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stability by regulating
soil aggregate structure
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Nanchang, Jiangxi, China, 3Technology Innovation Center for Land Spatial Eco-protection and
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Introduction: The stability of exposed slopes is prone to natural disasters,

seriously threatening socio-economic and human security. Through years of

exploration and research, we proposed an active permanent greening (APG)

method based on patented mineral solubilizing microorganisms (MSMs) as an

improvement over the traditional greening method.

Methods: In this study, we selected two MSMs (Bacillus thuringiensis and

Gongronella butleri) and a plant species (Lolium perenne L.) set up six

treatments (T1, T2, T3, T4, T5, and T6) to investigate the effectiveness of the

MSMs and their combinations with the plant species on the soil stability using

APG method.

Results: We noted that both MSMs and the plant species significantly improved

soil aggregate stability and organic matter content. Of all the treatments, the T1

treatment exhibited better results, with soil aggregate stability and organicmatter

content increased to 45.63% and 137.57%, respectively, compared to the control.

Soil stability was significant positively correlated with macroaggregate content

and negatively with microaggregates. Using structural equation modeling

analysis, we further evaluated the mechanism underpinning the influence of

organic matter content and fractions on the content of each graded

agglomerates. The analysis showed that the macroaggregate content was

influenced by the presence of the plant species, primarily realized by altering

the content of organic matter and aromatic and amide compounds in the

agglomerates, whereas the microaggregate content was influenced by the

addition of MSMs, primarily realized by the content of organic matter and

polysaccharide compounds. Overall, we observed that the effect of the co-
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action of MSMs and the plant species was significantly better than that of using

MSMs or the plant species alone.

Discussion: The findings of this study provide reliable data and theoretical

support for the development and practical application of the APG method to

gradually develop and improve the new greening approach.
KEYWORDS

slope stability, organic matter characteristics, infrared spectral analysis, soil aggregates,
structural equation modeling
1 Introduction

The utilization of natural resources has greatly contributed to

the social and economic progress of mankind (Shao, 2019).

However, while providing human and food security, it has

resulted in several negative impacts on the environment (Okello

et al., 2015; Vanwalleghem et al., 2017; Kattel, 2022), including the

formation of a large number of exposed slopes (Wang Y. et al.,

2022). Exposed slopes can deteriorate the local microclimate,

causing a series of environmental problems, such as landslides

and mudslides, and seriously threatening the safety of human life

and property (Dyregrov et al., 2018; Newnham et al., 2019; Rosselló

et al., 2020). Relying on nature’s power to repair exposed slopes is

almost difficult to realize. Therefore, an ever-increasing number of

experts and scholars are committed to finding efficient and

economical ways to restore the ecology of exposed slopes (Huang

et al., 2017; Li et al., 2018; Zhang et al., 2018).

The common technologies for the treatment and restoration of

exposed slopes worldwide include the spraying greening method,

three-dimensional planting network greening method, vegetation

green carpet, planting hole greening, and thick substrate technology

(Li et al., 2017; Tang et al., 2018; Li et al., 2019; Liu et al., 2019;

Wang Y. et al., 2022). Based on these technologies, a series of studies

and engineering practices have been conducted in various countries

to continuously optimize the greening substrate and improve

engineering technology, and as a result, a variety of new

technologies have been gradually developed (Huang et al., 2017;

Li et al., 2017; Broda and Gawlowski, 2018; Li et al., 2018; Wang Y.

et al., 2022). However, existing technologies still exhibit numerous

issues (Tang et al., 2018; Li et al., 2019; Faiz et al., 2022), such as

poor adaptability of the substrate on slopes, poor erosion resistance,

and ease of spalling. Therefore, improving slope soil stability is key

to realizing permanent greening of slopes.

Soil environment reconstruction is the priority of permanent

greening of bare slopes (Cao et al., 2015; Han et al., 2019). Soil

aggregates are the basic structural units of soil, and their stability is

an important indicator of how well the soil performs its

coordination mechanisms and environmental functions (Li T.

et al., 2020; Guhra et al., 2022). The fragmentation of aggregates

has long been recognized as the first and most critical step in the

occurrence of soil erosion, which directly affects the stability of soil
02
on slopes, making the study of soil aggregate stability particularly

important (Cui et al., 2022; Li et al., 2022; Wang et al., 2023).

