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The deterioration of starch
physiochemical and minerals in
high-quality indica rice under
low-temperature stress during
grain filling
Juan Yang1†, Xinzheng Zhang1†, De Wang1, Jinshui Wu1,
Hang Xu1, Yang Xiao1, Hongjun Xie2* and Wanju Shi1*

1College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China, 2Hunan Rice Research
Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
Low temperatures during the grain-filling phase have a detrimental effect on

both the yield and quality of rice grains. However, the specific repercussions of

low temperatures during this critical growth stage on grain quality and mineral

nutrient composition in high-quality hybrid indica rice varieties have remained

largely unexplored. The present study address this knowledge gap by subjecting

eight high-quality indica rice varieties to two distinct temperature regimes: low

temperature (19°C/15°C, day/night) and control temperature (28°C/22°C) during

their grain-filling phase, and a comprehensive analysis of various quality traits,

with a particular focus on mineral nutrients and their interrelationships were

explored. Exposure of rice plants to low temperatures during early grain filling

significantly impacts the physicochemical and nutritional properties. Specifically,

low temperature increases the chalkiness rate and chalkiness degree, while

decreases starch and amylopectin content, with varying effects on amylose,

protein, and gelatinization temperature among rice varieties. Furthermore,

crucial parameters like gelatinization enthalpy (DH), gelatinization temperature

range (R), and peak height index (PHI) all significantly declined in response to low

temperature. These detrimental effects extend to rice flour pasting properties,

resulting in reduced breakdown, peak, trough, and final viscosities, along with

increased setback. Notably, low temperature also had a significant impact on the

mineral nutrient contents of brown rice, although the extent of this impact varied

among different elements and rice varieties. A positive correlation is observed

between brown rice mineral nutrient content and factors such as chalkiness,

gelatinization temperature, peak viscosity, and breakdown, while a negative

correlation is established with amylose content and setback. Moreover,

positive correlations emerge among the mineral nutrient contents themselves,

and these relationships are further accentuated in the context of low-

temperature conditions. Therefore, enhancing mineral nutrient content and

increasing rice plant resistance to chilling stress should be the focus of

breeding efforts to improve rice quality.
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1 Introduction

Rice (Oryza sativa L.) is a vital staple food that provides essential

nutrients, including starch, protein, and various macro-micro

nutrients, to more than half of the global population (Huang

et al., 2016). With the world’s population on the rise and

increasing economic development, there has been an

improvement in the yield potential and grain qualities of rice

(Peng et al., 2009). Moreover, the nutritional quality of rice has

garnered increasing attention in recent years due to its crucial role

in human health, particularly in regions such as Asia, Latin

America, and parts of Africa, where rice provides up to 76% of

the caloric intake (Fitzgerald et al., 2009; Huang et al., 2016). The

macro-micronutrients in rice are not only essential components of

the human body, but also cofactors in many important biological

processes (Huang et al., 2020). Inadequate consumption of macro-

micro nutrients from food can have severe health consequences,

especially among children and women in developing countries (Du

et al., 2013). Zinc deficiency can lead to anorexia, stunted growth,

and underdeveloped intelligence (Xi et al., 2016), while iron

deficiency causes anemia in over two billion people globally

(Zhang et al., 2020). Lack of calcium is the main cause of

osteoporosis , and manganese deficiency can result in

developmental and growth defects (Chen et al., 2005). Therefore,

enhancing the nutrition of rice could be of significant benefit to

human health, especially in developing countries.

Double-season rice cropping is a prevalent rice production

system in central China and other parts of Asia, it involves

sequential cultivation of early and late-season rice from March to

November, leading to higher rice production per unit land area than

single-season rice systems (Peng et al., 2009). Although late-season

rice typically exhibits superior grain quality than early-season rice

(Dong et al., 2017), its production is often impacted by lower

temperatures from mid-September, leading to reduced grain yield

and poor quality (Zeng et al., 2017; Zhang et al., 2017). Low

temperatures have caused significant losses in rice production,

with losses of up to 20% of total production reported in the last

century (Xiao and Song, 2011). The southern regions of the mid-

lower reaches of the Yangtze River have seen a significant increase

in the area exposed to low temperatures over the 2010s (Wang et al.,

2019). Moreover, addressing the gap in knowledge surrounding

low-temperature stress and its impact on rice is also crucial,

particularly in temperate and high-altitude areas in the tropics,

where it is a significant factor affecting the growth and development

of rice (Razafindrazaka et al., 2020).

Rice quality traits include milling recovery, physical appearance,

cooking and eating qualities, and nutritional value. Starch,

accounting for around 90% of milled rice weight, receives high

attention for its physicochemical properties (Hu et al., 2020). The

synthesis and accumulation of starch were blocked leading to the

deterioration of cooking and eating quality for rice, especially under

abiotic stress (Ahmed et al., 2015; Siddik et al., 2019; Wada et al.,

2019). Previous studies have reported that low temperatures during

the grain-filling stage increased amylose content (Zhu et al., 2017),

improved the short chain of amylopectin (Chun et al., 2015), and

decreased the amylopectin content and relative crystallinity in
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starch (Hu et al., 2020; Ai et al., 2023). Therefore, low

temperatures could decrease starch physicochemical properties,

and consequently deteriorate the cooking and eating quality of

rice. Zhu et al. (2017) found that low temperatures increased

protein content and gelatinization temperature while decreasing

total starch content in Japonica rice. However, Hu et al. (2020)

