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Introduction: The diversity-productivity relationship is a central issue in

maintaining the grassland ecosystem’s multifunctionality and supporting its

sustainable management. Currently, the mainstream opinion on the diversity-

productivity relationship recognizes that increases in species diversity promote

ecosystem productivity.

Methods: Here, we challenge this opinion by developing a generalized additive

model-based framework to quantify the response rate of grassland productivity

to plant species diversity using vegetation survey data we collected along a land-

use intensity gradient in northern China.

Results: Our results show that the grassland aboveground biomass responds

significantly positively to the Shannon-Wiener diversity index at a rate of 46.8 gm-2

per unit increase of the Shannon-Wiener index in enclosure-managed grasslands,

under the co-influence of climate and landscape factors. The aboveground

biomass response rate stays positive at a magnitude of 47.1 g m-2 in forest

understory grassland and 39.7 g m-2 in wetland grassland. Conversely, the

response rate turns negative in heavily grazed grasslands at -55.8 g m-2,

transiting via near-neutral rates of -7.0 and -7.3 g m-2 in mowing grassland and

moderately grazed grassland, respectively.

Discussion: These results suggest that the diversity-productivity relationship in

temperate grasslands not only varies by magnitude but also switches directions

under varying levels of land use intensity. This highlights the need to consider

land use intensity as a more important ecological integrity indicator for future

ecological conservation programs in temperate grasslands.
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1 Introduction

The relationship between species diversity and ecosystem

functions has been a fundamental subject in ecology, attracting

continuous attention in the past few decades (Chapin et al., 2000;

Hautier et al., 2015). Being one of the most important ecosystem

properties, biodiversity provides key support to processes such as

biomass accumulation, energy flow, and nutrient cycling in the

ecosystems (Balvanera et al., 2006). In addition, changes in the

diversity-productivity relationship have consistent consequences

for the cycling of major elements on broad spatial scales,

substantially affecting greenhouse gas fluxes between the

biosphere and the atmosphere (Handa et al., 2014). Therefore,

accurate insights into the diversity-productivity relationship are

essential to enhance ecosystem resilience and mitigate climate

change impacts on agriculture, forestry, and grassland systems

(Isbell et al., 2015; Ye, 2023).

In the diversity-productivity relationship in plants, the

mainstream opinion is inclined to a positive correlation which

recognizes that increases in species diversity promote ecosystem

productivity (Wang et al., 2019; Thakur et al., 2021), despite

disputes on driving mechanisms. For example, in low-productive

bioclimatic regions such as desert steppe, steppe, and semi-steppe

rangelands, increases in species diversity are found to increase plant

productivity (Omidipour et al., 2021) due to increased species

asynchrony and the chance of compensatory dynamics (Isbell

et al., 2015). Meta-analyses involving ecosystems in multi-regions

also show that ecosystems become more stable with higher

asynchrony as a result of higher species diversity (Lin et al.,

2010). Even under circumstances where environmental covariates

are considered, the relationship remains positive (Xu et al., 2021).

Nevertheless, plenty of evidence exists to depict a more complex

picture, where the diversity-productivity relationship can not only

be positive but also negative and may follow a unimodal pattern, a

U-shaped pattern, or no pattern at all (Levine et al., 2004; Duffy

et al., 2017). As the multi-ecosystem meta-analysis of Hector and

Bagchi (2007) reveals, while the plant productivity is positively

correlated with the plant species diversity at the local scale, the

diversity-productivity relationship at the regional scale, however,

follows U- or reverse U-shaped patterns. The multiple interactions

and feedback among biotic and abiotic factors are probably the

most important drivers of such multi-faceted relationships between

biodiversity and plant productivity (Tilman et al., 2012).

The relationships between plant productivity and the climatic

and landscape factors are complex and multifaceted too. Overall,

climatic factors such as air temperature and precipitation have direct

influences on plant growth and productivity. Higher biomass

accumulations are often observed in environments with higher

precipitations and more suitable temperature ranges (Wu et al.,

2021; Ye et al., 2023). In contrast, the effects of landscape factors

such as elevation, slope, and landforms on vegetation biomass

production are more difficult to observe, because these factors

usually exert influences on plant productivity indirectly via, e.g.,

erosion and sedimentation processes (Thelemann et al., 2010) or

interact with management practices to foster a beneficial vegetation
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mosaic (Xu et al., 2022a). In semiarid grasslands of northern China,

for instance, the relatively stable levels of plant diversity and

productivity in recent years are attributed to landscape-scale

management measures of nitrogen addition and mowing (Wang

et al., 2021). On the one hand, research findings suggest that suitable

climate and landscape conditions facilitate aboveground biomass

(AGB) accumulation (Chen et al., 2023). On the other hand,

however, extensive climate-landscape interactions add complex,

nonlinear patterns to the diversity-productivity relationship. As

indicated by Broderick et al. (2022), plant productivity response to

climate is constantly influenced by the legacy effects of climatic

history on plant community, soil microbial activity, and nutrient

cycling. Critically, the magnitude and direction of this legacy effect

vary with the landscape, meaning that climate and landscape should

always be considered together in plant productivity evaluations.

