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A lightweight network for
improving wheat ears
detection and counting
based on YOLOv5s
Xiaojun Shen, Chu Zhang, Kai Liu, Wenjie Mao,
Cheng Zhou and Lili Yao*

School of Information Engineering, Huzhou University, Huzhou, China
Introduction: Recognizing wheat ears plays a crucial role in predicting wheat

yield. Employing deep learning methods for wheat ears identification is the

mainstream method in current research and applications. However, such

methods still face challenges, such as high computational parameter volume,

large model weights, and slow processing speeds, making it difficult to apply

them for real-time identification tasks on limited hardware resources in the

wheat field. Therefore, exploring lightweight wheat ears detection methods

for real-time recognition holds significant importance.

Methods: This study proposes a lightweight method for detecting and counting

wheat ears based on YOLOv5s. It utilizes the ShuffleNetV2 lightweight

convolutional neural network to optimize the YOLOv5s model by reducing the

number of parameters and simplifying the complexity of the calculation processes.

In addition, a lightweight upsampling operator content-aware reassembly of

features is introduced in the feature pyramid structure to eliminate the impact

of the lightweight process on the model detection performance. This approach

aims to improve the spatial resolution of the feature images, enhance the

effectiveness of the perceptual field, and reduce information loss. Finally, by

introducing the dynamic target detection head, the shape of the detection head

and the feature extraction strategy can be dynamically adjusted, and the detection

accuracy can be improved when encountering wheat ears with large-scale

changes, diverse shapes, or significant orientation variations.

Results and discussion: This study uses the global wheat head detection dataset

and incorporates the local experimental dataset to improve the robustness and

generalization of the proposed model. The weight, FLOPs and mAP of this model

are 2.9 MB, 2.5 * 109 and 94.8%, respectively. The linear fitting determination

coefficients R2 for the model test result and actual value of global wheat head

detection dataset and local experimental Site are 0.94 and 0.97, respectively. The

improved lightweightmodel can bettermeet the requirements of precisionwheat

ears counting and play an important role in embedded systems,mobile devices, or

other hardware systems with limited computing resources.
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1 Introduction

Wheat is one of the primary food crops, and its steady yield is

required for both economic growth and human food security (Xiao

et al., 2020). Wheat ears counting is an important method to predict

wheat yield. However, conventional methods often rely on subjective

and time-consuming visual inspection, making it difficult to identify

and count wheat ears rapidly and accurately (Chen et al., 2017;

Fernandez-Gallego et al., 2020). With the progression of image

recognition technology, utilizing image data for wheat ears detection

and counting has become a more effective approach. (Prakash et al.,

2017). Traditional image processing methods can achieve wheat ears

counting in simple environments, but they also have shortcomings

such as complexities in feature engineering, low recognition accuracy,

and weak transferability. Relatively, the deep learning-based method

for wheat ears recognition provides a more efficient practical solution.

However, higher accuracy also entails an increased number of

parameters and large computational costs. These factors restrict the

lightweight application of these methods, preventing their deployment

on mobile devices for the swift execution of recognition tasks.

In recent years, most deep learning-based wheat ears

recognition technology have employed various methods to

optimize the backbone network, feature pyramid module, and

loss function of the existing models. Although multiple

lightweight wheat ears detection models have been proposed, the

deployment and operation of these lightweight models still face

significant challenges on embedded systems and mobile devices. To

address this issue, it is essential to conduct in-depth research into a

lightweight real-time wheat ears detection model that is better

suited for devices with lower computational capabilities and

limited memory in embedded systems and mobile devices.

This paper proposes a lightweight wheat ears detection method,

S-YOLOv5s, based on YOLOv5s. By optimizing the backbone

network, neck network, and head network of the model, the

weight, parameters, and computational load of model are

significantly superior to previous methods. The model can be

applied to real-time detection tasks on low-performance devices

in complex field environments. The main contributions are

summarized as follows:
Fron
• Establishing a completely new wheat ears dataset by

incorporating the local experimental site into the Global

Wheat Head Detection Dataset (GWHD) to enhance the

robustness and generalization of the proposed model.