showed that the effect of protein and total starch content was not

significant under low temperatures, but the gelatinization

temperature decreased significantly. Additionally, some studies

reported that the amylose and protein content decreased under

low temperatures (Chun et al., 2015; Ai et al., 2023). Most previous

studies have focused on the effect of low temperature on rice quality

traits in japonica rice (Oryza sativa L. subsp. japonica) (Chun et al.,

2015; Zhu et al., 2017; Hu et al., 2020) or inbred indica (Oryza

sativa L. subsp. indica) (Lu et al., 2022). However, research on high-

quality hybrid indica varieties has been limited, even though they

have been bred to meet the demand for good eating and cooking

quality in recent years (Zeng et al., 2022). Furthermore, the

differences in quality characteristics, such as amylose content and

physicochemical properties, between India and japonica rice are

well-recognized (Feng et al., 2017). And comparative analyses of

grain quality in response to high temperatures during the grain-

filling stage between indica and japonica have been conducted (Fan

et al., 2023). Therefore, it is crucial to investigate the effect of low

temperature on high-quality indica varieties, which plays an

essential role in maintaining food security and has been highly

demanded by consumers in recent years.

While there has been extensive research on the effect of

temperature on starch properties of rice, less attention has been

paid to the impact of lower temperatures on mineral nutrients. The

accumulation of mineral elements in rice grains is not only

influenced by genetic factors but also constrained by external

environmental conditions (Du et al., 2013; Huang et al., 2016).

For instance, increasing atmospheric CO2 or temperature can

reduce the nutrient content, such as Zn and Fe, in wheat or rice

(Myers et al., 2014; Chaturvedi et al., 2017). Moreover, the

application of nitrogen fertilizer and water management can also

affect the micro nutrient composition of grains. Gu et al. (2015)

reported that increasing nitrogen fertilizer resulted in decreased

levels of micro-nutrients such as Cu, Mg, and S, while Fe, Mn, Zn,

Na, etc., increased. In contrast, Wang et al. (2018) found that a

moderate level of nitrogen application was favorable for promoting

the accumulation of micro-nutrients like Cu, Fe, Mn, and Zn in

brown rice. Additionally, Xu et al. (2019) discovered that

alternating wetting and moderate soil drying irrigation decreased

the content of Cu, Fe, Mn, Mo, Se, and Zn in the brown rice.

However, the effect of low temperature on the mineral nutrient

composition of rice grains remains unclear. Furthermore, a complex

correlation has been documented between within-grain minerals

and minerals with different quality traits such as amylose content,

protein content, gel consistency, and gelatinization temperature in

rice (Jiang et al., 2007; Huang et al., 2016; Xi et al., 2016). However,

the relationships between quality traits and mineral nutrients have

not been explored under low-temperature conditions.

This study compares the grain quality traits and mineral

nutrient contents of eight high-quality indica rice cultivars
frontiersin.org
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subjected to either low-temperature stress or a control condition

during the grain filling stage, which is the most critical for rice

quality in response to extreme temperatures. Therefore, the primary

objectives of the studies were to investigate (i) the impact of lower

temperature on grain quality, and mineral nutrients in high-quality

indica rice, and (ii) the association between grain quality traits and

mineral nutrients exposed to lower temperature conditions.
2 Materials and methods

2.1 Plant materials

Eight high-quality indica varieties, Taoyouxiangzhan (TYXZ),

Yliangyou911 (YLY911), Yuzhenxiang (YZX), Taiyou390 (TY390),

Huanghuazhan (HHZ), Jinliangyouhuazhan (JLYHZ), Longjingyou

534 (LJY534), and Nongxiang 42 (NX42) were selected in this study.

The experiment was conducted in the research farm at Hunan

Agricultural University, Changsha city (14°C11′N, 121°C15′E, 21 m
asl), Hunan Province, China. Twenty days of seedlings were

manually transplanted into plastic pots (28cm and 32cm in

internal diameter and height, respectively) to grow. Plants were

given a basal dressing of 5g pot-1 [commercial fertilizer, 20-10-15

(N-P2O5-K2O)] before transplanting. Water, weeds, pests, and

diseases were completely controlled as requirements of local high-

yield cultivation.
2.2 Temperature treatments and samplings

During the heading stage of the rice plants, two to three primary

tillers which had headed on the same day from each plant were

labeled. As previous research has shown that the second week of post-

heading is the most critical period for rice quality in response to

extreme temperatures (Siddik et al., 2019), a walk-in climate

chamber-treated experiment was conducted to impose the

temperature treatment at this period. Specifically, on the seventh

day after marking, thirty plants were randomly selected and moved

into two independent temperature-controlled growth rooms (2.6 m ×

2.2m × 2.0 m in length, width, and height, respectively). The plants

were subjected to two different temperature regimes for six

consecutive days, a lower temperature of 19°C during the daytime

(07:00 a.m. to 6:59 p.m.) and 15°C during nighttime (07:00 p.m. to

6:59 a.m.), and a control temperature of 28°C during the daytime and

22°C during nighttime. To monitor the temperature in the rice

canopy, two stand-alone sensors (HOBO, MX2301A, USA) were

placed in each growth room tomeasure the temperature at 10-minute

intervals. Once the temperature treatments were completed, all plants

were transferred outdoors. After physiological maturation, all the

marked panicles on the individual plants for each variety and

temperature treatment were collected. The panicles were manually

threshed and then stored at room temperature for three months

before determining the grain quality traits.
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2.3 Determination of grain chalkiness