Nonetheless, there is no unanimous conclusion on the most critical

factors affecting the stability of aggregates, but it is widely accepted

that the content of soil organic matter is the key to soil aggregate

stability (Tisdall and Oades, 1982; Boyle et al., 1989; Obalum et al.,

2017; Sarker et al., 2018; Mustafa et al., 2020; Zhou et al., 2020; Voltr

et al., 2021).

Microorganisms play an important role in biogeochemical

cycles and have great potential for restoring soil function and re-

establishing ecological balance (Bertrand et al., 2015). They not only

provide nutrients to plants by solubilizing and releasing metal ions

fromminerals but also change soil nutrient levels through acidolysis

and complexation (Khan et al., 2007; Kamran et al., 2017). They can

also improve soil conditions, promote plant growth, and increase

stress resistance by utilizing microbial metabolism, hormone

production, and antagonism (Giassi et al., 2016; Wang et al.,

2019; Deng et al., 2020; Abulfaraj and Jalal, 2021). In addition,

soil microorganisms secrete and produce organic cementing

substances, such as polysaccharides or cement soil clay particles,

through mycelia (Yang et al., 2015; Ogarkov et al., 2018; Barbosa

et al., 2019; Ji et al., 2019; Chung et al., 2021), thereby promoting the

formation of aggregates (Sandhya and Ali, 2015; Deka et al., 2018).

Given the great potential of microorganisms in the revegetation

of slopes, we proposed an active permanent greening (APG)

method based on selected mineral solubilizing microorganisms

(MSMs) (Wang L. et al., 2023). We isolated a variety of

microorganisms from the dolomite rock wall of the Mufu

Mountains, Nanjing, and selected four typical strains (Jinchi

et al., 2014; Guanglin et al., 2015; Jinchi et al., 2015a; Jinchi et al.,

2015b) for use in slope management after preliminary experiments

on cultivation and solubilization mechanisms. However, studies

have been conducted on the effects of MSMs on soil nutrients and

plant growth, yet soil aggregates have not been investigated.

Therefore, based on the results of previous studies, we selected

two superior strains and set up six treatments for controlled

experiment. The objectives of the study were (1) to investigate the

effects of MSMs and their combination with a plant species on the

distribution and stability of soil aggregates, (2) to investigate

the effects of MSMs and their combination with the plant species

on the content and properties of soil organic matter, and (3) to
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explore the intrinsic mechanism by which MSMs and their

combination with a plant species enhance slope stability by

regulating soil aggregation structure.

This study explored the effect of organic matter on soil aggregate

stability and its mechanism under the action of microorganisms and

plants, and the results will enrich the existing literature on soil

stability research. Meanwhile, it demonstrates the role of MSMs in

slope management more comprehensively, and helps to promote the

systematic research of APG methods, solve the problems related to

the traditional greening methods that are difficult to maintain in the

long term, and form an efficient, environmentally friendly and

sustainable greening technology.
2 Materials and methods

2.1 Microorganism strains

The strains NL-11 and NL-15 used in this study were isolated

from the surface of the weathered rock wall of the Mufu Mountains,

Nanjing (rock properties: CaO, 62.34%; MgO, 27.93%; K2O, 1.75%;

Fe2O3, 3.00%; Al2O3, 0.61%; SiO2, 1.35%; Na2O,0.04%; and others,

2.95%), and screened using adaptation and mineral solubilization

tests. These strains were identified using 16S rRNA sequencing as

Bacillus thuringiensis and Gongronella butleri [preserved in the

China Center for Type Culture Collection (CCTCC) as M2012453

and M2012454] (Jinchi et al., 2014; Guanglin et al., 2015). These

well-preserved strains were inoculated on nutrient agar (peptone,

10.0 g/L; beef extract powder, 3.0 g/L; NaCl, 5.0 g/L; and agar,15.0g/

L) and potato sucrose (potato infusion powder, 7.0 g/L; sucrose,

20.0 g/L; and agar, 20.0 g/L) media and cultured at 30°C for 24–48

h. To achieve appropriate colony numbers, cultures of the strains

were prepared by inoculating the activated strains individually in

nutrient broth (peptone, 10.0 g/L; beef extract powder, 3.0 g/L; and

NaCl, 5.0 g/L) and potato liquid (potato dip powder, 6.0 g/L;

glucose, 20.0 g/L; and chloramphenicol, 0.1 g/L) media and

incubating them at 30°C for 24 h.
2.2 Plant material and soil strategies

A pot experiment was conducted by mixing the culture

thoroughly with an appropriate amount of sterilized soil (soil

properties: effective nitrogen content of 101.88 mg·kg-1; effective

phosphorus content of 5.44 mg·kg-1; effective potassium content of

102.35 mg·kg-1; and organic matter content of 7.38 g·kg-1). Three

replicates were set for each treatment and the initial water content

was set at 0.3 cm3/cm3 (V/V). After six months of routine

maintenance, soil samples were collected from the pots for

testing, with four sites mixed from each pot.