• Reducing the parameters and computational complexity of

the proposed model by adopting SmallConv (3 x 3 Conv)

and the lightweight network ShuffleNetV2 to replace the

backbone network (CSPDarknet) of the YOLOv5s model.

• Introducing the lightweight upsampling operator Content-

Aware ReAssembly of Features (CARAFE) to replace the

upsampling operation in the Path Aggregation Network

(PANet). It improves feature information extraction,

enhances the spatial resolution of feature maps, and

addresses challenges in detecting difficult scenarios such

as high wheat density and severe occlusion.
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• Utilizing the attention-based Dynamic Target Detection

Head (DyHead) to flexibly adjust the shape of the

detection head and feature extraction strategy, enabling

adaptation to the diversity of wheat ears in different

scales, shapes, and orientations.
2 Literature review

The current methods for wheat ears recognition mainly include

conventional image recognition and deep learning-based

techniques (Yuan et al., 2022). Traditional image recognition

techniques typically use feature extraction algorithms and image

processing techniques to obtain wheat ears features (such as

filtering, edge detection, etc.) in order to accurate identify wheat

ears (Grillo et al., 2017; Dhingra et al., 2018; Ganeva et al., 2022).

The frequently used features include edge, corner point, texture,

temperature, color histogram, etc. (Li et al., 2017; Yuan et al., 2020;

Rui et al., 2022a; Dandrifosse et al., 2022). Fernandez-Gallego et al.

(2019) used a thermal infrared camera to segment wheat ears based

on the temperature difference between the wheat leaves and the

wheat ears. This method can alleviate the effect of overlapping

wheat ears on counting. However, obtaining useful photos becomes

challenging when the temperature difference between wheat ears

and leaves is minimal. Cheng et al. (2018) used multi-feature fusion

(for example, color, texture, and special image features) and dual

support vector machine methods (Gholami and Fakhari, 2017),

efficiently achieving wheat ear counting by classifying pixels and

performing image segmentation.

With the rapid development of deep learning technology, the

capability of target detection models in image recognition and

classification has significantly improved (Mu and Zeng, 2019).

The target detection models are divided into single-stage models

(e.g., Single Shot MultiBox Detector, You Only Look Once) and

two-stage models (e.g., R-CNN, Faster R-CNN)(Ning et al., 2017;

Bharati and Pramanik, 2020; Wu et al., 2022; Xu et al., 2023). Both

the single-stage and two-stage models have high accuracy on wheat

ears detection tasks. Mehedi et al. (2018) used a two-stage R-CNN

model trained on wheat at various growth stages to generate four

models, which can be used to classify the four growth stages of the

spike dataset, the average detection accuracy of the model ranges

between 88% and 94%. Compared to the two-stage model, the

single-stage model YOLO has faster detection speed (Jing et al.,

2021), fewer model parameters, and lower weight, which is more

suitable for field lightweight applications, such as being deployed on

mobile platforms for real-time detection tasks. Bhagat et al. (2021)

proposed a lightweight wheat ears detection method called

WheatNetLite based on YOLOv3. This model utilizes Mixed

Depthwise Convolution (MDWConv) with inverted residual

blocks to construct the backbone feature extraction network of

WheatNetLite, reducing the parameter count of the model. As a

result, the weight of the YOLOv3 model was reduced from 54.2 MB

to 8.2 MB, while achieving a mean Average Precision (mAP) of

91.3%. Shi et al. (2023) constructed a dataset covering three growth

stages of wheat: flowering, grain filling, and maturity. After
frontiersin.org

https://doi.org/10.3389/fpls.2023.1289726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2023.1289726
performing pruning on the YOLOv5s algorithm, they proposed a

new wheat ear detection algorithm named YOLOv5s-t by altering

the convolution kernel sizes in the spatial pyramid to reduce the

number of model convolutions, thereby decreasing the parameter

count of the model. The model weight is 9.1 MB, indicating a

reduction of 5.3 MB. The mAP is 97.4, reflecting a decrease of

1.09%. Shu et al. (2022) optimized the original YOLOv5 model

structure using a local wheat dataset to optimize the structure of

YOLOv5 using the GhostNet lightweight modules (Han et al.,

2020), reducing the parameters and computational complexity of

the model. They further transformed the loss function from

Complete Intersection-Over-Union (CIOU) to Efficient

Intersection Over Union (EIOU), directly minimizing the

difference in width and height between target and anchor boxes

(Zhang et al., 2021), which accelerated the convergence speed. The

improved model boasts a mAP of 96.60%, a detection time of

0.0181s, and a model size of 8.12 MB, which is 2.3 MB smaller

than YOLOv5.

