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Detection of a bibenzyl core
scaffold in 28 common
mangrove and associate species
of the Indian Sundarbans:
potential signature molecule
for mangrove salinity
stress acclimation
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and Krishna Ray 2*

1Department of Botany, Acharya Prafulla Chandra College, Kolkata, West Bengal, India,
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Centenary College, Dhaniakhali, West Bengal, India
Bibenzyl derivatives comprising two benzene rings are secondary plant

metabolites with significant therapeutic value. To date, bibenzyl derivatives in

the Plant kingdom have been primarily identified in bryophytes, orchids, and

Cannabis sativa. The metabolic cost investment by plant species for the synthesis

of these bioactive secondary metabolites is rationalized as a mechanism of plant

defense in response to oxidative stress induced by biotic/abiotic factors. Bibenzyl

derivatives are synthesized from core phenylpropanoid biosynthetic pathway

offshoots in plant species. Mangrove and mangrove associate species thrive

under extreme ecological niches such as a hypersaline intertidal environment

through unique adaptive and acclimative characteristics, primarily involving

osmotic adjustments followed by oxidative stress abatement. Several primary/

secondary bioactive metabolites in mangrove species have been identified as

components of salinity stress adaptation/acclimation/mitigation; however, the

existence of a bibenzyl scaffold in mangrove species functioning in this context

remains unknown. We here report the confirmed detection of a core bibenzyl

scaffold from extensive gas chromatography-mass spectrometry and gas

chromatography-flame ionization detection analyses of 28 mangrove and

mangrove associate species from the Indian Sundarbans. We speculate that

the common presence of this bibenzyl core molecule in 28 mangrove and

associate species may be related to its synthesis via branches of the
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phenylpropanoid biosynthetic pathway induced under high salinity, which

functions to detoxify reactive oxygen species as a protection for the

maintenance of plant metabolic processes. This finding reveals a new eco-

physiological functional role of bibenzyls in unique mangrove ecosystem.
KEYWORDS

mangrove, Indian Sundarbans, bibenzyl, hypersalinity, phenylpropanoid pathway,
ROS detoxification
1 Introduction

Mangrove species and their associates epitomize an inimitable

ecosystem at intertidal regions. The ability of the assembly of these

heterogeneous species to thrive under an extremely stressful

environment is related to their inherent unique adaptive and

acclimative traits (Nizam et al., 2022). Mangrove species

synthesize a large array of primary and secondary metabolites as

a protective response to shield their metabolic processes from the

surrounding hypersalinity and other environmental stress factors,

which comes at a cost of considerable investment of energy and

resources (Wang et al., 2016; Begam et al., 2020; Sudhir et al., 2022).

Apart from primary metabolites such as soluble sugars and free

amino acids (e.g., proline), the synthesis and accumulation of

quaternary ammonium compounds (e.g., glycine betaines), sugar

alcohols (e.g., mannitol, ononitol, pinitol, inositol, polyamines,

fructans, and trehalose), and several other low-molecular-weight

metabolites (compatible solutes) have been extensively reported to

facilitate osmotic adjustments in mangrove species, in addition to

their salt excretion and ultrafiltration adaptabilities (Munns and

Tester, 2008; Slama et al., 2015; Wang et al., 2016; Begam et al.,

2020). Intriguingly, several mangrove and mangrove associate

species are also known to be valuable bio-resources of several

secondary bioactive molecules such as polyphenols, flavonoids,

anthocyanins, lignins, triterpenoids, prenylated terpenoids,

limonoids, flavonoids, phenolics, tannins, polyisoprenoids,

steroids, alkaloids, and saponins, many of which are reported to

be of high medicinal value, high antioxidant potential of most of

these secondary metabolites being the most common

pharmacological activity (Bandaranayake, 1998; Jiang et al., 2018;

Zhang et al., 2018; Bibi et al., 2019; Roy and Dutta, 2021; Sudhir

et al., 2022; Wu et al., 2022). However, ethnobotanical uses of these

mangrove species pose a grave human health risk due to

bioaccumulation of potentially toxic elements/heavy metals

reported to occur in present day mangroves, a consequence of

various environmental pollution and degradation criteria caused by

natural and anthropogenic factors, prevailing across mangroves of

Indian Sundarbans and Mallorquin Lagoon, Colombian Caribbean,

both well-known Ramsar wetland sites (Chowdhury et al., 2021;

Chowdhury et al., 2023; Garcés−Ordóñez et al., 2023). The high

metabolic costs expended for the synthesis of these bioactive
02
secondary metabolites (known as plant defense contrivances)—

apparently derived from the parent core phenylpropanoid

biosynthetic pathway and its associated branch points—may be

essentially justified by the benefit accrued in mitigating the

oxidative stress damage induced under the extreme niche

parameters of the mangrove habitat, including high salinity

(Dixon and Paiva, 1995; Wang et al., 2016).