Three samples consisting of 200 grains each were randomly

selected for each treatment, which was then dehulled. Grain

chalkiness rate (%) and chalkiness degree were measured by a

flatbed scanner (ScanMaker i800plus, MICROTEK, China) and

analyzed with SC-E software (Hangzhou, Wanshen Detection

Technology Co., Ltd., Hangzhou, China).
2.4 Total starch content, amylose, and
amylopectin content

The total starch content was determined using the total starch

kit (Suzhou Comin Biotechnology Co., Ltd, Suzhou, China) in

accordance with the kit’s protocol. The amylose content was

measured using the amylose–iodine reaction with reference to the

national standards of the People’s Republic of China (GB/T 17891-

2017). To measure the amylose content, rice flour (100mg) was

mixed with 1 ml of 95% ethanol and 9 mL of 1 M NaOH, and then

boiled for 10 min. After cooling, the volume was made up to 100 ml

with distilled water. 5 ml of solution was added with 1 ml of 1M

aqueous acetic acid and 2 ml of iodine solution (0.2 g iodine and 2.0

g potassium iodide in 100 ml aqueous solution). The volume was

then made up to 100ml with distilled water and the absorbance of

the solution was measured at 620 nm with a spectrophotometer.

The amylopectin content was obtained by subtracting the amylose

content from the total starch content, as described previously by

Zhu et al. (2021).
2.5 Determination of protein content

Total protein content was measured using the method by Hu

et al. (2020) with some modifications. In brief, it was determined

indirectly using nitrogen concentration estimated by the semi-

microKjeldahl method and a Kjeldahl conversion coefficient of

5.95 was used with reference to the national standards of the

People’s Republic of China (GB/T 5009.5-2016).
2.6 Determination of thermal properties

The thermal properties were determined using a differential

scanning calorimetry analyzer (DSC 25, TA Instruments, USA).

Five milligrams of starch were mixed with 10ul water, and then the

mixture was hermetically sealed and left to stand at room

temperature for 24 hours before being heated in the DSC. The

DSC analyzer was calibrated using an empty aluminum pan as a

reference. The sample pans were heated from 30°C to 95°C at a rate

of 10°C min-1. Onset temperature (To), peak temperature (Tp),

conclusion temperature (Tc), and gelatinization enthalpy (DH)

were calculated by the TA Universal Analysis 2000 software. The
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gelatinization temperature range (R) and peak height index (PHI)

were calculated as R = Tc−To and PHI =DH/(Tp− To) respectively

(Ai et al., 2023).
2.7 Determination of pasting properties

The pasting properties of rice flour were evaluated using a rapid

viscosity analyzer (RVA-3D, Newport Scientific, Australia).

Specifically, 3 grams of rice flour were accurately weighed and

placed into an RVA sample canister. Next, 25ml of ultrapure water

was added to the canister, after which it was transferred into the

RVA for testing. The temperature within the RVA tank was

subjected to a heating-cooling program that commenced at 50°C

for one minute, followed by a gradual increase to 95°C at a rate of
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12°C per minute. The temperature was then maintained at 95°C for

2.5 minutes, after which it was decreased to 50°C at a rate of 12°C

min-1 and maintained at 50°C for 2 minutes. The peak viscosity

(PV), trough viscosity (TV), final viscosity (FV), breakdown value

(PV - TV) and setback value (FV - PV) were analyzed by TCW

(Thermal Cline for Windows) program (Jiang et al., 2022).
2.8 Macro and micro nutrients

The nutrients (B, Na, Mg, P, K, Ca, Mn, Fe, Cu, and Zn) were

determined via an inductively coupled plasma mass spectrometer

(ICP-MS; NexION300X; PerkinElmer, USA). Milled grains (0.50 g)

were finely ground and wet-digested in a 50 ml conical flask using

10 ml mixed acid (4:1 HNO3–HClO4). After cooling, the digested
A B

C D

E F

FIGURE 1

The impacts of low temperature on chalkiness rate (A), chalkiness degree (B), total starch content (C), amylopectin content (D), amylose content (E)
and crude protein content (F) in high-quality indica rice. The values reported are mean ± standard error of three replicates. The different letters in
each variety are statistically significant at p < 0.05. CK, control temperature treatment. LT, low-temperature treatment.
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https://doi.org/10.3389/fpls.2023.1295003
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1295003
solution was transferred to a 100 ml volumetric flask and brought to

a final volume of 100 ml with double distilled water. The resulting

solution was then filtered using a 0.45 um filter and collected in a

fresh 10 ml plastic centrifuge tube for subsequent analysis by ICP-

MS. Calibration curves and element contents were obtained using

standard solutions of 32 elements (GNM-M323115-2013,

20DC821, China).
2.9 Statistical analysis

The statistical analysis employed in this study involved factorial

analysis of variance (ANOVA), which was performed using the R

language (version 4.1.0; http://www.R-project.org). Mean values ±

standard error derived from three replications were reported in all

tables and figures. To conduct multiple comparisons of variables

with statistically significant differences (p < 0.05), Duncan’s new

multiple range method was utilized. The figures were plotted using

the Sigma Plot software version 14.0 (Systat Software Inc., San Jose,

CA, USA). The principal component analysis (PCA) and Pearson’s

correlation analysis were also carried out using the R language.
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3 Results