In general, the target detection models based on deep learning

demonstrate more robust functionality in object recognition tasks

and are in line with the development trends of modern smart

agriculture. Therefore, achieving model lightweighting based on

existing research and applying it to small mobile devices is of

significant importance.
3 Materials and methods

3.1 Data sources

Two different datasets were used in this study to ensure the

accuracy and generalizability of the model training results, as

outlined in Table 1. The first dataset (GWHD, http://www.global-

wheat.com/) was sourced from the global wheat public dataset, from

which 2090 images captured in complex scenes, including blurred,

dark, and sunny conditions, were selected. An actual field

experiment produced the second dataset (Experimental Site) in

Huzhou City, Zhejiang Province, China, as shown in Figure 1.

Under sunny conditions, wheat images at the heading stage were

captured from multiple angles using an iPhone 12. The camera

resolution is 3024 x 4032 pixels, and the camera was positioned

approximately 400 - 600 mm above the wheat heads. A total of 527

images were saved in JPG format. Subsequently, image processing

techniques were employed to introduce noise and reduce brightness

to a subset of these images. Following this, the photos were scaled to

2048 x 2048 pixels through a resampling process to ensure that the

image parameters met the requirements for model training.
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This study uses the machine learning and deep learning general

image annotation tool labelme (http://labelme.csail.mit.edu/

Release3.0/) to annotate the wheat images in the datasets. Once

the labeling process is completed, a JSON data file containing the

coordinate information and class names of the wheat ears is

generated. Subsequently, this data is converted to a txt format

using Python and serves as the training input of the model,

containing 107,600 labels. The processed 2617 images were

randomly divided into training set, validation set and test set in

the ratio of 8:1:1, and the labeled images are shown in Figure 2.
3.2 Model structure and optimization

3.2.1 YOLO model series
YOLO is a widely utilized single-stage object detection

algorithm, and YOLOv5 represents the fifth iteration in this

series. Compared to YOLOv7, YOLOv5 offers significant

advantages in terms of inference speed, lightweight model

weights, reduced memory usage, and rapid deployment. In

comparison to YOLOv8, YOLOv5 is more hardware-friendly in

deployment and exhibits superior frame rate performance on CPUs.

This makes YOLOv5 a more efficient and practical choice, especially

for applications that require lightweight object detection solutions.

As a result, it is better suited to serve as a baseline for lightweight

model research, and can perform real-time object detection in

images. YOLOv5 is primarily divided into four versions:

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. This study

primarily focuses on model optimization based on YOLOv5s. In

comparison to other versions of the YOLOv5 algorithm, this model

has fewer parameters and requires less computational resources.

Additionally, three modules have been introduced in the YOLOv5s

model: ShuffleNetV2, CARAFE, and DyHead.

3.2.2 ShuffleNetV2
For the backbone network of the YOLOv5s model, CSPDarknet,

as shown in Figure 3, the excessive use of convolutional layers and

numerous cross-convolution operations lead to a significant

amount of gradient information being reused for weight updates.

The number of parameters and computing effort of the model

both increased.

Therefore, this study attempts to replace the backbone feature

extraction network of the YOLOv5s model with three currently

popular lightweight networks: Ghost, MobileNetV3, and

ShuffleNetV2 to reduce the parameter and computational

complexity of the model. Comparative results are shown in

Table 2, where ShuffleNetV2 achieves a significant advantage in
TABLE 1 Wheat ears datasets.

Datasets
Image

resolution
Blurred Dark Sunny Training Set Valid Set Test Set Images Number of labels

GWHD 1024 x1024 366 74 1650 1672 209 209 2090 14876

Experimental Site 2048 x 2048 175 175 177 423 52 52 527 92184

Total 541 249 1827 2095 261 261 2617 107060
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lightweight network comparison with a model weight of 2.1 MB.