Livestock grazing is found to play an important role in the

diversity-productivity relationship. In arid and semiarid grasslands,

reduced plant species diversity associated with increasing grazing

intensity might have strong negative impacts on both below- and

aboveground productivities (Sanaei et al., 2023). Livestock grazing

can influence plant and soil conditions through biomass

consumption, trampling, and addition of nutrients in dung and

urine (Xue et al., 2023), but the extent of the impacts depend upon

grazing intensity and frequency, local climate, and the type of plant

community (Bai et al., 2012). Grazing can also promote species

composition and, according to Huston (1979), the highest plant

species diversity might be found at intermediate grazing intensity.

Additionally, grazing intensity is also linked to abiotic conditions

and landscape contexts, because livestock tend to feed more in

lowland than upland areas, meaning that livestock disturbances are

less intense in higher elevations and/or higher slope positions

(Chang et al., 2021).

Moreover, previous research in the region (Li et al., 2022) finds

that mowing can trigger a direction change in the grassland diversity-

productivity relationship. This finding was based on an in-situ, multi-

year experiment in a single locality. Whether different land use types

or intensities can trigger similar changes to the diversity-productivity

relationship at larger scales is still an open question to debate. Here,

based on land use intensity evaluation (Yan et al., 2021) involving

regionally common grassland use types including wetland grassland,

forest understory grassland, mowing grassland, grazing grassland,

and degraded grassland under enclosure management, we aim to

further explore the effects of land use type and intensity on the

relationships between plant diversity and productivity. We

hypothesize that at the landscape scales, the diversity-productivity

relationship varies with the type and intensity of exogenous

disturbances that the grassland ecosystem will receive. Specifically,

the objectives of this paper are to: (1) develop a modeling framework

that is capable of handling both the nonlinear effects of biotic/abiotic

factors on grassland productivity and the interactions among these

factors; (2) evaluate the diversity-productivity relationship in

response to varying land use intensity (LUI) classes under the co-

influence of climatic and landscape factors; and (3) identify priority

areas for future research on the diversity-productivity relationship

especially in temperate grasslands.
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2 Materials and methods

2.1 Study area

The research was conducted in Hulunber in northern Inner

Mongolia, China (Figure 1). As part of the eastern Eurasian Steppe,

Hulunber sits in the transition zone from the Greater Khingan

Mountains to the Mongolian Highlands. A temperate continental

climate prevails in the area. The annual precipitation totals 200-750

mm in the study area, 70% of which falls between June and August.

The annual temperature averages between -4.5°C and 2.5°C. The

regional vegetation possesses the mixed characteristics of the arid

steppe, meadow steppe, and forest steppe. Dominant plant species

are Leymus chinensis and Stipa Baicalensis in the area, where a range

of associated species including Carex spp, Cleistogenes squarrosa,

Poa sphondylodes, Achnatherum sibiricum, etc., coexist. The major

soils in the study area are Kastanozems, Solonchaks, and Gleysols

(IUSS Working Group WRB, 2015).
2.2 Vegetation survey

We conducted a vegetation survey in 55 sampling sites across

the whole study area in July and August 2022 (Figure 1). These

sampling sites cover all types of temperate grassland in the region,

including grazing grassland, mowing grassland, degraded grassland

under restoration (or enclosed grassland), wetland grassland, and

forest understory grassland. The stocking rate in the heavily grazing

grassland was evaluated as 0.92 AU ha-1, where 1 AU is defined as

500 kg cattle. In mowing grassland, hay was harvested by mowing

annually in autumn. The restoration grassland was fence-enclosed

year-round. Regional research (Yan et al., 2021) showed that the

LUI in these grasslands is ranked in increasing order as: Enclosed

grassland< forest understory grassland< wetland grassland<

mowing grassland< moderate-grazing grassland< heavy-grazing

grassland. At the time of sampling, no grassland was classified as

the light-grazing class.