3.1 Chalkiness, starch and protein content

Notably, exposure to low temperatures during the grain-filling

stage resulted in a significant increase in both the chalkiness rate

and degree across all varieties (Figures 1A, B). The largest increases

in chalkiness rate (11.5%) and chalkiness degree (5.2%) induced by

lower temperature were seen in variety TY390. Compared to the

control treatment, lower temperature resulted in a significant

decrease in both total starch and amylopectin content across all

rice varieties, with the greatest reduction observed in TY390 (19.1%

and 18.5% for total starch and amylopectin, respectively) and the

least in TYXZ (6.4% for both total starch and amylopectin)

(Figures 1C, D). Conversely, the content of amylose decreased

significantly only in NX42, while increased significantly in HHZ

and LJY534 (Figure 1E). Notably, the effect of lower temperatures

on protein content varied among rice varieties (Figure 1F), with a

significant reduction observed in TYXZ by 3.1% and in LJY534 by

4.8%, and a significant increase observed in YLY911, YZX, TY390,

JLYHZ, and NX42 by 2.1%-14.1%.
TABLE 1 The impact of low temperature on the thermal properties of starch in high-quality indica rice.

Variety
Temperature
treatment

To
(°C)

Tp
(°C)

Tc
(°C)

DH
(J g-1)

R
(°C)

PHI

TYXZ CK 67.2 ± 0.1 b 74.8 ± 0.0 b 78.0 ± 0.1 b 3.76 ± 0.02 a 10.75 ± 0.03 a 0.49 ± 0.00 a

LT 69.9 ± 0.1 a 75.6 ± 0.1 a 78.6 ± 0.2 a 2.66 ± 0.04 b 8.66 ± 0.13 b 0.47 ± 0.00 b

YLY911 CK 75.6 ± 0.1 b 82.0 ± 0.1 a 85.5 ± 0.1 a 4.14 ± 0.03 a 9.93 ± 0.12 a 0.64 ± 0.00 a

LT 76.7 ± 0.0 a 82.1 ± 0.0 a 84.9 ± 0.1 b 2.98 ± 0.01 b 8.21 ± 0.11 b 0.55 ± 0.00 b

YZX CK 68.1 ± 0.2 a 73.3 ± 0.2 a 78.5 ± 0.5 a 5.95 ± 0.01 a 10.40 ± 0.28 b 1.15 ± 0.01 a

LT 63.0 ± 0.1 b 72.5 ± 0.2 a 77.3 ± 0.1 a 5.56 ± 0.05 b 14.24 ± 0.17 a 0.58 ± 0.00 b

TY390 CK 77.0 ± 0.1 a 82.9 ± 0.1 b 86.3 ± 0.2 a 3.66 ± 0.02 b 9.28 ± 0.16 b 0.63 ± 0.01 a

LT 76.5 ± 0.2 b 83.5 ± 0.1 a 86.8 ± 0.2 a 3.75 ± 0.02 a 10.28 ± 0.15 a 0.54 ± 0.01 b

HHZ CK 67.5 ± 0.2 a 75.1 ± 0.1 a 79.8 ± 0.2 a 5.45 ± 0.01 a 12.27 ± 0.24 a 0.73 ± 0.01 a

LT 67.5 ± 0.0 a 75.3 ± 0.1 a 78.5 ± 0.1 b 2.93 ± 0.02 b 11.01 ± 0.05 b 0.38 ± 0.01 b

JLYHZ CK 75.8 ± 0.1 a 81.4 ± 0.2 b 85.7 ± 0.2 a 4.09 ± 0.04 a 9.81 ± 0.14 a 0.73 ± 0.02 a

LT 76.7 ± 0.3 a 82.9 ± 0.2 a 86.1 ± 0.4 a 2.83 ± 0.03 b 9.37 ± 0.15 a 0.46 ± 0.00 b

LJY534 CK 67.3 ± 0.0 a 74.5 ± 0.1 a 77.9 ± 0.1 a 3.65 ± 0.02 a 10.61 ± 0.10 a 0.51 ± 0.01 a

LT 67.9 ± 0.2 a 74.1 ± 0.1 a 77.3 ± 0.4 a 2.53 ± 0.01 b 9.39 ± 0.16 b 0.41 ± 0.00 b

NX42 CK 67.2 ± 0.1 b 72.4 ± 0.0 b 76.9 ± 0.1 a 6.06 ± 0.01 a 9.71 ± 0.05 a 1.18 ± 0.01 a

LT 68.4 ± 0.1 a 73.6 ± 0.0 a 77.2 ± 0.1 a 3.42 ± 0.02 b 8.82 ± 0.07 b 0.67 ± 0.01 b

Analysis of variance

Variety (V) *** *** *** *** *** ***

Temperature treatment (T) ns *** * *** *** ***

V*T *** *** *** *** *** ***
f

The values reported are mean ± standard error of three replicates. The different letters in the same column of each variety are statistically significant at p < 0.05. LSD (least significant difference)
followed by *, ***, significance at 0.05 and 0.001, respectively, ns, non-significant. CK, control temperature treatment; LT, low-temperature treatment; To, onset temperature; Tp, peak
temperature; Tc, conclusion temperature; DH, gelatinization enthalpy; R, gelatinization temperature range; PHI, peak height index.
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3.2 Thermal properties