Ghost and MobileNetV3, with model weights nearly 5 times and 3.5

times that of ShuffleNetV2, respectively, only outperform detection

accuracy of ShuffleNetV2 by 2.6% and 1.2%. Therefore, this study

adopts the SmallConv (3 x 3 Conv) and ShuffleNetV2 to replace the

backbone feature extraction network of the YOLOv5s.

ShuffleNetV2 (Ma et al., 2018) is a lightweight neural network

architecture designed specifically for mobile and embedded devices.

It reduces computational and memory overhead while maintaining

high accuracy by introducing techniques such as ShuffleUnit,

grouped convolution, and channel shuffling. ShuffleUnit utilizes

channel interleaving and lightweight convolution methods to

promote information flow and feature mixing. Grouped

convolution performs independent convolution operations on

grouped input channels and then concatenates the results to

reduce computational complexity and enhance information
Frontiers in Plant Science 04
exchange between features. Channel rearrangements the channels

of input feature maps into smaller groups, reducing parameters and

computational overhead. The architecture of ShuffleNetV2 is

illustrated in Figure 4.

3.2.3 CARAFE
During the recognition of wheat ears, issues such as mutual

shadowing between the ears of wheat and a poor ability to distinguish

between the colors of the wheat and weeds can impair the extraction

of features and significantly impact the detection accuracy. As a result,

more details about edges, textures, and colors must be extracted.

However, when using a conventional upsampling method (such as

bilinears interpolation or transposed convolution, etc.) to map a low-

resolution image with fewer pixels to the target high-resolution

image, this step merely expands the size of the feature map rather

than adding more specific details. Consequently, CARAFE (Wang
FIGURE 1

Experimental site and cell phone images of wheat ears.
FIGURE 2

Manual annotation of images for datasets.
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et al., 2019) is introduced without significantly increasing the

parameter to replace the upsampling method in the PANet.

CARAFE is a lightweight, general-purpose upsampling operator

that optimizes image detail and quality by feature reassembly and

fusion, making the generated high-resolution feature maps more

realistic and distinct.

CARAFE comprises a kernel prediction module and a content-

aware reassembly module. Through these two modules, it has the

capacity to generate output feature maps X´ (sH × sW × C) from

the input feature maps X (H × W × C). Specifically, the kernel

prediction module utilizes the input feature map for predicting the

reassembly kernel, while the content-aware reassembly module

performs pointwise multiplication between the predicted

reassembly kernel and the feature map obtained from

conventional up-sampling completing the feature reassembly. The

structural representation of CARAFE is illustrated in Figure 5.

3.2.4 DyHead
Wheat ears closest to the device seem larger than those farther

away due to the perspective shifts of the camera in wheat ears

detection. Furthermore, variations in shooting angles can lead to
Frontiers in Plant Science 05
differences in the shape and relative locations of wheat ears, making

it difficult for the model to interpret and use spatial information in

the photos correctly. At the same time, this study hopes to express

wheat ears in a diversified manner by employing multi-level

representation methods such as feature points or detection boxes,

which is intended to enable the algorithm to showcase optimal

performance in specific tasks. In order to address these challenges

and enhance the robustness of the wheat ears recognition model,

DyHead is introduced as part of the head layer of the model.

DyHead (Dai et al., 2021) is a dynamic object detection head based

on attention mechanisms, which considers improvements in

detection performance from three dimensions: scale perception,

spatial perception, and task perception. The corresponding multiple

attention mechanisms are effectively combined and integrated into

a unified framework, addressing the feature layer of scale

perception, spatial location for spatial perception, and the output

channel for task perception. This significantly enhances the

representation of the target detection head and successfully

resolves issues related to perspective changes, spatial

transformations, and diverse representations. The adoption of the

dynamic target detection head enables the model to better adapt to

wheat targets in complex scenes. The workflow diagram of the

detection head is shown in Figure 6.