One group of such secondary metabolites with a common

“bibenzyl” core structure has been widely reported in plants, which

is considered to possess varying therapeutic attributes (Nandy and

Dey, 2020; Ahmad et al., 2022; Boddington et al., 2022; Chen et al.,

2022). Bibenzyls have a common parent nucleus consisting of two

benzene rings as a derivative of ethane (C6-C2-C6) (Figure 1A) with

different substituent groups (Zhang et al., 2007; Nandy and Dey,

2020). Bibenzyl compounds are proposed to represent the direct

descendants of metabolic branch routes, arisen out of the core

phenylpropanoid pathway in all plant types that yield bibenzyl

derivatives, including bryophytes (Friederich et al., 1999; Gao et al.,

2015), Cannabis sativa (Boddington et al., 2022), and orchids

(Fritzemeier and Kindl, 1983; Ahmad et al., 2022). Nonetheless, the

detailed biosynthetic steps of bibenzyl derivatives for all other plant

species that synthesize these compounds have not yet been elucidated.

Under this context, in this study, we detected the bibenzyl core

molecule in different parts of 28 mangrove and mangrove associate

species from the Indian Sundarbans (Table 1). Our repeated gas

chromatography (GC)-mass spectrometry (MS) and GC- flame

ionization detection (FID) data strongly indicated the presence of a

bibenzyl core molecule in almost all the common mangrove and

associate species collected from the Indian Sundarbans mangrove

ecosystem. Based on these preliminary findings, we hypothesize that

the common stress factor of high salinity for all these mangrove

species induces enzymes of the phenylpropanoid pathway, including

phenylalanine ammonia lyase (PAL) as the very first enzyme of the

pathway (Wang et al., 2016), leading to the synthesis and

accumulation of bibenzyls in these plants. This specific acclimative

feature of mangrove species enables them to considerably detoxify

reactive oxygen species (ROS), which can explain the well-known

high ROS-scavenging potential of purified bibenzyl compounds of

plant origins (Zhang et al., 2007; Cioffi et al., 2011; Kongkatitham

et al., 2018). Thus, bibenzyls are implicated here an innate eco-

physiological functional trait for mangrove species.
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https://doi.org/10.3389/fpls.2023.1291805
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sarkar et al. 10.3389/fpls.2023.1291805
2 Materials and methods

2.1 Collection of plant samples

Fresh leaves, young roots, young twigs, and immature fruit

samples of 28 mangrove and associate species (Avicennia marina,

Acanthus ilicifolius, Phoenix paludosa, Nypa fruticans, Suaeda sp.,

Aegiceras corniculatum, Merope angulata, Acrostichum aureum,

Acanthus volubilis, Bruguiera gymnorrhiza, Bruguiera cylindrica,

Bruguiera parviflora, Caesalpinia bonduc, Caesalpinia crista,

Dalbergia spinosa, Ceriops decandra, Ceriops tagal, Derris

trifoliata, Excoecaria agallocha, Heritiera fomes, Kandelia candel,

Lumnitzera racemosa, Rhizophora sp., Sonneratia apetala,

Sonneratia caseolaris, Thespesia populnea, Xylocarpus sp., and

Brownlowia tersa) were collected from different villages of the

Patharpratima block of the Indian Sundarbans and Bhagabatpur

protected mangroves under the Sundarbans Biosphere Reserve

(Figures 2A, B; Table 1). The location coordinates of all the

sampling sites, the surface water salinity range and the salinity

range of sediments are provided in Table 1.
Frontiers in Plant Science 03
2.2 Preparation of plant extracts for
downstream analyses