Lolium perenne L., a salt- and drought-tolerant engineered

plant, was selected for this study, and its seeds were provided by

Heyou Landscaping Engineering Co., Ltd (Jiangsu, China). Six

treatment regimens were used in the study (Table 1), with sterile

water for the control group and three replicates for each treatment.
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2.3 Determination of the distribution and
characterization of soil aggregates

Soil samples were collected from three sites for each treatment

set-up and mixed. Fresh soil was gently broken along natural cracks

to remove plant debris. A certain weight of soil sample was passed

sequentially through sieves with pore sizes of 2 mm, 0.25 mm, and

0.053 mm; and weighed individually. Thereafter, the percentage of

dry, sieved aggregates at each level was calculated as the percentage of

the total amount of soil, and the aggregates were allocated to a certain

amount of air-dried soil sample according to the proportion of dry,

sieved aggregates. Water-stabilized aggregates of different sizes were

then obtained by wet sieving the soil aggregates. Approximately 100 g

of prepared soil samples were placed on the top of a set of sieves with

pore sizes of 2 mm, 0.25 mm, and 0.053 mm from top to bottom,

soaked in distilled water for 5 min, and then shaken vertically up and

down for 20 min. The soil samples were transferred to aluminum

boxes, dried, and weighed to calculate the weight proportion of each

soil aggregate fraction (WSA). Based on the results of agglomerate

composition determined by the wet sieving method, the content of

water-stable agglomerates with diameter >0.25 mm (R > 0.25 mm),

mean weight diameter (MWD), geometric mean diameter (GMD),

and fractal dimension (D) were calculated. The formula for each

index is as follows (Elliott, 1986; Balestrini et al., 2014):

MWD =o
n

i=1
xiwi

GMD = exp½on
i=1wi � ln xi�

R>0:25 =
m>0:25  mm

m
� 100%

mr<R

mT
= (

R
lm

)3−D

where, MWDis the mean weight diameter (mm), GMD is the

geometric mean diameter (mm),   xi is the average diameter of the

soil particle of any size range (mm),  wi is the percentage content of

aggregates of the i particle size (%),  R>0:25 is the proportion

of agglomerates with diameter >0.25 mm (%),  m>0:25mm is the

mass of aggregates with a diameter >0.25mm (g),  m is the mass of

water-stable aggregates (g), D is the soil fractal dimension, mr<R is

particle size smaller than the grain size R of the soil cumulative
TABLE 1 Different treatments used in the study.

Treatments Configuration

T1 B. thuringiensis (NL-11) + L. perenne

T2 B. thuringiensis (NL-11)

T3 G. butleri (NL-15) + L. perenne

T4 G. butleri (NL-15)

T5 L. perenne

T6 No microorganisms or plant species (control)
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weight (g), mT is the total mass of the soil (g), R is the average

diameter of the upper and lower limits of the range of particle size

(mm), and lm is the upper limit of particle size.
2.4 Determination of soil organic matter
composition and characterization of
soil aggregates

The organic matter content of soil aggregates was determined

using the concentrated sulfuric acid–potassium dichromate method

(external heating), with a standard solution of ferrous sulfate titrated

against an excess of potassium dichromate (Walkley and Black, 1934).

A VERTEX70 Fourier-transform infrared spectrometer (FTIR,

Bruker, Hamburg, Germany) was used to analyze the structure of the

organic matter in soil aggregates. Briefly, potassium bromide crystals

were ground to powder and pressed into tablets after thorough

grinding and mixing in the ratio of 1:100 (sample: potassium

bromide). The spectra were scanned using an FTIR spectrometer,

and the spectra were recorded in the range of 4000–500 cm-1, with a

resolution of 4 cm-1 and 32 scans in the transmission mode

(Szymański, 2017; Tafintseva et al., 2019; Lin et al., 2020; Mohamed

and Janaki, 2021).
2.5 Data analyses

The FTIR spectra were automatically baseline corrected and

smoothened using the Omnic 8.2 software, and the absorption peaks

were regionally integrated (Lin et al., 2020; Mohamed and Janaki,
Frontiers in Plant Science 04
2021). The signal intensity of each absorption peak was obtained by

calculating the percentage of each absorption peak area to the total

peak area. Structural equation modeling (SEM) is a multivariate data

analysis method that combines a variety of statistical analyses and is

suitable for the study of interrelationships among multiple variables.