3.2.5 Model optimization
This paper proposes an improved model named S-YOLOv5s,

which organically combines the ShuffleNetV2, CARAFE, and

DyHead methods. The model structure is illustrated in Figure 7,

successfully reducing the computational cost and model parameters

of the YOLOv5s while enhancing its compatibility with less efficient

devices. Among these, the lightweight ShuffleNetV2 network can
FIGURE 3

Network structure of CSPResNet50, the backbone network of YOLOv5s.
TABLE 2 Comparison results between the YOLOv5s algorithm and the
fusion of three lightweight networks.

Model Weight (MB) mAP (%)

YOLOv5s + Ghost 10.2 95.5

YOLOv5s + MobileNetV3 7.16 94.1

YOLOv5s + ShuffleNetV2 2.1 92.9
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drastically reduce the model parameters and computational

complexity by replacing the backbone network CSPDarknet of

YOLOv5s. Meanwhile, the lightweight generalized upsampling

algorithm CARAFE is employed to replace the traditional

upsampling method in PANet to improve the model detection

accuracy of the lightweight network. This substitution results in

high-quality feature mappings using a limited number of additional
Frontiers in Plant Science 06
parameters and computational effort. Then, the model incorporates

a DyHead attention-based detection head, which introduces

relevant attention to the three dimensions of scale, space, and

task. It also adjusts the weights of objects at different scales and

locations within the space of the model, consolidating the three

dimensions of scalability, spatiality, and task into a single dynamic

detection head, effectively enhancing model accuracy.
FIGURE 4

ShuffleNetV2 network architecture.
FIGURE 5

The structure of CARAFE. C represents the input channel of the feature map; H is the height of the image; W is the image width; Cm is the
compressed channel; Ken

2 is the encoder size; s is the upsampling ratio, and Kup
2 is the reassembly kernel size.
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3.3 Model performance evaluation

The performance of the wheat ears detection algorithm is

evaluated by mAP, coefficient of determination (R2), Floating-

Point Operations (FLOPs), Frames per second (FPS). Mean
Frontiers in Plant Science 07
Absolute Error (MAE) and Root Mean Square Error (RMSE). The

Intersection over Union (IOU) value determines whether the

detection box matches the wheat ears bounding box.

Average Precision (AP) is introduced to represent detection

accuracy. AP is a metric that measures the accuracy of object
FIGURE 6

Workflow diagram of the detection head.
FIGURE 7

The network structure of S-YOLOv5s.
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detection predictions of the algorithm at different confidence

degrees. The higher the AP value, the higher the accuracy of the

network. mAP is the average of the AP values for all classifications.

Speed is measured by FPS. The calculation for AP, mAP, and FPS as

shown in Equations 1–3.

AP =
Z 1

0
P(R)d(R) (1)

mAP = o
n
k=1(AP)k
n

(2)

FPS =
frame
time

(3)

The accuracy of the model detection results was assessed using

the coefficient of determination R2, the MAE, and the RMSE

metrics. R2 is a statistical measure used to assess the fit

performance of a model, with values ranging from 0 to 1. A value

closer to 1 indicates a better-fit result. MAE and RMSE are

indicators of the error between the predicted and actual values.

Smaller MAE and RMSE values indicate smaller errors between

predicted and actual values, indicating higher accuracy and

performance of the model. The calculation for R2, MAE, and

RMSE as shown in Equations 4–6.

R2 = 1 − om
j=1(Sj − bSj)2

om
j=1oj(Sj − Sj)

2 (4)

MAE =
1
mo

m

j=1
jSj − bSjj (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1(Sj − bSj)2
m

s
(6)

where m represents the number of wheat ears images, Sj and Sj

respectively denote the manually annotated number of wheat ears

and the model-detected count of wheat ears in the j-th image, and Sj
represents the average wheat ear number.
4 Results

4.1 Experimental environment

A PyTorch 1.11.0 framework-based experimental environment

was used to train a wheat image recognition model. The GPU was

an NVIDIA GeForce RTX 3090 with 24 GB of video memory, and

the CPU was an AMD EPYC7543 with 80 GB of RAM. CUDA 11.3

and CUDNN 8.2 were used to provide GPU acceleration.

