grain filling stage had higher

accuracy than those at the flowering stage. The performance of the

Cubist and RNN prediction models could be significantly improved

by using the feature selection method. When using the intersection

or union of the feature subsets obtained by the PC and RF

importance methods as the feature subsets to construct the Cubist
TABLE 2 Descriptive statistics of observed yield(t·ha-1).

Category Observations Min Max. SD Q25 Q50 Q75 Mean CV

All datasets 120 3.35 13.11 1.40 7.69 8.43 8.99 8.31 16.9%

W1 dataset 30 3.35 11.91 1.56 7.12 8.06 8.48 7.77 20%

W2 dataset 30 5.08 11.13 1.39 7.60 8.62 8.98 8.32 16.7%

W3 dataset 30 7.18 13.11 1.19 8.36 8.68 9.40 8.97 13.3%

W4 dataset 30 4.34 10.17 1.26 7.34 8.21 9.29 8.19 15.4%
F
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TABLE 3 Yield data for ten wheat cultivars across four different water treatment conditions(t·ha-1).

Treatment Denghai202 Bainong207 Jimai22 Shannong36 Letu808 Dunmai88 Yannong1212 Bainong58 Zhongmai578 Luyuan502

W1 9.78 8.14 8.36 7.86 7.07 7.35 5.00 8.09 8.41 8.23

W2 8.45 7.55 8.11 9.13 8.70 9.07 7.17 8.36 7.06 9.58

W3 8.26 8.56 8.78 8.63 8.71 10.70 8.86 8.45 8.87 8.85

W4 8.12 9.39 9.04 7.46 8.49 9.40 7.11 7.90 7.90 8.71
TABLE 4 Statistical significance testing of features (p-value).

Features Flowering Grain filling

NLI *** ***

NDVI *** ***

TVI *** ***

TNDVI *** ***

NormR *** ***

WDRVI *** ***

CCCI *** ***

MRVI *** ***

RGR *** ***

DVI *** ***

RVI *** ***

NGRDI *** ***

RI *** ***

ATSAVI *** ***

NormNIR *** ***

OSAVI *** ***

GSAVI *** ***

GDVI *** ***

TCARI *** ***

MCARI *** ***

MNLI *** ***

GNDVI *** ***

GRVI ** ***

(Continued)
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and RNN yield prediction models, the accuracy of the model was

also greatly improved compared to that of all the features used as

input variables. The R2 could reach 0.606 at the highest, but it was

still lower than that of the yield prediction model constructed based

on the feature subsets selected by the PC or RF importance

methods. A comparative analysis between the observed and

predicted yields from the Cubist model, conducted at both the

flowering and grain filling stages, demonstrated that the grain filling

stage exhibited greater consistency with the observed yields and

outperformed the flowering stage (Figure 9).

To assess the adaptability of our integrated feature selection

method in diverse environments and the applicability of our

predictive model, we have chosen the best-performing models

from two distinct fertility stages (Figure 10). We intend to

construct a Cubist model using the optimal variable combination

derived from the PCRF-RFE integrated feature selection method.

Specifically, we will use data from the W1 and W2 treatments as the
Frontiers in Plant Science 10
training set, and data from the W3 and W4 treatments as the

validation set. The accuracy of the Cubist model consistently

demonstrates strong performance, with R2 exceeding 0.59.

Furthermore, the lowest RMSE achieved is as low as 0.849 t·ha-1.

Notably, the model’s accuracy at the grain filling stage surpasses

that at the flowering stage. In summary, the PCRF-RFE feature

selection method exhibits its superiority by consistently delivering

high accuracy, even when dealing with data from distinct

environmental settings for training and validation. This also

underscores the robust adaptability of the Cubist model in

various scenarios.
3.4 The results of best prediction models

In this study, a diverse set of vegetation indices was selected at

both the flowering and grain filling stages. The yield prediction

accuracy of the Cubist model, constructed using our developed

PCRF-RFE method with different feature subsets as input variables,

showed the best performance at both the flowering and grain filling

stages. These models were used to generate predicted yield

distributions (Figure 11). The results of the t-test distribution of

yield between treatments at the flowering stage are presented in

Table 7. The p-values between W1 and W3, W2 and W3, and W4

and W3 were all less than 0.01, indicating highly significant

differences among these treatments. Furthermore, the p-values

between W1 and W4, and W1 and W2 were less than 0.05,

signifying significant differences between these treatment pairs.