The freshly collected leaves and other plant parts were

thoroughly washed in running tap water and rinsed in deionized

water two to three times. The washed samples were then cut into

small pieces, shade-dried at room temperature for 2–3 h, and

ground into a powder using an oven-dried mortar and pestle. The

ground plant tissues (1 g) were macerated with 3–5 mL of high-

performance liquid chromatography (HPLC)-grade methanol

(Merck) proportionately. The mixture was filtered with

Whatman No. 1 filter paper and the filtrate was concentrated

using a rotary evaporator (EYELA N-1200A) at 37°C for 30–40

min and placed in a 40°C water bath. The concentrated crude

methanolic extract collected from the rotary evaporator was

trans ferred to a separat ion funne l wi th 2–3 mL of

dichloromethane (DCM), vigorously shaken, and allowed to

stand for 15–20 min for separation. The DCM phase was

separated out with chlorophyll. Both the methanolic and DCM

phases were collected separately and the methanolic phase was
A B

C D

E F

FIGURE 1

NIST 2.0 generated reports on GC-MS spectra matching with standard Bibenzyl. (A) Standard Bibenzyl from NIST mainlib., (B) Avicennia marina leaf
extract, (C) Nypa fruticans leaf extract, (D) Phoenix paludosa leaf extract, (E) Ceriops decandra leaf extract, (F) Rhizophora sp. leaf extract. All showing 10
largest peaks according to NIST database along with 3 major diagnostic fragment peaks at m/z 65, 91 and 182 with respective abundances.
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TABLE 1 Presence of Bibenzyl detected via GC-MS in 31 plant parts of 28 mangrove and mangrove associate species of Indian Sundarbans with NIST library spectra match criteria based on NIST algorithm
(version NIST 2.0).

MF
atch
ctor)

RMF
(Reverse
Match
Factor)

Probability (%) RT
(Retention

time
in minutes)

Peak
area%

930 937 85.30 15.281 0.271

941 945 91.40 15.287 0.141

932 936 90.50 15.293 0.018

924 933 90.00 15.287 0.253

938 945 90.80 15.287 0.158

937 940 91.80 15.293 0.027

923 932 89.10 15.287 0.127

915 925 88.60 15.275 0.163

939 943 89.60 15.275 0.137

910 914 82.70 15.287 0.173
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Serial
No.

Name of
mangrove

plant
species

Name of
mangrove
associate
plant

species

Plant
part
as

source

Sampling sites &
their location

Surface
water
salinity
range of
sampling

sites
(dSm-1)

Sediment
salinity
range of
sampling

sites
(dSm-1)

Compound
as closest
match in
NIST

database

(M
fa

1 Acanthus
ilicifolius

Leaf Ramganga 21°
47’33.40”N,
88°22’54.89”E

26.936-40.533 4.505-6.606 Bibenzyl

2 Acanthus
ilicifolius

Root Ramganga 21°
47’33.40”N,
88°22’54.89”E

26.936-40.533 4.505-6.606 Bibenzyl

3 Brownlowia
tersa

Leaf Bhagabatpur 21°
43’11.92”N,
88°18’34.50”E

26.639-40.992 4.417-9.214 Bibenzyl

4 Phoenix
paludosa

Fruit Satyadaspur 21°
44’4.72”N,

88°23’19.95”E

26.936-40.981 1.937-5.35 Bibenzyl

5 Phoneix
paludosa

Leaf Satyadaspur 21°
44’4.72”N,

88°23’19.95”E

26.936-40.981 1.937-5.35 Bibenzyl

6 Suaeda sp. Leaf Daxinlaxminarayanpur
21°45’43.90”N,
88°20’39.91”E

21.91-40.251 4.449-4.854 Bibenzyl

7 Xylocarpus sp. Fruit Krishnadaspur 21°
42’42.00”N,
88°24’20.57”E

22.237-39.86 6.128-7.905 Bibenzyl

8 Avicennia
marina

Leaf Durbachoti 21°
51’15.09”N,
88°18’45.15”E

17.179-33.972 4.23-5.121 Bibenzyl

9 Aegiceras
corniculatum

Leaf Ramganga 21°
47’33.40”N,
88°22’54.89”E

26.936-40.533 4.505-6.606 Bibenzyl

10 Heritiera fomes Leaf Bhagabatpur 21°
43’11.92”N,
88°18’34.50”E

26.639-40.992 4.417-9.214 Bibenzyl
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TABLE 1 Continued

RMF
(Reverse
Match
Factor)

Probability (%) RT
(Retention

time
in minutes)

Peak
area%

926 85.80 15.27 0.007

947 91.90 15.281 0.190

912 56.30 15.130 0.125

919 83.80 15.27 0.131

936 89.80 15.281 0.180

944 91.60 15.281 0.069

928 90.50 15.287 0.144

940 90.40 15.281 0.294

924 88.80 15.287 0.115

942 90.70 15.27 0.127

937 30.10 15.275 0.073

(Continued)
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No.