Stochastic Gradient Descent (SGD) was employed as the

optimizer throughout the model training, and the starting

learning rate was set at 3E-2. The weight decay value was set at

0.937 to manage the complexity and prevent overfitting. Two

hundred training epochs (iterative rounds) were conducted using

the cosine annealing method for learning rate decay. In each epoch,

a batch of 32 photos was utilized for training. By observing the
Frontiers in Plant Science 08
convergence in the training process, the model started to show a

convergence trend at close to 180 epochs. There was no overfitting,

underfitting or gradient explosion problems in the whole training

process, which indicates that the parameter settings used in the

training process are appropriate, and the change of loss function is

shown in Figure 8.
4.2 Ablation experiments

YOLOv5s is used as the baseline model, and improvement

modules are gradually incorporated to assess their effectiveness

through ablation experiments. Model performance is evaluated

based on average precision, model weights, F1-Score, and

computational complexity, as shown in Table 3.

The experiment is divided into three stages to demonstrate the

superiority of the S-YOLOv5s model. The ShuffleNetV2 lightweight

network structure is incorporated in the first stage to replace the

original backbone network. According to the findings, the weight of

the model is 2.1 MB, which is 12.4 MB less than the original model

weight, its computational volume is 1.9 * 109, which is 14 * 109 less,

and its detection accuracy is 92.9%, which is 3.2% less. The results

mentioned above demonstrate the effectiveness of the lightweight

approach in the target detection task, showing that the model can

still maintain high accuracy and strong detection performance. In

the second stage, without significantly increasing the number of

parameters or computational effort, the lightweight upsampling

operator is further introduced to replace the upsampling operator of

the neck module. As a result, the weight of the model, the

computation, and the detection accuracy increased by 0.2 MB,

0.2 * 109, and 0.5%, respectively. In the third stage, the DyHead was

introduced to the head layer, and the weight of the model, the

computational load, and the detection accuracy were increased by

0.6 MB, 0.4 * 109, and 1.4%, respectively. The experimental results

demonstrate that these optimization strategies successfully raise the
FIGURE 8

The loss function of the improved network S-YOLOv5s based
on YOLOv5s.
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performance of the model to a higher level while also contributing

to its enhancement.
4.3 Comparison of different
detection models

This study conducts comparative experiments with the top

three state-of-the-art lightweight models in the current object

detection field to demonstrate the effectiveness of the S-YOLOv5s

model. Under the same conditions of training, validation, and

testing sets, a comparison is made with the YOLOv6n, YOLOv7-

tiny, and YOLOv8n models. The results are presented in Table 4.

Comparative analysis shows that at an IOU value of 0.5, the

mAP of the S-YOLOv5s model reaches 94.8%. The weight of model

is merely 2.9 MB, with FLOPs at 2.5 * 109, a parameter quantity of

1.26 * 106, and an FPS of 88. Compared to YOLOv6n, YOLOv7-

tiny, and YOLOv8n, S-YOLOv5s has reduced weights by 29%,

24.7%, and 46%, computational load by 22%, 18.9%, and 28%,

and parameters by 29.3%, 20.9%, and 41.8%, respectively. In terms

of mAP, it decreases by 1.3% and 0.8% compared to YOLOv7-tiny

and YOLOv8n, while increasing by 1.4% compared to YOLOv6n.

Although S-YOLOv5s has a lower FPS compared to YOLOv6n,

YOLOv7-tiny, and YOLOv8n, it still exceeds 30 FPS, making it

suitable for real-time detection tasks. The significantly reduced

weights, parameter count, and computational load of S-YOLOv5s

compared to other advanced lightweight detection models

demonstrate the suitability of the lightweight model constructed

in this paper for deployment on mobile devices.
4.4 Verifying model effects on
different datasets

To validate the robustness, validity, and generalization ability of

the model, 25 images from each of the two datasets were selected to
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form a mixed dataset (Mix). In this paper, the model results were

validated in three datasets: the Global Wheat Head Detection

(GWHD) dataset, the Experimental Site dataset and the Mixed

Dataset. The test results of S-YOLOv5s are shown in Figure 9, and

linear regression analysis was used to evaluate the prediction effects

of the YOLOv5s, S-YOLOv5s models, as shown in Figure 10.