However, the p-values between W2 and W4 were greater than

0.05, suggesting that there was no significant difference between the

effects of W2 and W4 on wheat yield. This observation indicates

that the W2 and W4 had similar effects on wheat yield. Moreover,

the p-value between W1 and W2 was significantly smaller than that

between W1 and W4, indicating a greater difference between W2

and W1. The yield ranking between treatments was found to be W3

> W2 > W4 > W1. The results of the t-test distribution of yield

between different treatments at the filling stage are shown in
TABLE 4 Continued

Features Flowering Grain filling

CIg ** ***

NormG ** ***

GCI ** ***

WDVI * ***

CVI / ***

IVI / ***

NDRE / ***

RRI1 / ***

RRI2 / ***

CIre / **

SAVI / /

RECI / /
* respresents p<0.05, ** represents p<0.01, *** represents p<0.001,/represents no significant.
BA

FIGURE 5

Ranking of importance of PC features at flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1289692
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1289692
Table 8, and the significance of the treatments was similar to that at

the flowering stage. The yield ranking between treatments remained

W3 > W2 > W4 > W1.Based on the observed yield results, W3 had

the highest yield between 7.184-13.117 t·ha-1, followed by W2 and

W4 treatments, with the lowest observed yield in W1. These results
Frontiers in Plant Science 11
align with the predicted yield distribution of the Cubist model,

constructed using the PCRF-RFE method to select feature subsets at

the flowering and grain filling stages. The consistent predicted yield

distribution further affirms the utility of the feature selection

method proposed in this study for winter wheat yield prediction.
BA

FIGURE 6

Ranking of importance of RF importance features at flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.
A

B

FIGURE 7

Feature union set of PC and RF feature selection. (A) flowering stage, (B) grain filling stage.
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4 Discussion

Their importance for yield prediction was ranked during both

the flowering and grain filling stages using the PC and RF

importance methods. To enhance the model’s robustness and

reduce complexity, we applied thresholds of 0.53 and 1.9 to filter

out low-importance features. This approach aligns with a previous

study (Marques Ramos et al., 2020) and proved effective in feature
Frontiers in Plant Science 12
selection. We introduced a novel step in the form of PCRF

integration to select features from subsets obtained via PC and RF

importance methods. This integrated approach minimizes potential

bias resulting from a single selection method. Subsequently, we

utilized the wrapper-based RFE feature selection technique to

further refine the model’s input features, enhancing predictive

performance. Our integrated feature selection method

encompasses three distinct types: filtering, wrapping, and
TABLE 5 Number of features included in the subset.

Stage
Number

PC RF PC&RF Uni. PC&RF Inter. PCRF-RFE(Cubist) PCRF-RFE(RNN)

Flowering 16 20 25 10 13 11

Grain filling 24 15 26 13 15 18
TABLE 6 Model accuracy of different feature selection methods.