Name of
mangrove

plant
species

Name of
mangrove
associate
plant

species

Plant
part
as

source

Sampling sites &
their location

Surface
water
salinity
range of
sampling

sites
(dSm-1)

Sediment
salinity
range of
sampling

sites
(dSm-1)

Compound
as closest
match in
NIST

database

MF
(Match
factor)

11 Bruguiera
cylindrica

Leaf Daxinshibganj 21°
46’37.14”N,
88°22’36.23”E

15.5-39.348 5.569-8.453 Bibenzyl 769

12 Bruguiera
gymnorrhiza

Leaf Durbachoti 21°
51’15.09”N,
88°18’45.15”E

17.179-33.972 4.23-5.121 Bibenzyl 939

13 Bruguiera
gymnorrhiza

Fruit Durbachoti 21°
51’15.09”N,
88°18’45.15”E

17.179-33.972 4.23-5.121 Bibenzyl 713

14 Bruguiera
parviflora

Leaf Ramganga 21°
47’33.40”N,
88°22’54.89”E

26.936-40.533 4.505-6.606 Bibenzyl 903

15 Sonneratia
apetala

Young
fruits

Rakhalpur 21°
45’7.73”N,

88°27’46.48”E

29.747-40.432 7.655-12.345 Bibenzyl 932

16 Sonneratia
caseolaris

Leaf Khetramohanpur 21°
45’42.98”N,
88°21’0.41”E

21.93-40.128 8.133-9.281 Bibenzyl 932

17 Excoecaria
agallocha

Leaf Debichak
21°50’21.62”N,
88°22’15.71”E

15.447-22 2.088-2.928 Bibenzyl 920

18 Derris trifoliata Leaf Shiberghat 21°
49’21.68”N

88°21’20.68”E

25.892-36.003 8.959-10.614 Bibenzyl 932

19 Nypa fruticans Young
leaf

Bhagabatpur 21°
43’11.92”N,
88°18’34.50”E

26.639-40.992 4.417-9.214 Bibenzyl 916

20 Ceriops tagal Leaf Atherogaji
21°50’49.47”N,
88°23’15.96”E

23.031-40.533 4.203-6.224 Bibenzyl 915

21 Ceriops
decandra

Leaf Atherogaji
21°50’49.47”N,
88°23’15.96”E

23.031-40.533 4.203-6.224 Bibenzyl 913
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TABLE 1 Continued

MF
(Match
factor)

RMF
(Reverse
Match
Factor)

Probability (%) RT
(Retention

time
in minutes)

Peak
area%

692 912 61.80 15.130 0.152

664 907 50.60 15.136 0.101

602 899 24.60 15.141 0.045

731 909 64.60 15.130 0.141

775 949 83.40 15.130 0.200

807 919 77.80 15.124 0.094

915 935 90.00 15.275 0.091

760 939 72.20 15.118 0.076

906 936 89.60 15.27 0.021

899 931 90.60 15.276 0.029
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water
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sampling

sites
(dSm-1)
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salinity
range of
sampling

sites
(dSm-1)

Compound
as closest
match in
NIST

database

22 Acrostichum
aureum

Leaf Bhagabatpur 21°
43’11.92”N,
88°18’34.50”E

26.639-40.992 4.417-9.214 Bibenzyl

23 Merope
angulata

Leaf Daxinshibganj 21°
46’37.14”N,
88°22’36.23”E

15.5-39.348 5.569-8.453 Bibenzyl

24 Kandelia
candel

Leaf Ramganga
21°47’33.40”N,
88°22’54.89”E

26.936-40.533 4.505-6.606 Bibenzyl

25 Thespesia
populnea

Leaf Bhagabatpur 21°
43’11.92”N,
88°18’34.50”E

26.639-40.992 4.417-9.214 Bibenzyl

26 Lumnitzera
racemosa

Leaf Chotorakkhoskhali 21°
44’55.48”N,
88°23’16.39”E

15.921-37.272 6.554-9.233 Bibenzyl

27 Caesalpinia
bonduc

Leaf Banashyamnagar 21°
47’15.23”N,
88°23’36.04”E

30.187-39.321 4.773-8.47 Bibenzyl

28 Caesalpinia
crista

Leaf Brajoballavpur 21°
42’48.96”N,
88°23’42.66”E

30.334-40.543 6.788-10.345 Bibenzyl

29 Acanthus
volubilis

Leaf Rakhalpur
21°45’7.73”N,
88°27’46.48”E

29.747-40.432 7.655-12.345 Bibenzyl

30 Rhizophora sp. Leaf Shiberghat 21°
49’21.68”N

88°21’20.68”E

25.892-36.003 8.959-10.614 Bibenzyl

31 Dalbergia
spinosa

Leaf Durgagobindapur 21°
48’9.12”N,

88°21’30.67”E

20.897-37.558 7.765-10.318 Bibenzyl
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again repeatedly extracted with a DCM:brine (1:1) (saturated