SEM is utilized to establish, estimate and test causal relationships

between indicators. The SPSS 26.0 software was used for statistical

analyses. Significant differences between different treatments were

determined using one-way analysis of variance (ANOVA) and least

significant difference (LSD, p< 0.05) test, and the means were

compared using Duncan’s test. Data were plotted using the Origin

2021 software.
3 Results

3.1 Composition and characterization of
water-stable agglomerates

The effect of different treatments on agglomerate composition varied

significantly (Figure 1). MSMs and plants dramatically increased the

weight of agglomerates with diameters of >2 mm and 0.25–2 mm.

TheMWDandGWDof soil aggregates varied significantly among

treatments (Table 2), with a consistent pattern (T1>T3>T4>T5>T2

> T6), indicating that MSMs and L. perenne exhibited a remarkable

effect on the stability of soil aggregates. Meanwhile, MSMs and L.

perenne showed a significant increase in the content of

macroaggregates (diameter >0.25 mm) and a decrease of

microaggregates (diameter<0.25 mm). The most noticeable effect

was observed in the T1 treatment, where R0.25, MWD and GWD
FIGURE 1

Composition and distribution of water-stable agglomerates. >2 mm: soil aggregates with a diameter >2 mm; 0.25–2 mm: soil aggregates with a
diameter of 0.25–2 mm; 0.053–0.25 mm: soil aggregates with a diameter of 0.053–0.25 mm;<0.053 mm: soil aggregates with a
diameter<0.053 mm. T1: B. thuringiensis + L. perenne; T2: B. thuringiensis; T3: G. butleri + L. perenne; T4: G. butleri; T5: L. perenne; T6: Control.
Different letters denote significant differences (P< 0.05) between various treatments based on one-way analysis of variance and Duncan’s test.
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increased by 47.54%, 45.63% and 84.35%, respectively, compared to

the control.
3.2 Organic matter content and
characterization of agglomerates

The presence of MSMs and the plant species increased the

organic matter content of soil aggregates at all grain levels

(Figure 2). The organic matter content of soil aggregates at

different grain levels followed the following order: SOM>2 mm (soil

organic matter content of aggregates with a diameter >2 mm) >

SOM2–0.25 mm > SOM0.25–0.053 mm > SOM<0.053 mm. The organic

matter content and storage of T1 sample was significantly higher

than the other treatments.

The infrared spectra of the samples exposed to different

treatments and of different grain sizes exhibited similar absorption

bands and peaks, revealing the characteristics of polysaccharide,

aromatic, aliphatic, amide and alcohol/phenolic functional groups,

respectively (Figure 3). The different absorption bands and peaks

differ only in peakheight andpeak area, indicating that they exhibited

the same functional groups but different contents.

The relative contents of major functional groups of different size

aggregates in different treatments are shown in Figure 4.
Frontiers in Plant Science 05
The highest content of organic matter components in samples

exposed to different treatments and of different grain sizes were

polysaccharides and amides, followed by aromatic and aliphatic

compounds, and the lowest contents were those of alcohols and

phenols. For agglomerates with a diameter >2 mm, the presence of

MSMs and the plant species increased the content of aliphatic

compounds and decreased the content of alcohols and phenols. For

agglomerates with a diameter <0.053 mm, the presence of MSMs

and the plant species significantly increased the content of alcohols

and phenolics.
3.3 Correlation analysis of organic matter
and water stability characteristics
of agglomerates

Soil aggregate stability was significantly positively correlated

with the weight of aggregates with diameters >2 mm and 2–0.25

mm, whereas it was significantly negatively correlated with the

weight of other fractions (diameter of 0.25–0.053 mm, and

<0.053 mm) (Figure 5). Additionally, soil aggregate stability was

positively correlated with the organic matter content of the

aggregates of all grades. The weights of aggregates with diameters

>2 mm and 2–0.25 mm were positively correlated with their organic
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FIGURE 2