Models Subsets
Flowering Grain Filling

R2 RMSE/(t·ha-1) R2 RMSE/(t·ha-1)

Cubist

All Features 0.509 0.795 0.541 0.782

PC 0.601 0.801 0.641 0.73

RF 0.586 0.772 0.614 0.787

PC&RF Uni. 0.596 0.685 0.602 0.736

PC&RF Inter. 0.580 0.797 0.606 0.656

PCRF-RFE 0.635 0.681 0.667 0.661

RNN

All Features 0.492 0.893 0.512 0.961

PC 0.578 0.829 0.598 0.788

RF 0.561 0.825 0.587 0.883

PC&RF Uni. 0.555 0.961 0.571 1.020

PC&RF Inter. 0.552 0.819 0.562 1.091

PCRF-RFE 0.607 0.793 0.628 0.872
BA

FIGURE 8

Distribution of observed and predicted yields for the optimal yield prediction model during the flowering and grain filling stages. (A) flowering stage,
(B) grain filling stage.
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embedding, thereby capitalizing on the strengths of each. The PC

method, as a filtering approach (Pocas et al., 2015), efficiently

assesses linear relationships between features and target variables,

making it computationally fast. However, its performance may be

limited when dealing with nonlinear relationships. In contrast, the

RF importance method, classified as an embedding method (Ma

et al., 2018), excels at capturing nonlinear feature-target

interactions, exhibits greater resilience to outliers and noise, and

enhances model robustness. The RFE method (Koc et al., 2022), a

wrapper technique, excels at modeling intricate feature-target

relationships, offers high interpretability, and can identify feature

interactions. Therefore, we employed the RFE method as the second

step in our integrated feature selection approach.

We have considered the union of feature subsets identified by

both PC and RF Importance methods as the set of features most

sensitive to yield. The correlation between these sensitive features is

showed in Figure 12. During the flowering stage, a strong

correlation is observed among NDVI, TVI, CCCI, DVI, TNDVI,

WDRVI, MRVI, RVI, and NormNIR. Notably, the feature subset

obtained through the PC method encompasses more features

exhibiting robust autocorrelation, leading to a more accurate

model construction. However, it is worth mentioning that this
Frontiers in Plant Science 13
may be partly due to potential overfitting resulting from the data

screening process employed by the PC method. Conversely, the RF

Importance method can simultaneously consider multiple features,

effectively capturing non-linear relationships between the features

and the target variable (AlSagri and Ykhlef, 2020), thus improving

overall model performance. Despite the PC feature subset

comprising 16 features at this point, a significant portion of them

displays strong autocorrelation, rendering the RF Importance

approach more reliable in terms of performance. During the

filling period, a substantial number of sensitive features exhibit

autocorrelation. As a result, the feature subset derived from the RF

Importance method contains only 15 features, while the PC method

achieves higher predictive accuracy due to the inclusion of more

autocorrelated features. Although the intersection of the PC and RF

Importance methods yields a feature subset with the fewest number

of features, containing numerous autocorrelated features, it remains

a challenge to achieve a significantly improved prediction accuracy.

In our study, we conducted a comprehensive comparison of

Cubist and RNN yield prediction models using various feature

subsets. The results consistently demonstrated that models

constructed with feature subsets obtained from the PCRF

integration step outperformed other methods in terms of
BA

FIGURE 9

Observed and predicted yields for the optimal yield prediction model during the flowering and grain filling stages. (A) flowering stage, (B) grain filling stage.
BA

FIGURE 10

Distribution of observed and predicted yields for the Cubist yield prediction model. (A) flowering stage, (B) grain filling stage.
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accuracy for both the flowering and grain filling stages. This

underscores the effectiveness of the PCRF integrated feature

selection method in optimizing feature selection and model

construction, which is in line with a previous study (Yin et al.,

2023). We systematically compared and contrasted the Pearson

correlation coefficient method, the random forest importance

selection method, and the PCRF-RFE integrated feature

selection method in yield prediction models at both flowering

and filling stages. The results revealed that the constructed yield

prediction models, whether based on the PCRF-RFE method or

on a single feature selection method, consistently achieved

higher accuracy compared to models using all features. This

underscores the substantial improvement brought about by

feature selection methods on model performance and reaffirms

the critical role of feature selection in enabling models to better

capture yield-related features and enhance prediction accuracy
Frontiers in Plant Science 14
(Kohavi and John, 1997; Jeon and Oh, 2020; Yin et al., 2023). We