In each sampling site, three quadrats of 50 cm x 50 cm in size

were randomly placed in vegetation, and plant communities within

each quadrat were surveyed to determine the coverage, height,

density, and AGB for each plant species that appeared within the

quadrat. Considering that shrubs are rare in grassland ecosystems,

we only considered quadrats without shrubs as they are more

representative of grassland productivity. The area under

vegetation cover and the area of bare soil were visually estimated

in situ by experienced field staff and the percentage of vegetative

area was derived as the coverage per plant species. Plant height was

determined by the average height of three randomly selected plant

individuals per species identified in situ. Plant density was

measured by counting the total number of plant individuals per

species. AGB was determined by collecting and weighing the

aboveground part of the plant per species in each quadrat.

Standing plants were cut at the soil surface per species and

collected in sample bags. Fallen, withered parts on the soil surface
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were also collected. Dry weights were measured in the laboratory

after the samples were oven-dried at 85°C for 12 h. The geographic

coordinates and landscape vegetation types were simultaneously

measured and described for each sampling site.
2.3 Climatic and landscape parameters

We obtained the fifth-generation ECMWF atmospheric reanalysis

of land monthly averaged data (ERA5) from the Copernicus Climate

Change Service (https://cds.climate.copernicus.eu/; accessed 1 March

2022). ERA5 is a state-of-the-art global reanalysis dataset for land

applications, which provides a consistent spatiotemporal

representation of the global climate system (Muñoz-Sabater et al.,

2021). The spatial resolution of ERA5 is about 5 km in the study area.

We derived mean annual temperature (MAT), mean annual

precipitation (MAP), and mean annual potential evapotranspiration

(PET) frommonthly values in the sampling year and during the last ten

years (MAT10, MST10, MAP10, and PET10, respectively) in trying to

capture the effects of annual climate variability versus decadal climate

trends on plant productivity (Cuo et al., 2021). The aridity index, which

is defined as theMAP to PET ratio (UNEP, 1992), during the sampling

year and the last ten years (AI and AI10, respectively) was also derived.

The elevation data was obtained from the Shuttle Radar Topography

Mission (Farr et al., 2007). The slope gradient and direction (i.e., aspect)

were derived from the elevation data using the terra package in R

(Hijmans, 2023).
2.4 Diversity index

We used the Shannon-Weiner diversity index (SnW) to

measure the species diversity of the surveyed plant communities.

SnW is defined by Equations 1 and 2 (Spellerberg and Fedor, 2003):

SnW = −o(Pi · lnPi) (Eq: 1)

Pi =
1
4
(RC + RH + RD + RBa) (Eq: 2)

where RC is the relative coverage of a plant species; RH is the

relative height; RD is the relative density; and RBa is the relative

AGB. Here, the values of RC, RH, RD, and RBa are defined as the

percentage of a plant species’ coverage, height, density, and AGB to

the sum of all plant species identified in the plant community,

respectively. It is important to note that the Shannon-Wiener index

is a comprehensive representation of the plant species diversity,

which simultaneously considers a plant species’ distribution

extensiveness, competence, abundance, and productivity using

RC, RH, RD, and RBa, respectively. In addition, the Shannon-

Wiener index is sensitive to the changes in the coverage, height,

density, or biomass of a species in the plant community. Since

coverage, density, and biomass are relatively independent aspects of

the plant community, the Shannon-Wiener index is less prone to

the disturbance of statistical outliers (Leinster and Cobbold, 2012).
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2.5 Model development

We developed a multiple regression model between AGB and

plant diversity. In addition to the Shannon-Wiener index, sampling

site-specific climatic and landscape factors, and LUI were also

included as regressors. The model has the following form:

AGB = a + b1 · SnW + b2 · s(CL) + b3 · s(LS) + b4 · SnW

� LUI + e (Eq: 3)

where CL is a combination of MAT, MAP, PET, and AI, LS is a

combination of elevation, slope gradient, and aspect; s is a smooth

function used to capture the nonlinear relationships between a

regressor and AGB. Cubic splines are a typical form of the s

function (Wood, 2003); and symbol × stands for the interaction

between two regressors, as in SnW × LUI for the interaction

between the Shannon-Wiener index and LUI; e is the model

residual. It is important to note that LUI is a categorical variable,

whereas all the other regressors are continuous variables. It is also

important to note that the inclusion of an interaction term between

SnW and LUI will produce a varying coefficient for SnW per LUI

class, which makes the modeling of a varying AGB response rate to

the diversity index per LUI class possible. The model was estimated

in R (version 4.1.3) using the maximum likelihood method as

implemented by the generalized additive model (GAM) function

of the mgcv package (Wood, 2011). The spatial autocorrelation in ϵ
was evaluated using the Moran’s I index as implemented in the

spdep package (Bivand and Wong, 2018).