The results of the study showed that variety, temperature, and

their interactions had a significant effect on To, Tp, Tc, DH, R, and

PHI, except for varietal effects on To (Table 1). YLY911, TY390, and

JLYHZ exhibited higher gelatinization temperatures (To, Tp, and

Tc) compared to other varieties. The DH of YZX, NX42, and HHZ

was also higher than that of other varieties, while HHZ had the

highest R among all varieties. When exposed to lower temperatures

compared to the control, the To significantly increased in TYXZ,

YLY911, and NX42, by 1.2% to 4.0%, whereas it notably decreased

in YZX by 7.5% and TY390 by 0.7%. Under low temperature

conditions, Tp increased significantly in TY390, TYXZ, JLYHZ,

and NX42 (0.7%-1.8%), while Tc increased greatly only in TYXZ

(0.8%) and decreased significantly in YLY911 (0.7%) and HHZ

(1.6%). Low temperature caused a significant decrease in DH, R, and

PHI for all varieties, except for the DH of TY390 and R of YZX,

TY390, and JLYHZ. The largest decrease in DH was observed in
Frontiers in Plant Science 06
HHZ (46.2%), followed by NX42 with 43.6%. LJY534 had the

highest decrease in R with 11.5%, and the greatest decrease in

PHI was observed in YZX by 49.6%.
3.3 Pasting properties

As it was shown in Table 2, variety, temperature, and their

interactions had a significant effect on peak viscosity, trough

viscosity, final viscosity, breakdown and setback. Compared to the

control, exposure to low temperature resulted in a significant decrease

in the peak viscosity, trough viscosity, and final viscosity of all varieties

except for the trough viscosity in YZX and the final viscosity in HHZ.

YLY911 andNX42 exhibited the largest reduction in peak viscosity and

trough viscosity, with a decrease of 17.23% and 12.9%, respectively,

whereas LJY534 and HHZ showed the least decrease, with reductions

of 5.4% and 1.4%, respectively. JLYHZ showed the greatest decrease in

final viscosity, by 9.3%, whereas a slight increase of 1.2% was observed
TABLE 2 The effects of low temperature on the pasting properties of high-quality indica rice.

Variety
Temperature
treatment

Peak viscosity (cp) Trough viscosity (cp) Final viscosity (cp)
Breakdown
(cp)

Setback
(cp)

TYXZ CK 3021.3± 6.3 a 2039.3 ± 10.3 a 2946.7 ± 8.2 a 982.0 ± 4.0 a -74.7 ± 3.8 b

LT 2782.7± 9.4 b 1906.7 ± 3.5 b 2811.0 ± 8.5 b 876.0 ± 7.0 b 28.3 ± 0.9 a

YLY911 CK 3627.0 ± 5.5 a 2225.7 ± 6.2 a 2976.0 ± 7.1 a 1401.3 ± 10.8 a -651.0 ±
10.0 b

LT 3004.3 ± 19.2 b 1962.0 ± 30.5 b 2705.3 ± 2.3 b 1042.3 ± 22.4 b -299.0 ±
17.2 a

YZX CK 3041.3 ± 3.8 a 1851.7 ± 39.9 a 2760.0 ± 15.0 a 1189.7 ± 36.1 a -281.3 ±
11.4 b

LT 2844.7 ± 7.8 b 1775.3 ± 7.9 a 2657.7 ± 14.8 b 1069.3 ± 14.9 b -187.0 ±
17.3 a

TY390 CK 3426.0 ± 2.5 a 1908.7 ± 3.3 a 2742.3 ± 2.3 a 1517.3 ± 2.6 a -683.7 ± 4.7 b

LT 3017.0 ± 13.1 b 1780.7 ± 8.7 b 2649.0 ± 9.6 b 1236.3 ± 9.3 b -368.0 ± 3.5 a

HHZ CK 2965.7 ± 3.5 a 1918.7 ± 3.9 a 2850.7 ± 14.5 a 1047.0 ± 1.5 a -115.0 ±
11.5 b

LT 2698.3 ± 6.2 b 1891.7 ± 3.2 b 2885.0 ± 11.0 a 806.7 ± 7.0 b 186.7 ± 12.9 a

JLYHZ CK 3312.0 ± 6.7 a 2087.7 ± 19.9 a 2972.7 ± 5.8 a 1224.3 ± 18.9 a -339.3 ± 1.8 b

LT 2829.0 ± 7.5 b 1837.0 ± 2.0 b 2696.0 ± 4.2 b 992.0 ± 9.3 b -133.0 ± 3.6 a

LJY534 CK 2738.7 ± 17.9 a 1927.7 ± 12.5 a 2900.3 ± 8.7 a 811.0 ± 5.5 a 161.7 ± 9.3 b

LT 2590.7 ± 4.7 b 1833.3 ± 5.0 b 2835.3 ± 9.1 b 757.3 ± 0.3 b 244.7 ± 5.2 a

NX42 CK 3475.7 ± 11.6 a 2420.3 ± 11.5 a 3345.3 ± 24.7 a 1055.3 ± 1.5 a -130.3 ±
16.1 b

LT 2984.3 ± 11.7 b 2109.3 ± 16.8 b 3078.3 ± 9.2 b 875.0 ± 5.3 b 94.0 ± 2.6 a

Analysis of variance

Variety (V) *** *** *** *** ***

Temperature treatment (T) *** *** *** *** ***

V*T *** *** *** *** ***
The values reported are mean ± standard error of three replicates. The different letters in the same column of each variety are statistically significant at p < 0.05. LSD (least significant difference)
followed by ***, significance at 0.001, CK, control temperature treatment. LT, low-temperature treatment.
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in HHZ under low-temperature conditions. The decrease in

breakdown induced by low temperature was significant in all

varieties, with the greatest decrease observed in YLY911 by 25.6%

and the least in LJY534 by 6.6%. However, the setback of all varieties

increased significantly under low temperatures, with the greatest

increase observed in HHZ by 262.4% and the least in YZX by 33.5%.
3.4 Macro and micronutrients

Mineral nutrient accumulation differed significantly across

varieties, temperature treatments and their interactions. Exposure to

lower temperature resulted in significant reductions of Na and B in all
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varieties, except for Na in HHZ, B in TY390 and HHZ (Figures 2A, B).