NaCl) mixture. The final methanol-aqueous phase fraction was

collected and passed through a sodium sulfate column to remove

the water. Finally, the solvent was completely removed under
Frontiers in Plant Science 07
reduced pressure by a rotary evaporator in a 40°C water bath for

20 min. The dried fraction was re-dissolved in 1 mL of HPLC-

grade methanol, collected into GC vials, and stored at 4°C for

further GC-MS and GC-FID analyses.
A

B

FIGURE 2

(A) A comprehensive map detailing the specific sampling and distribution locations of every mangrove and mangrove associate species collected in
this study across Indian Sundarbans. (B) Some representative mangrove and mangrove associate species of Indian Sundarbans where bibenzyl
scaffold is detected. (a) Avicennia marina (b) Phoenix paludosa (c) Nypa fruticans (d) Brownlowia tersa (e) Bruguiera gymnorrhiza (f) Rhizophora sp.
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2.3 GC-MS analysis

GC-MS analyses were carried out using the Agilent 7890B

series GC and 5977A mass spectrometer equipped with a fused

silica column, packed with an HP-5MS capillary column (30 m

long × 250 mm diameter × 0.25 mm thick). Pure helium gas

(99.99%) was used as the carrier gas at a constant flow rate of 1.2

mL/min. One microliter of the sample was injected (split ratio

10:1) and the injector temperature was maintained at 250°C.

The column oven temperature was set to 40°C for 2 min, raised

at 10°C/min up to 230°C, and the final temperature was increased

up to 300°C at increments of 10°C/min for 8.5 min. The total run

time was 33 min. For spectral detection, fragments ranging from

40 to 600 m/z of phytochemicals present in the test samples were

identified based on comparison of their retention time (RT; min),

peak abundance, peak height, and mass spectral patterns

according to the spectral database of authentic standard

compounds stored in the National Institute of Standards and

Technology (NIST) library (version 2.0) based on the NIST

internal algorithm (NIST version 2.0; https://chemdata.nist.gov/).

All the plant extracts were run with three biological replicates with

a concomitant blank run for the methanol solvent.
2.4 GC-FID analysis

An Agilent Model 6890N gas chromatograph was utilized for

GC-FID analyses. One milliliter of the prepared solutions was

placed into an autosampler vial for analysis and separation was

achieved on an HP-5MS column (30 m long × 250 mm diameter

× 0.25 mm thick) using three concentrations of bibenzyl internal

standard (99% pure; Sigma-Aldrich) at concentrations of 0.50, 1,

and 2 mg/L in methanol. Ultra-high purity (99.999%) helium was

chosen as the carrier gas with a flow rate of 1.0 mL/min. The flame

ionization detector was sustained at a temperature of 320°C and

the inlet temperature was maintained at 250°C in splitless mode

(10:1). One microliter of each sample was injected. An

isothermally programmed oven was adjusted to an initial

temperature of 60°C held for 2 min, increased to 100°C at 20°C/

min and held for 2 min, then increased to 310°C at 40°C/min and

held for 14 min; helium was utilized as the auxiliary make-up gas

for the detector at a flow rate of 30 mL/min. The total run time was

25.25 min. The presence of the bibenzyl core compound in plant

samples was confirmed by comparing the peak abundance and RT

(min) based on Agilent MassHunter-generated chromatogram

reports with those of the authentic bibenzyl standards run

simultaneously, and the peak areas were measured to quantify

the bibenzyl content in the test samples on the basis of the peaks

for the concurrently run standards. The plant extracts were run

in three biological replicates, each time including a parallel run

for the authentic bibenzyl standard and a blank for the

methanol solvent.
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3 Results

3.1 GC-MS data analyses

GC-MS detected the presence of a core bibenzyl molecule in the

methanolic extracts of 31 different plant parts belonging to 28

species of true mangrove and mangrove associates growing in the

same niche as a unique plant community in the Indian Sundarbans.

The generated mass spectral data were compared against the NIST

library spectra to obtain the Match Factor (Match), Reverse Match

Factor (R. Match), and Probability (%) values to create a hit list of

the compounds detected by GC-MS (Table 1). In almost all the

samples, the Match and R. Match scores were >900 with the

probability ranging from 80% to 91%, proving this “bibenzyl”

identification as an “Excellent Match” based on the NIST

algorithm. The first three hits in the hit list were ultimately

identified as “bibenzyl” for all 31 plant parts examined (Table 1).