We constructed two contrasting models (i.e., LM versus GAM) to

characterize AGB’s response to the three categories of covariates,

namely, plant diversity, climate, and the plant community’s landscape

position, conditioned by the LUI classes that represent the

anthropogenic disturbances to the grassland ecosystem. A

fundamental difference between these two models is that the

interaction between plant diversity and LUI is included as an

independent regression term in the GAM model, but not in the

LM model because the term is tested insignificant in the latter. Only

the most significant covariate per covariate category is retained in the

models. To represent the nonlinear responses of AGB to plant

diversity and the environment, the LM model adopts polynomial

functions for the Shannon-Wiener index and MAT, respectively,

whereas the GAMmodel employs a cubic spine function. Since LUI is

a categorical variable, it is treated as fixed effects during model

estimation (Lee et al., 2010).

We evaluated the performance of the candidate regression

models using the metrics of the mean absolute error (MAE), the

mean absolute percentage error (MAPE), the root mean square

error (RMSE), and the coefficient of determination (R2). We also

assessed the relative importance of the model regressors in terms of

their R2 contributions averaged over the orderings among

regressors (Lindeman et al., 1980), using the relaimpo package in

R (Grömping, 2006). To increase the robustness of the relative

importance assessment, we employed the bootstrap technique for

deriving the mean and 95% confidence interval of the relative

importance percentage for each model regressor based on 1,000

replications (Dikta and Scheer, 2021).
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3 Results

3.1 Plant productivity and diversity

Among the 55 sites we sampled (Figure 1), plant AGB, MAT,

and slope gradient vary among LUI classes. The survey results

(Table 1) show that AGB varies greatly across the study area with a

wide range between 32.6 g m-2 and 510.5 g m-2. The lowest AGB is

observed in the heavily grazed grassland, while the highest AGB is

observed in the grassland under enclosure management (hereafter

enclosed grassland). The lowest MAT of -0.73°C is observed in

forest understory grassland and the highest MAT of 1.68°C in the

heavily grazed grassland. It is worth noting that the forest

understory grassland is located at the highest elevation (846.09

m), whereas the heavy-grazing grassland is located at much lower

elevations (600.89 m), only higher than the wetland grasslands

(586.11 m). Although the Shannon-Wiener diversity index varies

from 1.34 (wetland grassland) to 1.93 (enclosed grassland) in the

study area, the differences in the Shannon-Wiener index among the

LUI classes are insignificant (Figure 2).
3.2 Correlations between AGB
and covariates

AGB is significantly correlated with the selected climatic

parameters (Figure 3). Specifically, AGB is positively associated

with MAP, but negatively associated with MAT. We also considered

MAT10 and MAP10 to examine whether the climatic legacy effect

was valid on AGB. However, these two parameters are not

significantly superior to their annual counterparts, MAT and

MAP. Here, legacy climate in the past decade offers very limited

extra power in explaining the AGB variabilities than the current

climate. This is logical because grassland vegetation dynamics are

predominantly coupled with the annual cycles. Decadal cycles are

less relevant. Likewise, we tested the correlation between AGB and

AI. To our surprise, the correlation coefficient between AGB and AI

was not only much lower in magnitude than those for MAT and

MAP but also insignificant. The correlation analysis confirmed our

hypothesis that landscape factors are significantly positively

correlated with the AGB, suggesting that plant communities tend

to produce higher AGB at higher elevations or in steeper slopes.

Last but not least, the Shannon-Wiener index was tested

insignificant in association with the AGB across all LUI classes,

although there was a tendency that AGB might increase by a small

margin with higher plant diversity.
3.3 Established AGB models

Established models (model 1 and model 2) are presented in

Table 2. Model performance comparison shows that both model 1

and model 2 produce comparable fitting performance on our data

(Table 3). It also shows that the model-fitted AGB values compare

considerably well with the field-observed AGB and that no sensible
frontiersin.org
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patterns are discerned in the model residuals against the zero-error

line for both models (Figure 4). This means that the variance of

AGB is adequately characterized by both models and that additional

covariates are not necessary. This also indicates that the detrimental

effects of collinearity on the performance of the established models

are negligible, despite correlations between, e.g., elevation and the

climatic variables as shown in Figure 3 (Hebbali, 2020). Spatial

autocorrelation tests on the residuals of both models 1 and 2 show

that the Moran’s I indices were evaluated as 1.03 for model 1 and

0.66 for model 2, suggesting that AGB residuals are slightly

clustered among the vegetation sampling sites. The testing results

also show that the P-values associated with the obtained Moran’s I
Frontiers in Plant Science 05
indices are 0.28 and 0.48 for model 1 and model 2, respectively,

meaning that extra statistical handling of the spatial autocorrelation

in AGB residuals is unnecessary (Bivand and Wong, 2018).