As shown in Figure 8, both methods demonstrate good testing

accuracy across different datasets, and the three evaluation

parameters of the constructed fitting curves are quite close. The

S-YOLOv5s model exhibits better predictive performance on the

experimental site dataset, with R2, MAE, and RMSE values of 0.98,

1.41, and 1.77, respectively. This is possibly due to the high clarity of

the images in the experimental field dataset, allowing for more

accurate extraction of wheat ears features and edge information.

The S-YOLOv5s model shows slightly inferior predictive

performance on the public dataset compared to the experimental

site dataset, with R2, MAE, and RMSE values of 0.94, 3.01, and 3.53,

respectively. The possible reason for this difference could be that the

public dataset contains various wheat ears types with significant

variations in shape, color, and texture, making it challenging for the

model to capture subtle feature differences among them accurately.

In addition, some images in the dataset may be blurry, which could

lead to unclear edges and details of the target, negatively affecting

the accuracy of predictions. Based on the testing results presented in

this study, the S-YOLOv5s model achieves a balance between

accuracy, reduced computational complexity, and model weights

compared to YOLOv5s. Meanwhile, this research expands the

dataset range, enhancing the detection performance of the model.
5 Discussion

This study introduces a wheat ears detection method called S-

YOLOv5s. Compared to YOLOv5s, S-YOLOv5s experiences a 1.2%

reduction in detection accuracy, primarily attributed to the use of a

lightweight feature extraction network. While this network offers
TABLE 4 Comparison of detection results from different models based on the same dataset.

Model
Input

(Resolution)
Weight
(MB)

FLOPs
(109)

Parameters
(106)

mAP@0.5 (%) FPS

YOLOv6n 640*640 9.97 11.34 4.3 93.4 102

YOLOv7-tiny 640*640 11.7 13.2 6.01 96.1 108

YOLOv8n 640*640 6.3 8.9 3.01 95.6 118

S-YOLOv5s 640*640 2.9 2.5 1.26 94.8 90
TABLE 3 Ablation experiments.

ShufflenetV2 CARAFE DyHead
Weight
(MB)

FLOPs
(109)

Parameters
(106)

mAP@0.5 (%) FPS

− − − 14.5 15.9 7.25 96.1 108

√ − − 2.1 1.9 0.84 92.9 102

√ √ − 2.3 2.1 0.97 93.4 95

√ √ √ 2.9 2.5 1.26 94.8 88
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faster computation and fewer model parameters, it significantly

reduces wheat ears feature extraction in complex scenes, potentially

leading to instances of missed detections during the process. The size

and diversity of the dataset are also crucial factors influencing the

training results. Although the model achieved weight reduction by

adopting a lightweight feature extraction network, the inference speed

and detection speed of S-YOLOv5s did not show significant
Frontiers in Plant Science 10
improvements, likely due to hardware limitations. Moreover, the

choice of optimization techniques plays a crucial role in determining

the inference speed of the model. Exploring optimization methods

such as model quantization, pruning, and hardware acceleration can

be considered to further enhance the efficiency of the model.

This study also compares the proposed algorithm against the

detection results of other relatively lightweight YOLO structure-
FIGURE 9

The detection counts of S-YOLOv5s were compared with the actual values in three different datasets. TV represents true value and DV represents
detection value.
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based wheat ears recognition studies, as shown in Table 5. Yan et al.

(2022) proposed a lightweight self-attention wheat spike detector,

LE-SPSANet, which utilized an asymmetric lightweight feature

extraction network to reduce model parameters. They also

employ the TanhExp activation function to reduce model training

time and accelerate inference speed, resulting in a mAP of 94.4%.