Organic matter content and storage of agglomerates of various grain sizes. >2 mm: soil aggregates with a diameter >2 mm; 0.25–2 mm: soil
aggregates with a diameter of 0.25–2 mm; 0.053–0.25 mm: soil aggregates with a diameter of 0.053–0.25 mm;<0.053 mm: soil aggregates with a
diameter<0.053 mm. T1: B. thuringiensis + L. perenne; T2: B. thuringiensis; T3: G. butleri + L. perenne; T4: G. butleri; T5: L. perenne; T6: Control.
Different letters denote significant differences (P< 0.05) between various treatments based on one-way analysis of variance and Duncan’s test.
TABLE 2 Characterization of water-stable agglomerates.

R0.25 (%) MWD (mm) GMD (mm) D

T1 74.66 ± 0.73 a 1.22 ± 0.16 a 1.04 ± 0.03 a 2.54 ± 0.02 c

T2 57.74 ± 0.64 d 0.95 ± 0.01 d 0.70 ± 0.02 d 2.59 ± 0.01 b

T3 70.35 ± 0.54 b 1.15 ± 0.01 b 0.93 ± 0.02 b 2.57 ± 0.01 bc

T4 61.99 ± 1.55 c 1.00 ± 0.03 c 0.77 ± 0.05 c 2.59 ± 0.02 b

T5 59.57 ± 1.07 d 0.98 ± 0.02 cd 0.73 ± 0.03 cd 2.59 ± 0.02 b

T6 50.60 ± 1.43 e 0.84 ± 0.03 e 0.57 ± 0.03 e 2.65 ± 0.02 a
R0.25, proportion of agglomerates with a diameter >0.25 mm (%); MWD, mean weight diameter (mm); GMD, geometric mean diameter (mm); D, soil fractal dimension. Different letters denote
significant differences (P< 0.05) between various treatments based on one-way analysis of variance and Duncan’s test.
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matter content, whereas the weights of other graded aggregates were

significantly negatively correlated with their organic matter content.
3.4 Effects of organic matter composition
on the agglomerates of different
grain sizes

Amides (−0.283), aromatic compounds (0.266), and organic

matter content (0.652) directly affected the WSA of diameter

>2 mm (Figure 6). The presence of the plant species indirectly

affected the WSA of diameter >2 mm by altering the content of

amide compounds (−0.673), aromatic compounds (0.592), and
Frontiers in Plant Science 06
organic matter content (0.400). The presence of the plant species

exhibited a significant positive effect (0.609) on WSA of

diameter >2 mm.

Amide compounds (0.336), organic matter content (0.653) and

the plant species (0.253) directly influenced the WSA of diameter

between 2 mm and 0.25 mm (Figure 7), while the plant species

indirectly regulated the WSA of diameter 2–0.25 mm by affecting

aromatic compound (0.390) and organic matter contents (0.758).

Additionally, the presence of the plant species exhibited a

significant positive effect (0.649) on WSA of diameter 2–0.25 mm.

Polysaccharides (0.360) and organic matter content (–0.857)

directly affected the WSA of diameter between 0.25 mm and

0.053 mm (Figure 8). In contrast, MSMs were able to regulate
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FIGURE 3

Infrared spectra of agglomerates at each grain level. >2 mm: soil aggregates with a diameter >2 mm; 0.25–2 mm: soil aggregates with a diameter of
0.25–2 mm; 0.053–0.25 mm: soil aggregates with a diameter of 0.053–0.25 mm;<0.053 mm: soil aggregates with a diameter<0.053 mm. T1: B.
thuringiensis + L. perenne; T2: B. thuringiensis; T3: G. butleri + L. perenne; T4: G. butleri; T5: L. perenne; T6: Control.
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WSA of diameter 0.05–0.053 mm indirectly by affecting organic

matter content (0.678). Nonetheless, the addition of MSMs

exhibited a markedly negative influence (–0.581) on WSA of

diameter 2–0.25 mm.