Although model 1 produces a slightly lower MAE (28.83 g m-2)

than model 2 (32.56 g m-2), model 1 compares inferior to model 2 in

terms of the other two metrics, MAPE and RMSE. Moreover, the

goodness of fit measurement (R2) of model 1 is found lower than

that of model 2. Critically, the Bayesian Information Criterion

(BIC) value is evaluated at least 4 units higher for model 1 than

for model 2, suggesting that model 2 is neater than model 1. Based

on these comparisons, model 2 is adopted in the subsequent

diversity-productivity relationship evaluation.
FIGURE 1

The study area. Plant sampling locations are indicated by the red dots. The underlying land cover types are extracted from the China Land Cover
Dataset (Yang and Huang, 2021).
TABLE 1 Plant aboveground biomass (AGB), Shannon-Wiener index, mean annual temperature (MAT), and slope gradient (%) per land use intensity
(LUI) class in Hulunber.

LUI class
Samples AGB Shannon MAT Slope

(g m-2) (°C) (%)

Enclosed grassland 3 388.23 ± 61.32 1.93 ± 0.34 0.34 ± 0.11 2.73 ± 0.73

Forest understory grassland 15 303.68 ± 22.99 1.54 ± 0.11 -0.73 ± 0.33 7.30 ± 1.23

Wetland grassland 6 210.91 ± 46.52 1.34 ± 0.11 0.16 ± 0.66 1.13 ± 0.21

Mowing grassland 7 179.32 ± 27.88 1.90 ± 0.21 1.01 ± 0.36 1.82 ± 0.61

Moderate-grazing grassland 5 187.58 ± 26.22 1.55 ± 0.14 0.85 ± 0.57 2.03 ± 0.78

Heavy-grazing grassland 19 90.38 ± 6.72 1.53 ± 0.09 1.68 ± 0.26 1.10 ± 0.20

Average N = 55 198.10 ± 16.00 1.58 ± 0.06 0.62 ± 0.20 3.06 ± 0.50
Values are given as mean ± standard error.
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FIGURE 2

Variations in plant aboveground biomass (AGB) and the Shannon-Wiener index per land use intensity class. Error bars are standard errors. Different
letters indicate significant differences at P< 0.05.
FIGURE 3

Pearson correlation coefficients between the cross pairs of the plant productivity, diversity, climatic, and landscape factors. The sign and magnitude
of the correlation coefficient, r, are represented by the color and size of the circles. Statistically insignificant correlations are crossed out. AGB,
aboveground biomass (g m-2); SnW, Shannon-Wiener index (dimensionless); MAT, mean annual temperature (°C); MAP, mean annual precipitation
(mm); AI, aridity index (dimensionless); MAT10, MAP10, and AI10 are average MAT, MAP, and AI of the past 10 years, respectively; Elev, elevation (m
A.S.L.); Slope, slope gradient (%); Aspect, slope direction. *, P< 0.05; **, P< 0.01; ***, P< 0.001.
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TABLE 2 Coefficients of the two obtained AGB models considering the Shannon index, mean annual temperature (MAT), slope gradient, and land use
intensity (LUI) as regressors.

Variable Category Type Coefficient Std. Err. P

Model 1

Intercept Intercept Linear -103.59 153.90 0.51

Shannon Diversity Polynomial

Order 1 920.62 316.20 0.006

Order 2 -622.21 204.25 0.004

Order 3 130.66 41.56 0.003

Slope Landscape Linear 11.00 3.04 <0.001

MAT Climate Polynomial

Order 1 -8.36 11.69 0.479

Order 2 -16.24 5.41 0.005

Order 3 5.28 2.61 0.051

LUI Management Categorical

Forest understory grassland -56.26 41.84 0.188

Wetland grassland -23.17 43.40 0.597

Mowing grassland -157.48 34.82 <0.001

Moderate grazing grassland -128.15 38.11 0.002

Heavy grazing grassland -201.26 34.28 <0.001

Model 2

Intercept Intercept Linear 167.24 34.70 <0.001

Shannon Diversity Linear 50.88 22.41 0.029

Slope Landscape Linear 12.00 3.49 0.001

MAT Climate Cubic spline 0.033

LUI Management Categorical

Forest understory grassland -18.98 5.67 0.043

Wetland grassland 14.41 5.35 0.058

Mowing grassland -53.97 17.59 0.004

Moderate grazing grassland -55.42 21.05 0.012

Heavy grazing grassland -102.48 17.34 <0.001
F
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Nonlinear responses in AGB to Shannon index and/or MAT are considered using polynomial functions in model 1 and cubic spline functions in model 2. Model performance evaluation results
are given in Table 3.
TABLE 3 Performance evaluation of obtained AGB models based on mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
square error (RMSE), determination coefficient (R2), and the Bayesian Information Criterion (BIC).