Meanwhile, Mg levels were significantly increased in most of varieties

except for TY390, HHZ and LJY534 (Figure 2C). When plants were

exposed to low temperatures, Mn levels increased significantly in

TYXZ and YLY911 but decreased greatly in HHZ and LJY534

(Figure 2D). P and K levels significantly increased in four varieties

(TYXZ, YLY911, YZX and NX42), with noticeably decreases in LJY534

andHHZ, respectively (Figures 2E, F). Fe increased significantly only in

TYXZ and decreased in YZX, LJY534 and NX42 (Figure 2G). The Cu

levels changed slightly due to lower temperatures, increasing

significantly only in YLY911 and decreasing greatly in YZX and

LJY534 (Figure 2H). Among all varieties, significant decrease of Ca

under low temperature were recorded in YLY911, TY390, HHZ and
A B

C D

E F

G H

I J

FIGURE 2

The impacts of low temperature on Na content (A), B content (B), Mg content (C), Mn content (D), P content (E), K content (F), Fe content (G), Cu
content (H), Ca content (I) and Zn content (J) in high-quality indica rice. The values reported are mean ± standard error of three replicates. The
different letters in each variety are statistically significant at p < 0.05. CK, control temperature treatment. LT, low-temperature treatment.
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LJY534, but NX42 showed a noticeable increase in Ca (Figure 2I). Zn

was affected by low temperatures in all varieties, with significant

increases in TYXZ, YLY911, HHZ, and NX42, but decreased in

remaining varieties (Figure 2J). YLY911 exhibited significant changes

in nine elements, whereas TYXZ, YZX, NX42, and LJY534 had

significant changes in eight elements.
3.5 Relationships among rice quality traits
and varieties

Principal component analysis (PCA) was conducted on all

quality traits under both control and low-temperature conditions

(Figure 3). The analysis revealed the tradeoffs and synergies among

the quality traits of different varieties, which were classified into

three distinct clusters for each temperature condition. The first

cluster consisted of LJY534, HHZ, TYXZ, and YZX, which exhibited

high protein and starch content as well as a high setback value. The

second cluster comprised YLY911, TY390, and JLYHZ, which

displayed high grain chalkiness, gelatinization temperature (To,

Tp, Tc), breakdown, peak viscosity, and mineral nutrient content.

The third cluster exclusively included NX42, which had high trough

viscosity, final viscosity, and PHI. Furthermore, it was observed that

the mineral nutrient content decreased in the first cluster and

increased in the second cluster under low-temperature conditions.

The results of Pearson’s correlation analysis indicated significant

relationships between various quality traits observed under two distinct

temperature conditions (Figure 4). Notably, positive correlations were

observed between grain chalkiness and To, peak viscosity, and

breakdown, while negative correlations were observed with setback at

the controlled temperature. Additionally, chalky was found to be

negatively associated with starch and amylose content and positively

associated with Tp, Tc and PHI under lower temperature conditions.

The relationship between total starch or amylose content and To, Tp,

Tc, peak viscosity, and breakdown was negative at the controlled

temperature, with negative correlations becoming stronger at lower

temperature. In contrast to total starch and amylose, protein content

was found to be significantly correlated with thermal and pasting
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properties, including To, Tp, Tc, peak viscosity, trough viscosity, and

breakdown, only at the controlled temperature, while the correlation

was non-significant at lower temperature. Moreover, the present study

identified noteworthy associations between quality traits and mineral

nutrient contents in both controlled and low temperature conditions.

Specifically, in the controlled condition, grain chalk exhibited a positive

correlation with B and Na, while starch content showed a positive

correlation with Ca and Fe. Conversely, amylose content was negatively

related to Ca, Cu, and Zn. Notably, in contrast to control temperature,

chalky grain, and amylose content demonstrated a greater number of

positive and negative correlations with a range of mineral nutrient

levels, including Mg, P, K, Mn, Fe, Cu, and Zn under low-temperature

conditions. Minerals such as Na, Mg, P, and K were significantly

correlated with To, Tp, Tc under both controlled and low temperature

conditions, with the additional minerals B, Mn, Fe, and Cu showing

positive associations with gelatinization temperature under low

temperature conditions. Moreover, Mg, P, and K demonstrated

positive correlations with peak viscosity and breakdown and negative

correlations with setback under both controlled and low temperature

conditions. In contrast, minerals Ca, Mn, and Fe were only significantly

associated with pasting properties under low temperature conditions.

Furthermore, significant positive correlations were observed among

Mg, P, K, and Mn content under both temperature conditions.