Amides (0.260), polysaccharide compounds (0.262), and organic

matter content (-0.854) directly influenced the WSA of

diameter<0.053 mm (Figure 9). However, MSMs indirectly regulated

the WSA of diameter<0.053 mm by affecting polysaccharide (–0.530),

amide (0.483), and organic matter contents (0.716). Furthermore, the

addition of MSMs exhibited a considerable negative influence (-0.624)

on WSA of diameter<0.053 mm.
4 Discussion

The rapid population growth in the second half of the last

century has intensified the demand for natural resources and

interference with nature. At the same time, engineering activities

to promote economic development have caused a series of

environmental problems (Okello et al., 2015; Vanwalleghem et al.,
Frontiers in Plant Science 07
2017; Kattel, 2022), including the emergence of a large number of

bare slopes, and thus ecological and national economic and social

development as important constraints cannot be ignored (Rosselló

et al., 2020; Wang Y. et al., 2022). Therefore, slope regreening and

ecological reconstruction have been the major concerns of

researchers (Zhang et al., 2018). Our group has been devoted to

theoretical research and technological innovation in slope ecological

management and reconstruction for several years by drawing on the

experiences and results of slope management measures in various

countries and utilizing a series of controlled experiments.

Wu et al. isolated and screened a fewmicroorganisms with strong

adaptability and prominent mineral solubilization from the surface of

the weathered rock wall of the Mufu Mountains, Nanjing, and

explored the mechanisms underlying mineral solubilization (Wu

et al., 2017a; Wu et al., 2017b). Jia et al. further investigated the

screened microorganisms and found that a variety of MSMs could

promote root growth, increase root strength, increase the number of

root nodules, and affect the number and species of inter-root

microorganisms (Jia et al., 2021). Meanwhile, Li et al. discovered

through research thatMSMs can affect soil nutrient cycling, especially
FIGURE 4

Functional group analysis of agglomerates based on different treatments and aggregate size. >2 mm: soil aggregates with a diameter >2 mm; 0.25–2
mm: soil aggregates with a diameter of 0.25–2 mm; 0.053–0.25 mm: soil aggregates with a diameter of 0.053–0.25 mm;<0.053 mm: soil
aggregates with a diameter<0.053 mm. T1: B. thuringiensis + L. perenne; T2: B. thuringiensis; T3: G. butleri + L. perenne; T4: G. butleri; T5:
L. perenne; T6: Control.
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on the nitrogen cycling with extremely significant effects (Li C. et al.,

2020; Li et al., 2021a; Li et al., 2021b). In addition, we conducted a

series of optimization studies on slope spraying substrates, including

water retention agents (Wang L. et al., 2022), comprehensively

analyzed and ranked the effects of different treatments, and

preliminarily applied the MSM-based APG method (Wang L. et al.,
Frontiers in Plant Science 08
2023). The results showed that APG was an effective and feasible

slope greening method, with great application value and broad

application prospects. However, soil restoration and reconstruction

are the key to the ecological management of slopes, but the effects of

MSMs on soil aggregates using the APG method have not yet

been investigated.
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FIGURE 5

Correlation analysis of organic matter content and water stability characteristics of agglomerates at various grain levels. >2 mm: soil aggregates with
a diameter >2 mm; 0.25–2 mm: soil aggregates with a diameter of 0.25–2 mm; 0.053–0.25 mm: soil aggregates with a diameter of 0.053–0.25
mm;<0.053 mm: soil aggregates with a diameter<0.053 mm. * indicates significant differences at P ≤ 0.05. SOM: soil organic matter content; WSA:
the weight proportion of soil aggregates.
FIGURE 6

Structural equation modeling of organic matter characteristics affecting the stability of soil aggregates with a diameter >2 mm. CMIN/DF = 1.059;
GFI = 0.989; RMSEA< 0.08. Standardized path coefficients are shown as numbers on arrows. ***, **, and * indicate significant differences at P<
0.001, P< 0.01, and P< 0.05, respectively. SOM: soil organic matter content; WSA (>2 mm): the weight proportion of soil aggregates with a
diameter >2 mm.
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Soil microorganisms play an important role in the formation

and stabilization of soil aggregates, with bacteria and fungi showing

considerable aggregation of soil particles (Deka et al., 2018; Zhao

et al., 2018; Hou et al., 2021). It has been shown that Bacillus cells

and their secretions have remarkable aggregation effects on soil

particles, with secretions performing particularly well (Sandhya and

Ali, 2015; Ma et al., 2017). Fungi, on the other hand, were not only

able to aggregate soil particles through cells and their secretions but

were also able to use mycelia to aggregate soil particles and form

larger agglomerates through entanglement (Lehmann and Rillig,

2015; Lehmann et al., 2017; Morris et al., 2019; Lehmann et al.,

2020). This was consistent with the results of this study, where

treatment with MSMs (T2 and T4) showed better structure and

stability of soil aggregates compared to the control, and notably, the

addition of NL-15 (T4) resulted in higher levels of macroaggregates

(diameter >0.25 mm) than the treatments with addition of NL-11

(T2) (Figure 1). Plant roots not only influence soil aggregates by
Frontiers in Plant Science 09
releasing various secretions but also rearrange soil particles by root