The RT of this “bibenzyl” molecule was observed to be ~15 min for

all test samples (Table 1) in the GC-MS analyses. From the GC-MS

study the peak area percentage ranged from 0.007% to 0.294%

across all the plant samples studied (Table 1) where the referred

peak at this typical RT was found to match with “bibenzyl”molecule

based on NIST internal algorithm (NIST Version 2.0).

Themass spectral pattern generated for all 31 tested plant parts and

their replicates distinctively matched with NIST Mass Spectrometry

Data Center information on mass spectra identification of molecules,

where the “bibenzyl”molecule with a molecular weight of 182.26 g/mol

(https://pubchem.ncbi.nlm.nih.gov/compound/Bibenzyl) was stated to

show diagnostically threemajor peaks of highest abundance in GC-MS:

m/z 91 as the most abundant peak, followed by m/z 182 and m/z 65 as

second and third highest abundant peaks, respectively (https://

pubchem.ncbi.nlm.nih.gov; http://www.nist.gov/srd/nist1a.cfm)

(Figures 1A–F).
3.2 GC-FID data analyses

As an additional authentication step, GC-FID analyses were

carried out on the plant samples in which the presence of

“bibenzyl” was detected by GC-MS with an identical RT for the

peak of the authentic bibenzyl standard (~9.90 min) from the Agilent

MassHunter database. This compound was also evident from the GC-

FID chromatograms for these plant samples (Figures 3A–F). The

difference in RT of bibenzyl between the two different individual GC

machines used for GC-MS (RT ~15 min) and GC-FID (RT ~9.90

min) could be attributed to the different total run times and differently

programmed oven temperatures used for the two different models,

although the column model used in both cases was the same. Despite

the use of two different gas chromatograph machines with varying run

conditions for GC-MS and GC-FID, the presence of the “bibenzyl”

core scaffold in 31 plant extracts and their biological replicates

belonging to 28 mangrove and mangrove associate species could be

unequivocally established from both analyses (Table 1; Figures 1A–F,

3A–F; Supplementary Figures 4A, B).
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The peak areas calculated at a typical RT of ~9.90 min for

different concentrations of the standard bibenzyl compound were

utilized to construct a standard curve to quantify the amount of

bibenzyl in fresh plant tissue from the respective GC-FID

chromatograms (Supplementary Figure 4B). The quantified

content of bibenzyl ranged from approximately 0.2 to 1.7 µg/g of

fresh tissue. This quantified bibenzyl content in mangrove plant

extracts is much lower than that reported in other plant species. For

erianin and gigantol bibenzyl derivatives from Dendrobium

officinale plant parts, quantified via liquid chromatography-MS, it

was reported as 2.63 ± 0.69 and 37.01 ± 2.16 µg/g, respectively in

root tissues whereas 0.61± 0.01 and 22.67 ± 0.15 µg/g respectively

was found in basal stem tissues (Adejobi et al., 2021). No bibenzyl

compounds could be detected from leaf tissues in this study

(Adejobi et al., 2021). For moscatilin, gigantol, crepidatin, and

chrysotoxin bibenzyl derivatives from the dried stems of

Dendrobium spp. (33 species) from Thailand, detected by HPLC,

the total bibenzyl derivative content ranged from the highest level of

7.36 ± 0.50 mg/g dry weight in D. fimbriatum to the lowest level of
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0.07 ± 0.00 mg/g dry weight in D. christyanum among all 33 species

(Choonong et al., 2019). The total bibenzyl content from the dried

roots, pseudobulbs, and leaves of Dendrobium sinense, measured via

spectrophotometry using bibenzyl gigantol as a standard was

reported to be 1.31%, 0.62%, and 0.72% respectively of the dry

weight of roots, pseudobulbs, and leaves (Chen et al., 2022).
4 Discussion

The main finding of a bibenzyl molecule detected in 28

mangrove species through this extensive GC-MS and GC-FID

study initially seemed to be very intriguing. To date, among

plants, bibenzyl derivatives have mainly been reported from some

bryophytes, orchids, and Cannabis sativa, and some of these

derivatives are well established for several clinical parameters,

mainly based on their antimicrobial and cytotoxic potential

(Nandy and Dey, 2020; Ahmad et al., 2022; Boddington et al.,

2022; Chen et al., 2022). Several mangrove and mangrove associate
A B

C D

E F

FIGURE 3

GC-FID spectra of Agilent MassHunter database generated chromatogram reports. (A) Blank (only solvent), (B) 1 ppm (1µg/ml) standard Bibenzyl,
(C) 2 ppm (1µg/ml) standard Bibenzyl, (D) Avicennia marina leaf extract, (E) Phoenix paludosa leaf extract, (F) Nypa fruticans leaf extract.
Chromatograms showing sample leaf extract peak at 9.9 min. retention time matching with standard Bibenzyl peak in concurrent run at retention
time of ~9.909 min. with respective peak abundances.
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species are often reported to possess bioactive secondary metabolite