However, under low temperature conditions, Fe, Cu, and Zn

exhibited a significant positive correlation with Mg, P, K, and Mn,

which was not observed under controlled temperature conditions.
4 Discussion

4.1 Formation of grain chalkiness and
changes in starch and protein in
developing rice caryopses grown under
low-temperature stress

Grain chalkiness is a notable visual trait identified as opaque

white discoloration of the translucent endosperm, which is
A B

FIGURE 3

Principal component analysis of grain quality properties in high-quality indica rice under control (A) and low temperature (B) conditions. PV, peak
viscosity; TV, trough viscosity; FV, final viscosity; BD, breakdown; SB, setback; To, onset temperature; Tp, peak temperature; Tc, tennination
temperature; DH, gelatinization enthalpy; R, gelatinization temperature range; PHI, peak height index.
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significantly affected by extreme environmental temperatures

(Wada et al., 2019). Our results were in accordance with previous

studies indicating lower temperature occurring during grain

development triggers an increase in grain chalkiness (Zhang et al.,

2019). Low-temperature stress during grain ripening facilitates the

formation of chalky grains through the loose packing of arranged

starch granules and the presence of large air spaces between them

(Gong et al., 2013). However, few studies have shown either a

decrease in chalkiness rate or no significant changes caused by low

temperatures (Siddik et al., 2019; Lu et al., 2022). This discrepancy

could be attributed to variations in the treatment temperature levels
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and growth stages at which the temperature treatment is applied. In

the present study, the low temperature was applied during the

second week of post-heading, which is considered a critical period

for rice quality in response to extreme temperatures (Siddik

et al., 2019).

The endosperm of rice is primarily composed of starch,

followed by protein, and is susceptible to environmental changes

(Wada et al., 2019). Our study supports previous research

suggesting that low temperature during grain filling period can

lead to a decrease in total starch accumulation (Zhu et al., 2017;

Chen et al., 2022). This reduction is caused by a reduced activity of
A

B

FIGURE 4

Correlation plot analysis of grain quality properties in high-quality indica rice under control (A) and low temperature (B) conditions. To, onset
temperature; Tp, peak temperature; Tc, termination temperature;DH, gelatinization enthalpy; R, gelatinization temperature range; PHI, peak height
index. P<0.05 followed by*.
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enzymes involved in starch synthesis, such as soluble starch

synthase and starch branching enzyme (Chen et al., 2022), which

results in lower levels of amylopectin and total starch contents.

However, the effects on amylose content are inconsistent, with some

studies reporting a decrease (Ai et al., 2023) and others an increase

(Hu et al., 2020) in response to low temperature. In line with a

previous study conducted on japonica rice (Zhu et al., 2017), two

varieties demonstrated a significant increase in amylose under low

temperatures while the other six varieties did not exhibit such an

increase in this study. Lu et al. (2022) found that low temperature

reduced amylose content in varieties with high amylose content but

increased it in those with low amylose content, which discovered

the impact of low temperature on amylose content varied

depending on the initial amylose content of the rice varieties.

In this study, the protein content’s response to low

temperatures exhibited variations, with both increases and

decreases observed. These fluctuations can be attributed to

varietal disparities, which have also been corroborated in prior

research. Notably, some studies report a decline (Chun et al., 2015),

while others indicate an increase (Zhang et al., 2019), and still,

another group observes no significant change (Hu et al., 2020).

Typically, rice with lower protein content tends to exhibit better

cooking quality. In this study, TYXZ exhibited a notable decrease in

protein content while showing the least reduction in total starch

under low-temperature treatment. This observation suggests that

TYXZ, among the eight varieties studied, might possess superior

cold tolerance. Varietal differences in amino acid content may

underlie these discrepancies, as amino acids can serve as signaling

molecules that regulate resistance to abiotic stress (Ashraf and

Foolad, 2007). Additionally, changes in protein content under

abiotic stress could be associated with translocation from

vegetative organs and amino acid synthesis in the rice grain

(Kang et al., 2022). The variation in protein content under low

temperature among rice varieties suggests genotypic differences,

offering an opportunity for breeding more climate-resilient crops

that can help address the new challenges to global health

(Myers et al., 2014).
4.2 Thermal and pasting properties in
response to low temperature during
grain filling

Starch gelatinization is an endothermic process whereby starch

crystallinity is lost in starch granules under specific heat and

moisture conditions. Gelatinization temperature refers to the

temperature peak at which rice absorbs water and starch granules

swell irreversibly. The higher the gelatinization temperature of the

grain, the firmer the core of cooked rice. The gelatinization

temperature range (R) and gelatinization enthalpy △H are useful

indicators of the energy required and cooking time necessary for

starch gelatinization, and a higher △H and R require more energy

to dissociate the helix structure of starch (Jiang et al., 2022).

Therefore, the cooking quality of rice is primarily determined by

its starch gelatinization properties. In our study, significant

decreases in both gelatinization enthalpy △H, gelatinization
Frontiers in Plant Science 10
temperature range R and PHI of starch under low temperatures

were observed, which are consistent with previous research findings

on japonica rice (Chun et al., 2015; Zhu et al., 2017). However,

Ai et al. (2023) and Hu et al. (2020) found that the effect of low

temperature on gelatinization enthalpy was not significant. These

conflicting results may be attributed to the genetic diversity among

rice, which was associated with factors such as amylose content,

granular architecture, molecular weight distribution, and

amylopectin fine structure (Kong et al., 2015). Previous studies

also have indicated that the texture of cooked rice is associated with

the fine structure of amylopectin, and that longer amylopectin

chains forming double helices require higher temperatures to

dissociate completely (Chun et al., 2015).