entanglement, thus improving soil aggregate stability (Blankinship

et al., 2016; Zeng et al., 2018; Dou et al., 2020; Merino-Martıń et al.,

2021). This was consistent with the findings of the present study

(Figure 1). Moreover, MSMs together with the plant species were

more effective in enhancing soil aggregate stability than MSMs or

the plant species alone. This may be related to the increase in sticky

substances in the secretions due to the interaction of MSMs with the

plant species (Blankinship et al., 2016; Merino-Martıń et al., 2021).

It could also be attributed to the fact that MSMs have a significant

enhancement effect on the length density of the plant root system,

which in turn results in enhanced agglomeration and increased soil

stability (Lehmann and Rillig, 2015).

Soil organic matter is fundamental to the soil system and

influences soil formation, fertility, soil, and other properties

(Murphy, 2015; Obalum et al., 2017; Jin et al., 2020; Voltr et al.,

2021). Several studies have shown that the content and composition of
FIGURE 7

Structural equation modeling of organic matter characteristics affecting the stability of soil aggregates with a diameter between 2 mm and 0.25 mm.
CMIN/DF = 1.324; CFI = 0.982; RMSEA< 0.08. Standardized path coefficients are shown as numbers on arrows. ***, **, and * indicate significant
differences at P< 0.001, P< 0.01, and P< 0.05, respectively. WSA (2–0.25 mm): the weight proportion of soil aggregates with a diameter between
2 mm and 0.25 mm.
FIGURE 8

Structural equation modeling of organic matter characteristics affecting the stability of soil aggregates with a diameter between 0.25 mm and 0.053
mm. CMIN/DF = 1.264; CFI = 0.950; MSEA< 0.08. Standardized path coefficients are shown as numbers on arrows. *** and ** indicate significant
differences at P< 0.001, P< 0.01, respectively. WSA (0.25–0.053 mm): the weight proportion of soil aggregates with a diameter between 0.25 mm
and 0.053 mm
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soil organic matter depends on both plant inputs and the presence of

soil microorganisms (Paul, 2016; Angst et al., 2021). Microorganisms

promote the degradation of soil organic matter through

decomposition and metabolism to obtain the nutrients they need.

Continuous growth and reproduction of microorganisms results in an

increase in biomass and the production of large quantities of active

substances. They also reduce carbon loss by metabolizing available

carbon sources in the soil into more stable organic matter (Kallenbach

et al., 2016; Paul, 2016; Liang et al., 2019; Liang et al., 2017). The results

of this study showed that the addition of MSMs significantly increased

the organic matter content of the soil (Figure 2), with a remarkable

increase in aliphatic organic matter in macroaggregates (diameter

>0.25mm) and alcoholic and phenolic organic matter in

microaggregates (diameter<0.25 mm) (Figure 5).

The plant root system continuously releases substances or

exudates into the soil, including sugars, amino acids, vitamins,

long-chain carbohydrates, enzymes, and lysates, during root cell

rupturing (Bais et al., 2006; Wang A. et al., 2023). In this study, we

noted that the presence of the plant species resulted in a significant

increase in the organic matter content of the soil compared to the

control (Figure 2), especially aliphatic and polysaccharide organic

matter in macroaggregates and alcoholic, phenolic, and aliphatic

organic matter in microaggregates (Figure 5). Simple compounds

released in plant root secretions are taken up by microorganisms,

attach to mineral surfaces, enter the soil, and eventually form stable

organic matter. At the same time, root secretions promote the

mineralization of organic matter by stimulating microbial activity

and accelerating the decomposition of unprotected carbon in the soil.

Total organic matter depends on the net effect of these two opposing

mechanisms (Bais et al., 2006; Miltner et al., 2011; Bradford et al.,

2013; Cotrufo et al., 2013). In this study, the binding of MSMs to the

roots of the plant species significantly increased the organic matter

content of the soil (Figure 2), especially aliphatic organic matter in

macroaggregates and amide organic matter in microaggregates.