examined the performance of models using feature subsets

obtained from different feature selection methods. During both

the flowering and grain filling stages, the model constructed

using the feature subset derived from the PCRF-RFE method

demonstrated superior performance. This underscores the

effectiveness of our proposed integrated feature selection

method and its capacity to enhance the accuracy of prediction

models across different fertility stages. Additionally, we explored

the construction of predictive models using the intersection or

union of feature subsets obtained from the PC method and the

RF importance selection method as input variables. The results

indicated that the use of intersection or union as feature subsets

could also significantly improve model performance, although

the accuracy was slightly lower compared to models based on a

single feature selection method.
B

A

FIGURE 11

Distribution of predicted yields from the optimal yield prediction model. (A) flowering stage; (B) grain filling stage.
TABLE 7 Results of t-test for flowering stage.

Feature t p-Value

W1 vs W2 54.457 0.04

W1 vs W3 52.423 0.000

W1 vs W4 57.664 0.13

W2 vs W3 57.653 0.009

W2 vs W4 56.134 0.646

W3 vs W4 54.426 0.005
TABLE 8 Results of t-test for grain filling stage.

Feature t p-Value

W1 vs W2 48.693 0.041

W1 vs W3 56.716 0.000

W1 vs W4 53.703 0.044

W2 vs W3 53.007 0.002

W2 vs W4 56.255 0.916

W3 vs W4 56.912 0.005
fro
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The Cubist model employed in this study is an integrated

machine learning algorithm designed for regression tasks. It

leverages regression trees to efficiently capture feature

relationships by considering multiple features simultaneously

during node splits. This characteristic is particularly advantageous

when used in conjunction with RFE methods (Zhang et al., 2023).

Moreover, the Cubist model is relatively less affected by outliers and

noise, rendering it more robust when applied to real-world data.

Within the RFE process, this robustness helps mitigate the impact

of outliers, resulting in a more accurate subset of features (Xiao

et al., 2022; Zhang et al., 2023). Using the Cubist model as the base

for the RFE method enhances its ability to discern the relationship

between the model itself and the subset of features through iterative

training and feature selection. This iterative process increases the

likelihood of identifying an optimal subset of features. These

findings align with the conclusions drawn in a previous study

(Zhou et al., 2022), which highlighted that the combination of the

Cubist model and the RFE method yielded the highest accuracy and

the lowest uncertainty. This validates our choice of the RFE method

and is consistent with the results of a previous study (Xiao

et al., 2022).

Our research offers valuable insights in the field of crop yield

prediction, particularly in the development and implementation of

integrated feature selection methods. Our study not only enhances

our comprehension of the significance of feature selection methods

in crop yield prediction but also provides practical guidance for

agricultural applications. Furthermore, there is potential for

exploring additional feature selection techniques and model

combinations, as well as their application to diverse crops and

environmental conditions in future research.
5 Conclusion

In this study, we utilized a UAV remote sensing platform to

capture multispectral images during both the flowering and grain-
Frontiers in Plant Science 15
filling stages of winter wheat. After processing these images, we

calculated 35 vegetation indices known for their sensitivity to crop

yield. Subsequently, we applied the Pearson correlation coefficient

and random forest importance methods to select the most relevant

indices among the 35. We then derived feature subsets through

these two feature selection methods and combined them to create

the input feature set for the RFE method. We used Cubist and RNN

models as base models to identify the most optimal feature subsets

for each growth stage. The results were clear: the Cubist yield

prediction model, based on feature subsets obtained through the

PCRF-RFE feature selection method, demonstrated remarkable

performance in both the flowering stage (R2 = 0.635, RMSE =

0.681) and the grain filling stage (R2 = 0.667, RMSE = 0.661).

Notably, the model’s accuracy was consistently higher during the

grain-filling stage compared to the flowering stage. These findings

provide compelling evidence supporting the practicality and

viability of our proposed PCRF-RFE method, offering valuable

insights for future research in the field of yield prediction.
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