The model weight is 9 MB, with an FPS of 25. Rui and Yan (2022b)

introduced a four-fold downsampling technique in the feature

pyramid of YOLOv5 to increase the receptive field and enhance

the detection capability for small objects. In addition, they

incorporated a Convolutional Block Attention Module (CBAM)

model into the neural network, which combines spatial attention

and channel attention. This integration aimed to address the issue
Frontiers in Plant Science 11
of gradient vanishing during the training process while

simultaneously improving the feature extraction capability. The

achieved mAP was 94.3%. Wu et al. (2023) optimized YOLOv7 by

incorporating the Global Context Network (GCNet) and the

Coordinated Attention (CA) mechanism in the backbone network

to effectively utilize wheat characteristics. They introduced the Full-

Dimensional Dynamic Convolution (ODConv) design into the

network structure, which enhanced the interaction between

dimensions and improved the performance of the detection

model. The model weight is 40.4 MB, with a mAP of 96.2%.

Based on the comparative results, the proposed S-YOLOv5s

demonstrates higher recognition rates than the LE-SPSANet and

attention-based YOLOv5 detection methods. In terms of weight, the
A

B

C

FIGURE 10

The linear fitting results of YOLOv5s and S-YOLOv5s for different wheat ears datasets, (A) the GWHD dataset, (B) the experimental site dataset,
(C) the mixed dataset.
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LE-SPSANet detection method surpasses S-YOLOv5s by 6.1 MB.

Although the detection accuracy of S-YOLOv5s is 1.4% lower

compared to the improved YOLOv7, it has significant advantages

in weight and detection speed.

In summary, the lightweight wheat ears detection network S-

YOLOv5s constructed in this study has improved model efficiency

and adaptability to resource-constrained scenarios while maintaining

high detection accuracy. In real-time detection scenarios, it can better

cope with limited computational resources. The following steps of

this research will focus on increasing the size and diversity of the

dataset to improve the generalization and detection accuracy of the

proposed S-YOLOv5s. The issue of missed detections in complex

scenes, such as occlusions might be solved using more advanced

feature extraction methods, like incorporating multi-scale feature

fusion, to enhance the robustness and generalization ability of S-

YOLOv5s. There is still room for optimization in the existing network

structure, and other acceleration techniques can be applied to

improve the inference and detection speed.
6 Conclusion

This study presents S-YOLOv5s, a lightweight wheat ears

detection network based on a modified YOLOv5s architecture. By

integrating the ShuffleNetV2 lightweight network to replace the

backbone network CSPDarknet of YOLOv5s, the model

significantly reduces parameters and computational costs while

enhancing feature communication. The use of the lightweight

CARAFE usampling operator in this model optimizes traditional

upsampling in the PANet, enhancing edge information extraction.

The model leverages DyHead, a dynamic target detection head

based on an attention mechanism, to enhance feature fusion and

detection performance.

The improved lightweight wheat ears detection network, S-

YOLOv5s, achieves a mAP of 94.8%, slightly lower than the original

YOLOv5s by 1.3%. The model weighs 2.9 MB, has 1.26 * 106

parameters, and performs 2.5 * 109 FLOPs, constituting 20%,

17.3%, and 15.7% of the original YOLOv5s, respectively. The R2

for GWHD and the experimental site are 0.94 and 0.98, respectively.

Compared to the original YOLOv5s, S-YOLOv5s only exhibits a

slight decrease of 0.01 on the GWHD dataset, demonstrating that

the lightweight wheat ears detection model, S-YOLOv5s, still

possesses excellent detection performance. This study also

compares S-YOLOv5s with three advanced lightweight object
Frontiers in Plant Science 12
detection models, YOLOv6n, YOLOv7-tiny, and YOLOv8n. The

results indicate that S-YOLOv5s excels in terms of model weight,

parameter count, and computational load. Therefore, S-YOLOv5s is

more easily deployable on memory-limited devices with low

computational power, enabling mobile and real-time wheat spike

recognition tasks without relying on expensive high-performance

processing devices. Future research will introduce methods such as

model quantization, pruning, hardware acceleration, and

knowledge distillation to further optimize the model and enhance

its deployment and detection capabilities.
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TABLE 5 Comparing with the methods proposed in other wheat spike
recognition studies.

Model Weight
(MB)

mAP (%) FPS

LE-SPSANet 9.0 94.4 25

YOLOv5-CBAM NA 94.3 NA

Improved-
YOLOv7

40.4 96.2 14

S-YOLOv5s 2.9 94.8 90
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