Rice with superior eating quality is characterized by higher

breakdown and lower setback values, resulting in a soft texture after

cooking and enhanced palatability. In this study, rice exposed to

lower temperatures during grain filling exhibited a reduction in

peak, trough, and final viscosities, a decline in breakdown, and an

increase in setback, in comparison to rice exposed to the control

temperature. These findings suggest that exposure to low-

temperature stress during the grain filling period can negatively

impact the eating quality of high-quality indica rice. Notably, these

results align with previous research focused on japonica rice

(Zhu et al., 2017; Hu et al., 2020). Moreover, the lower

breakdown value and higher setback value observed under low-

temperature conditions were associated with a decrease in

crystallinity, a lower ratio of amylose to amylopectin, a decreased

gelatinization enthalpy, and an increased size of starch granules

(Hu et al., 2020; Ai et al., 2023).
4.3 Low temperatures during grain filling
affect grain nutrient contents

Although rice is not known to be mineral-rich, it can still serve

as an essential source of caloric energy and macro-micro nutrients

for those who consume it as a staple food (Huang et al., 2020).

Except for genotypic influences, environmental factors have been

documented to affect minerals in rice grain (Du et al., 2013; Huang

et al., 2016; Tiozon et al., 2023). Previous studies have shown that

atmospheric CO2 levels and temperature (Myers et al., 2014;

Chaturvedi et al., 2017), application of nitrogen (Gu et al., 2015;

Wang et al., 2018) and water management (Xu et al., 2019) could

affect the mineral nutrients of rice grains. This research did the first

effort to explore the effects of low temperatures on macro and micro

nutrients. Low temperatures significantly affected the mineral

elements of brown rice in all varieties, although the extent of the

impact varied among the different elements and varieties. The

results are in line with previous studies that reported inconsistent

changes in mineral content in rice grains to environments or

managements (Chaturvedi et al., 2017). Our study showed that

low temperatures during the grain filling stage decreased the

content of Na and B, while increasing the levels of K, Mg and P

among most of the varieties. The impact of low temperatures on Ca,

Mn, Fe, Cu, and Zn content varied among the different rice

varieties. Mineral elements in rice grains have been supplied by
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root uptake and translocation from vegetative plant tissues to

developing rice grains during grain filling stage, and stomatal

conductance and transpiration changing transpiration-driven

mass flow of nutrients from root to apex organs (Houshmandfar

et al., 2015). The present study provides a preliminary insight into

the mineral accumulation in rice grains under low temperatures,

while further investigation is needed to comprehensively

understand the mineral uptake and distribution.
4.4 Relationships among rice quality traits
were further enhanced under
low temperatures

In this study, a negative correlation was observed between

chalkiness and starch and amylose content when exposed to low

temperatures. Additionally, Deng et al. (2021) reported a significant

negative correlation between chalkiness and starch and amylose

content under shading stress. Chalkiness is determined by the

structure and arrangement of starch granules, where lower

temperatures induce loosely packed, round starch granules in the

chalk position due to defects in starch biosynthesis (Deng et al.,

2018). The relationship between total starch or amylose content and

gelatinization temperatures, peak viscosity, and breakdown was

found to be negative at the controlled temperature, with the

negative correlations becoming stronger at lower temperatures.

Previous studies have also reported a negative correlation between

amylose content and gelatinization temperature and breakdown,

while a positive correlation with setback was observed (Zhong et al.,

2022). However, the correlation between protein content and

thermal and pasting properties was only significant at the

controlled temperature, with no significant correlation at lower

temperatures. Chun et al. (2015) reported a significant correlation

between protein content, pasting viscosities, and setback value, with

increasing treatment temperature. Furthermore, the palatability of

cooked rice is influenced by the importance of starch components

and protein content, indicating that amylopectin, amylose, and

protein content are key chemical properties related to palatability

(Chun et al., 2015). These findings suggest that protein content is

associated with thermal and pasting properties, and its effect is

amplified at higher temperatures. Moreover, the present study

identified significant associations between quality traits and

mineral nutrient contents under both controlled and low-

temperature conditions. Xi et al. (2016) suggested that the

mineral content of chalky grains was lower compared to

translucent grains. However, our results align with Jiang et al.

(2007) and Tiozon et al. (2023), who reported a significantly

negative correlation between amylose content and K, Mg, and Mn

levels. Additionally, significant positive correlations were observed

among Mg, P, K, and Mn content under both temperature

conditions, consistent with previous studies by Jiang et al. (2007)

and Huang et al. (2016). Furthermore, the correlations between

quality traits and mineral nutrients, as well as the relationships

among mineral nutrient content, were more pronounced under

low-temperature conditions than under controlled conditions. This
Frontiers in Plant Science 11
finding is in line with Chaturvedi et al. (2017), who proposed that

the associations between grain minerals and quality traits, such as

protein and chalkiness, are further intensified under elevated CO2

levels combined with high temperature.
5 Conclusions

The results showed that low temperature decreased starch,

amylopectin content, pasting viscosity, and breakdown, and

increased chalkiness and setback. Gelatinization temperature and

pasting properties showed stronger correlations with chalk, starch,

and amylose content than with protein content under low

temperatures. Notably, low temperature exerted a notable

influence on the mineral nutrient contents, although the extent of

this impact varied among different elements and rice varieties.

Additionally, the mineral nutrient exhibited positive relationships

with chalkiness, gelatinization temperature, peak viscosity, and

breakdown, while negative associations were found with amylose

content and setback. Furthermore, correlations among mineral

nutrients and other quality traits were further amplified in the

presence of low temperatures. The findings offer a basis for

identifying candidate quality traits and their associations with

mineral accumulation and cold tolerance in high-quality rice.

This knowledge can be applied to develop stress-resistant rice

varieties with improved nutritional quality.
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