molecules of high curative, preventive, and pharmaceutical

importance in medicinal practices (Bandaranayake, 1998; Jiang

et al., 2018; Zhang et al., 2018; Bibi et al., 2019; Roy and Dutta,

2021; Sudhir et al., 2022; Wu et al., 2022). Nevertheless, to our best

knowledge, the presence of bibenzyls has not yet been referred to in

this context. Under this backdrop, it seemed challenging to

interpret and rationalize the presence of bibenzyl molecules in 28

mangrove and mangrove associate species collected from the Indian

Sundarbans without downstream purification of the actual bibenzyl

derivatives detected. However, the repeated identification of the

bibenzyl cores in such a high number of mangrove and mangrove

associate species (28 species) with almost 95–100% reproducibility

in the results irrevocably establishes the bibenzyl core molecule as a

product of some yet-to-be-identified secondary metabolic pathway

existing in these eco-physiologically enigmatic mangrove and

mangrove associate species. As these findings are preliminary and

we are yet to purify the “bibenzyl” derivative compounds from these

mangrove and associate species, the ubiquitous presence of bibenzyl

scaffold in all these 28 species, strengthens our hypothesis to justify

that all these studied mangrove and associate species invest their

energy in synthesizing this common secondary metabolite

“bibenzyl”, because the presence of this metabolite could be

related to the ROS-scavenging potential of the bibenzyl molecule,

which is desperately needed by the mangrove and mangrove

associate species to mitigate the salinity induced oxidative stress

to survive in hypersaline mangrove niche. To validate our

hypothesis to establish “bibenzyl” as a novel eco-physiological

trait of mangrove species, hitherto unknown in existing literature,

we carried out this extensive study of detection of the presence of

bibenzyl core scaffold for 28 different mangroves and related

plant species.

Several researchers have demonstrated bibenzyl biogenesis in

plant systems as a by-product of branches of the core

phenylpropanoid biosynthetic pathway. A well-known bibenzyl

derivative (3,3’,5-trihydroxybibenzyl) identified from the bulb

tissues of the orchids Barlia longibracteata and Orchis spp. was

first validated to be a physiological intermediate of an offshoot of

the phenylpropanoid pathway, with L-phenylalanine as a precursor

and various hydroxycinnamic acids as intermediary substrates. This

study conclusively established the origin of at least one of the

aromatic rings in the trihydroxybibenzyl molecule derived via

phenylpropanoid biosynthesis based on feeding experiment

results (Fritzemeier and Kindl, 1983). A correlation between

upregulated expression of the several intermediate enzymes of the

phenylpropanoid pathway, including the starting enzyme PAL, in

the roots, leaves, and several other plant parts with concurrent

abundance of bibenzyls in the orchid Arundina graminifolia

indirectly indicated the interrelationship between these molecules

(Ahmad et al., 2022). The biosynthetic route of cyclic bis(bibenzyl)

marchantin A, a derivative of the core bibenzyl from the bryophyte

Marchantia polymorpha, was also demonstrated to originate from

the benzene ring of L-phenylalanine via trans-cinnamic acid and p-

coumaric acid. The researchers validated the biosynthesis of the

bibenzyl monomers to constitute the marchantin A molecule via a
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unique branch of the core phenylpropanoid biosynthesis pathway

(Friederich et al., 1999). Another bryophyte, Plagiochasma

appendiculatum, was also successfully demonstrated to synthesize

bisbibenzyls via a special branch of the core phenylpropanoid

synthesis pathway, originating from L-phenylalanine and taking a

diversion at p-coumaric acid to dihydro-p-coumaric acid, leading to

the formation of dihydro-p-coumaryl coenzyme A (CoA) and other

intermediates (Gao et al., 2015). A recent comprehensive study

from Cannabis sativa explicitly proved the origin of the two

aromatic rings of the bibenzyl scaffold derived from the core

phenylpropanoid pathway via hydroxycinnamic acids becoming

esterified to acyl-CoA to form dihydro-CoA derivatives and

consequent condensation with malonyl-CoA to yield bibenzyl

scaffolds (Boddington et al., 2022).