Model MAE MAPE RMSE R2 BIC

(g m-2) (%) (g m-2)

Model 1 28.83 25.93 42.37 0.81 528.42

Model 2 32.56 21.19 34.96 0.88 521.38
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3.4 Relative importance

Based on the bootstrap evaluation of the regressor’s relative

importance in explaining the spatial variability in AGB, we find

that 33.9% of the AGB variability is attributed to MAT, relative to a

much lower level of 7.4% for the Shannon-Wiener index (Figure 5A).

The contribution of the plant community’s landscape position,

represented by slope gradient, is somewhat marginal (2.1%). The

primary control (56.6%) of the AGB variability comes from the

interactions between plant diversity and LUI. The lower bounds of

the 95% confidence intervals of the relative importance values are all

higher than zero, suggesting that the mean importance values are all

statistically significant (P< 0.05). We further examine the associated

variations between AGB and its covariates using a ternary plot

(Figure 5B). A general increasing trend of AGB with increasing

slope gradient is evident in full ranges of MAT, covering all of the

sampling sites under the observed LUI classes (Figure 5C). Although

AGB displays a generally increasing trend with increasing MAT, the
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MAT-AGB relationship becomes less evident in the lower ranges of

the slope gradient (slope< 4%), suggesting that herbivore removal

of AGB are more intense in lowland areas. Likewise, a varying trend

of AGB is observed in response to changes in the Shannon-Wiener

index across the slope ranges of the landscape. While the AGB trend

is more homogeneous against the Shannon-Wiener index in, e.g.,

forest understory grasslands (Figure 5C), the AGB trend is observed

to vary more in mowing and heavily grazed grasslands.

In short, the varying trends in AGB in response to different

categories of covariates suggest that the effects of LUI as the primary

driver of the AGB variability have to be controlled in the first place

if the diversity-productivity relationship were to be untangled.
3.5 Diversity-productivity relationship

According to model 2, the AGB of the plant communities in

enclosed grasslands is characterized to rise at a rate of 46.78 g m-2
BA

FIGURE 4

Validation of the two obtained AGB models. (A) Comparison between the field observed AGB and the model fitted AGB. Solid lines are linear trends
for the two models, respectively. The dashed line is the 1:1 line. (B) Comparison between the model residual and model fitted AGB.
B CA

FIGURE 5

Driving factors of the grassland aboveground biomass (AGB). (A) Relative importance of Shannon-Wiener index, mean annual temperature (MAT),
slope gradient, and the interactions between the Shannon-Wiener index and land use intensity (LUI) in explaining the AGB’s spatial variability. The
filled bars represent the mean, and the whiskers represent the 95% confidence interval derived from the bootstrapping of 1,000 replications of the
relative importance evaluation procedure (Grömping, 2006) using a generalized additive model (Equation 3); (B) AGB variations in response to the
three most important factors identified in (A) namely, the Shannon-Wiener index, MAT, and slope gradient; (C) Spatial representation of the
relationship between MAT and LUI classes per sampling site.
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per unit increase of the Shannon-Wiener index (Figure 6). The AGB

response rate stays at comparably positive levels in forest

understory grassland and wetland grassland (47.10 and 39.73 g

m-2 per unit increase of Shannon-Wiener index, respectively), while

in mowing grassland and moderate-grazing grassland, the AGB

response rates decrease to -6.99 and -7.25 g m-2 for each unit

increase of the diversity index, respectively. Conversely, for each

unit increase of the Shannon-Wiener index, the model predicts that

plant AGB in heavy-grazing grasslands decreases by 55.81 g m-2.

This means that the response rate of the AGB to the Shannon-

Wiener index drops from positive levels in the enclosed, forest

understory, and wetland grasslands to a negative level in the heavy-

grazing grasslands, transiting via near-zero levels in the mowing

and the moderate-grazing grasslands.
4 Discussion

4.1 The modeling framework

With the model we developed and the dataset we collected, we

find that grassland AGB responds significantly positively to plant

species diversity in grasslands under enclosure management, the

forest understory grassland, and the wetland grassland, contrasting

to a potential negative response in AGB to the Shannon-Wiener

diversity index in heavily grazed grasslands. We also find that the

responses of grassland AGB to changes in plant diversity are neutral

in mowing grassland and moderately grazed grassland. Moreover,

we demonstrate that the diversity-productivity relationship exhibits

a downward trend against the increasing LUI gradient as in the

order of enclosed grassland, forest understory grassland, wetland

grassland, mowing grassland, moderate-grazing grassland, and
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heavy-grazing grassland that we surveyed (Figure 6), meaning