Notably, the coexistence of MSMs with the plant species (T1 and

T3) exhibited improved effects on soil organic matter compared to

MSMs alone (T2 and T4). In addition, the promotion of organic

matter by NL-11 was more pronounced than that of NL-15, which
Frontiers in Plant Science 10
was also evident by the polysaccharide content in macroaggregates, as

well as the amide organic matter content in microaggregates.

Numerous conceptual models regarding the formation and

stabilization mechanisms of agglomerates, such as the aggregate

hierarchy model (Tisdall and Oades, 1982), aggregate turnover

model (Six et al., 2000), and tertiary structure model (Christensen,

2001), have emerged. The results of a large number of studies show

that organic matter plays an important role in the process of

agglomerate formation, and the higher the content of soil organic

matter, the stronger the stability of the formed agglomerates (Boyle

et al., 1989; Zhao et al., 2017; Li T. et al., 2020), which is also

consistent with the results of the present study (Figure 5). In recent

years, researchers have focused on the effects of soil organic matter

chemistry on soil aggregates (Recio-Vazquez et al., 2014; Guan et al.,

2018; Sarker et al., 2018). Oades et al. (Oades and Waters, 1991;

Guhra et al., 2022) found that microaggregates are virtually devoid of

plant debris and are stabilized primarily by microorganisms and their

derivatives, including polysaccharides, microbial cells, and other

components. In this study, we observed that the addition of MSMs

influenced the organic matter and polysaccharides in the

microaggregates and hence the percentage of microaggregate content

(Figures 6, 7), whereas in macroaggregates, larger soil particles

combined with microaggregates through biological interactions

(microbial secretions, root systems, and mycelia) (Six et al., 2000;

Rillig et al., 2017). There have been several reports of strong correlation

between plant growth and the nature ofmacroaggregates (Poirier et al.,

2017; Schomburg et al., 2018). The present study also noted that the

presence of the plant species was vital for macroaggregate content,

which could affect the content of organic matter and aromatic

compounds and thus the percentage of macroaggregate content

(Figures 8, 9).
5 Conclusions

To achieve an efficient and cost-effective method for the

management of slopes, we proposed the active permanent greening

(APG) method based on patented mineral solubilizing
FIGURE 9

Structural equation modeling of organic matter characteristics affecting the stability of soil aggregates with a diameter between 0.25 mm and 0.053 mm.
CMIN/DF = 1.065; CFI = 0.994; RMSEA< 0.08. Standardized path coefficients are shown as numbers on arrows. ***, **, and * indicate significant
differences at P< 0.001, P< 0.01, and P< 0.05, respectively. WSA (<0.053 mm): the weight proportion of soil aggregates with a diameter<0.053 mm.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1303102
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1303102
microorganisms (MSMs). We investigated the changes in soil

aggregates and organic matter using the APG method in a

controlled experiment, and explored the intrinsic mechanism by

which MSMs and their combination with plants enhance slope

stabilization by regulating soil aggregate structure. The results

showed that (1) MSMs and the plant species dramatically affected

the distribution of soil aggregates and improved their stability. Among

them, G. butleri performed better and improved soil aggregate stability

by 20.72% compared to the control. (2) MSMs and the plant species

significantly increased the organic matter content of the soil, where B.

thuringiensis performed better, improving organic matter content by

78.85% compared to the control. Remarkably, the synergistic effect of

MSMs and the plant species on improving soil aggregate stability and

organic matter content was better than using MSMs or the plant

species alone, with the combination of B. thuringiensis and L. perenne

yielding the best results among all treatments. (3) Macroaggregate

(diameter > 2mm) content had a significant positive effect on soil

stability, while the other fractions had a significant negative effect. (4)

We also used structural equation modeling to investigate the

relationship between organic matter and WSA (the weight

proportion of soil aggregates) under different combinations of

MSMs and the plant species and found that the weight proportion

of macroaggregates was mainly affected by the plant species, whereas

that of microaggregates was mainly affected byMSMs. The application

of the APG method in slope management has great potential and

deserves further more in-depth and comprehensive research.
Patents

Jinchi Zhang, Guanglin Wang, Bo Zhang, Yanwen Wu: An

efficient limestone erosion bacterium Bacillus thuringiensis NL-11

and its application. CN103087954B; Guanglin Wang, Jinchi Zhang,

Jie Lin, Rong Cao: An efficient limestone erosion fungus

Gongronella butleri NL-15 and its application. CN103087926B.
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