Thus, the detection of a bibenzyl scaffold from 28 mangrove and

mangrove associate species of the Indian Sundarbans may be

rationalized in light of the physiological adaptive convergence of

mangrove species, where the primary acclimations are centered on

osmotic adjustments and the secondary acclimative process

controls oxidative stress-induced damage from the high-salinity

environment (Nijam et al., 2022). The phenylpropanoid

biosynthetic pathway that provides substrates for many secondary

metabolites, including bibenzyls, is an integral component of this

oxidative stress mitigation process. This explains the common

presence of the bibenzyl scaffold in all 28 mangrove species

studied. This interpretation finds stronger support from a study

showing s ignificant upregula t ion of enzymes of the

phenylpropanoid pathway that were strongly induced under

hypersalinity (500 mM NaCl) in Kandelia candel, a woody true

mangrove species, demonstrated via transcriptomic analyses,

enzymatic activity analyses, and succeeding “phenylpropanoid”

accumulation with potential to scavenge ROS (Wang et al., 2016).

Several reports corroborate the in vitro ROS detoxification attribute

of purified biogenic bibenzyl derivatives, including from the orchid

Dendrobium parishii (Kongkatitham et al., 2018); the aerial parts of

Notholaena nivea Desv. (Pteridaceae) (Cioffi et al., 2011); purified

moscatilin, gigantol, crepidatin, and chrysotoxin bibenzyl

derivatives from Dendrobium spp. (Choonong et al., 2019); and

purified bibenzyls, nobilin D and nobilin E, from the orchid

Dendrobium nobile (Zhang et al., 2007). This ROS detoxification

potential of ‘bibenzyl’ scaffold becomes more important for

mangrove associate species, that grow luxuriously in the same

mangrove habitats of Indian Sundarbans along with

conventionally known true mangrove species irrespective of their

habits like herb, shrub or tree. True mangrove species possess

typical adaptive features like pneumatophores, vivipary,

cryptovivipary etc., which are lacking in these semi-mangrove

plants (mangrove associate species). Despite the absence of true

mangrove adaptive features, these semi-mangrove plants

(mangrove associate species) have the potential to survive the

hypersalinity of the mangrove niches because of their acclimative

osmotic adjustment potentials by synthesizing several compatible

solutes (Begam et al., 2020). Almost all the mangrove associate

species we have referred in this study (Table 1) are known to

synthesize one or more number of compatible solutes, helping them
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to acclimate with the hypersalinity of mangrove niches by osmotic

adjustment, notwithstanding the possession of adaptive features of

true mangroves (Begam et al., 2020). This study establishes the

presence of another bioactive secondary molecular scaffold of

“bibenzyl” being common to all these mangrove associate species,

which might confer to these species additional salinity induced ROS

scavenging potential via antioxidant activities described for this

molecule by earlier researchers (Zhang et al., 2007; Cioffi et al.,

2011; Kongkatitham et al., 2018; Choonong et al., 2019). Thus this

study signifies “bibenzyl” scaffold, like other secondary metabolites,

might be a potential acclimative response that is especially beneficial

for mangrove associate species.

In summary, this study confirmed detection of a bibenzyl

scaffold from 28 mangrove and mangrove associate species of the

Indian Sundarbans growing in mangrove niches where the

prevailing conductivity of the sediment and riverine water is ~5–

12 dS/m and ~32–40 dS/m (Table 1) respectively, during major part

of the year (Chowdhury et al., 2019; Begam et al., 2020). We

propose bibenzyl as another signature molecule of salinity

acclimation in mangroves, with potential for detoxification of

salinity-induced ROS, thereby shielding the photosynthetic

apparatus and other cell organelles and protecting function of the

downstream metabolic processes, similar to the effects of

compatible solutes/osmolytes. To our knowledge, this is the first

report to reveal the presence of the secondary metabolite bibenzyl in

mangroves thought to have an eco-physiological functional role

towards salinity acclimation. However, purification of the bibenzyl

derivatives from mangrove species is yet to be carried out, along

with validation of its biosynthetic steps. This preliminary study

should attract further research interest on mangrove eco-

physiological functional traits, especially with regard to the

mechanisms underlying salinity stress acclimation, amid a unique

ecological environment. Bibenzyl seems a potential signature

molecule for stress alleviation of mangrove species adapted to

hypersaline ecology.
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(A) Box-whisker plot representing GC-MS spectra matching criteria with
standard Bibenzyl in 28 species of mangrove and mangrove associates of

Indian Sundarbans based on NIST database algorithm (NIST 2.0). Match factor
(MF), Reverse match factor (RMF) are in scale of 1000 (left Y axis) and

probability% is in scale of 100 in right Y axis, n=31. (B) GC-FID based
quantitative analysis of Bibenzyl in 9 common mangrove species of Indian

Sundarbans from a representative run.
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