that the diversity-productivity relationship not only changes

magnitude but also switches directions under varying levels of

LUI. While these findings are in line with some authors for a

more complex diversity-productivity relationship (Levine et al.,

2004; Hector and Bagchi, 2007; Duffy et al., 2017), and confirm

and extend previous research in the region (Li et al., 2022), these

findings challenge the mainstream opinion that supports a

consistently positive relationship between plant diversity and

productivity (Isbell et al., 2015; Wang et al., 2019; Omidipour

et al., 2021; Thakur et al., 2021).

Using a synthesis dataset of 854 grassland sites in Inner

Mongolia, for example, Bai et al. (2007) tested the relationship

between grassland productivity and species abundance in the whole

of Inner Mongolia and found that the diversity-productivity

relationship remained positive across multiple plant organizational

levels and spatial scales. Bai et al. (2007) also found that the positive

diversity-productivity relationship was robust against management

practices such as mowing. In contrast, our results differ from both

points. The diversity-productivity relationship that our results

revealed varies from positive to negative under LUI levels from low

(enclosed grassland) to high (heavy-grazing grassland), respectively,

transiting via intermediate levels including the mowing grasslands in

particular. Discrepancies in the dataset and model may be a major

cause for this differential characterization of the diversity-

productivity relationship. The dataset we use is produced by one

survey team and in one field campaign, whereas the synthesis data

used in, e.g., Bai et al. (2007) was produced by multiple teams and in

at least multiple years, giving rise to data quality concerns

(Fohrafellner et al., 2023).

Not only our dataset is unique, but our modeling framework is

unique as well. We consider climatic and landscape factors in
FIGURE 6

The average response rate of aboveground biomass (AGB) to the Shannon-Wiener diversity index taking all vegetation survey sites together per land
use intensity class. The response rate is evaluated as the regression coefficient of the Shannon-Wiener index using a generalized additive model
(Equation 3).
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addition to plant diversity and anthropogenic disturbances in

modeling grassland productivity using a framework that is

capable of explicit handling of nonlinear effects and factor-to-

factor interactions. In a similar effort to characterize the alpine

grassland productivity in the Qinghai-Tibet Plateau, Wu et al.

(2021) considered both climatic and anthropogenic contributions

using spline functions in a GAM model structure. However, an

explicit representation of the anthropogenic disturbance to the

grassland ecosystem was missing from the approach. As a

compromise, they interpreted the model residuals as the

anthropogenic effect, in addition to the nonlinear effects of

temperature, precipitation, and radiation. Likewise, in trying to

model the nonlinear effects of multiple global change factors

including temperature , precipi tat ion, carbon dioxide

concentrations, and nitrogen deposition on the net primary

production of a California grassland, Zhu et al. (2016) simply

employed quadratic functions. Additionally, although the role of

interactions between biotic and abiotic factors has been recognized

in eco-environmental research for a long time, proper handling of

interactions in modeling approaches is still rarely seen (Duncan and

Kefford, 2021). The modeling framework we develop here

represents a significant endeavor in diversity-productivity

relationship research, especially in the eastern Eurasian Steppe.
4.2 Diversity-productivity relationship

Our results support the consensus established in previous

research that grassland productivity is simultaneously affected by

multiple factors. These include, among others, plant diversity,

climate, landscape, and management. The effect of plant diversity

on productivity is currently disputed for magnitude, sign, and

pattern (Hector and Bagchi, 2007; Duffy et al., 2017; Thakur

et al., 2021), as already discussed above. Although our results

suggest a potential positive effect of slope gradient on AGB, as

further confirmed by its marginal importance of 2.1% in explaining

the spatial variability in AGB, previous research showed that

landscape position could have a stronger relationship (Wang

et al., 2007) or a nonlinear relationship with the AGB (Sa et al.,

2012). It is important to note that although slope gradient and AGB

are positively correlated, the regression coefficient of it in a multiple

regression model may stay positive or turn negative due to the

suppressor effect (Watson et al., 2013). In this paper, MAT’s effect

on AGB is well captured using either a polynomial or a spline

function, exposing that grassland productivity responds nonlinearly

to air temperature. This is largely in line with a range of previous

research. For example, Lin et al. (2010) found that at the global

scale, grassland AGB first increased to a peak level and decreased

thereafter in response to moderate warming. A similar inverse U-

shaped pattern was also found in AGB’s response to MAT in the

Eurasian Steppe (Jiao et al., 2017). What was not frequently seen in

previous research is that MAT can account for as high as one-third

(33.9%) of the spatial variability in AGB, confirming the importance

of air temperature in biomass accumulation (Anderson et al., 2006;

Ye et al., 2013). Above all, our results reveal that the interactions

between plant diversity and LUI account for over half (56.6%) of the
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variabilities in AGB, compared to 7.4% for plant diversity. The

statistical establishment of this finding represents a major

contribution of this paper to the diversity-productivity

relationship research.

Based on observational data on plant diversity and AGB, the

diversity-productivity relationship characterized here may be

fundamentally different from that obtained from field

experiments. Most plant diversity experiments manipulate plant

species by including the common, native species into the

experimental design where rare and non-native species are

usually unintentionally excluded (Dee et al., 2023). Rare and

dominant species can affect productivity differently. An increase

in species diversity resulting from dominant species usually

increases productivity, however, increases in diversity that come

from rare species decrease productivity (Parker et al., 2019). Among

the plant species we observed through the vegetation survey, rare

species are much more prevalent than the non-rare and, in

particular, dominant species (Enquist et al., 2019) in terms of the

total observed number of plant individuals per species across all LUI

classes (Figure 7). The contrast between the rare and non-rare

species is even higher in less-intensively managed grasslands, such

as the enclosed grassland, forest understory grassland, and wetland

grassland. One important observation in this study is that increases

in LUI effectively eliminate the more productive species from the

plant community in all grassland types (Figure 7). On the one hand,

the rare species in more intensively managed grasslands may

produce less AGB than dominant species (Parker et al., 2019). On

the other hand, however, these rare species also compete with

dominant species for space. Collectively, these productivity-

reducing effects and the changing rare versus non-rare species

composition drive the LUI-dependent diversity-productivity

relationship in this paper.
4.3 Priorities for future research

We propose the following recommendations for future

research. Firstly, diversity-productivity relationship research that

involves multiple scales is much needed, and, therefore, should be

encouraged. Research projects that unite observations and

experiments from, e.g., the local (Wang et al., 2019), subregional

(this paper), to regional scales (Bai et al., 2007) based on data

integration and fusion should be prioritized. It is important,

however, to ensure that the scale issues are correctly identified

and handled (Duncan and Kefford, 2021), because the number of

interactions and feedback among factors vary increasingly under

multi-scale circumstances, driving greater complexity and

uncertainty in diversity-productivity relationship characterization

(Tilman et al., 2012). For example, climate variability and change

usually show strong impacts on plant diversity and productivity at

local scales. At regional scales, however, the impact may become

more difficult to characterize due to confounding effects or shifting

feedback mechanisms (Isbell et al., 2015). Secondly, multiple biotic

and abiotic factors should be considered in modeling diversity-

productivity relationships. We believe that relevant climatic and

landscape factors should always be considered together, in addition
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to an appropriate proxy of anthropogenic disturbances. Although

we opt for the LUI classes in this paper, other options – e.g., the

Integrated Disturbance Index (Ligeiro et al., 2013) – need to be

explored; Thirdly, the synergistic diversity-productivity relationship

under moderate grazing or mowing management deserves more

attention. On the one hand, there is a good chance that the dual

goals of grassland utilization and conservation can be

simultaneously met under these management schemes (Tälle

et al., 2016; Li et al., 2022). On the other hand, although previous

research suggested that diversity-productivity synergy could be

fulfilled via, e.g., competition mediation (Peintinger and

Bergamini, 2006; Fagundez, 2016) and plant-soil interactions

(Storkey et al., 2015; Xu et al., 2022b), it is still unclear how this

synergy can be reliably triggered and temporally sustained. More

research is therefore needed.
5 Conclusions

Our research provides novel evidence that the grassland

diversity-productivity relationship is controlled by LUI in

temperate grasslands, based on the field data we collected and the

modeling framework we developed for this purpose. Our major

finding is that the response rate of grassland productivity to plant

diversity decreases from positive to negative values along an

increasing LUI gradient, which challenges the mainstream
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opinion that recognizes a robustly positive relationship between

plant diversity and productivity. This highlights the need not only

to prioritize the diversity-productivity relationship research,

especially those involving multiple spatial scales, but also to

incline to LUI as a viable indicator of ecological integrity

especially for the temperate grassland ecosystems. This also

indicates that there is a good chance to balance the use and

conservation of grassland resources by adopting a moderate

grazing or mowing scheme in grassland management. It is clear

that heavy grazing should be avoided under all circumstances for

the well-being of grassland ecosystems.
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