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Improving the quality of the appearance of rice is critical to meet market

acceptance. Mining putative quality-related genes has been geared towards

the development of effective breeding approaches for rice. In the present

study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA,

mrMLM, and FASTmrMLM) genome-wide association studies were conducted in

a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers.

A total of 594 SNP markers were identified using the mixed linear model method

for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs)

detected by the ML-GWAS models were strongly associated with grain aroma

(AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC,

%). Finally, 39 QTNs were identified using single- and multi-locus GWAS

methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the

above-mentioned three quality-related traits. Based on annotation and previous

studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140,

LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%),

and PGC (%), which could be utilized in rice breeding to improve grain

quality traits.
KEYWORDS
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Introduction

Cultivated rice (Oryza sativa L.) is an important source of calories for more than half of

the global population. With improved living standards and increasing awareness among

people worldwide, there is a growing demand for the consumption of superior quality

healthier rice varieties (Bao, 2014; Adjah et al., 2020; Selvaraj et al., 2021; Hori and Sun,
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2022). Therefore, high-quality rice has become a paramount

consideration for rice breeders, consumers, and producers (Qiu

et al., 2021). The crucial determinants of rice grain quality include

appearance, milling, nutritional composition, aroma, and cooking

properties. Recently, more efforts have been made to breed rice

varieties with desirable traits in terms of higher head rice recovery

(HRR, %), and lower percentage of chalky grains (PGC, %) by

discovering key haplotype variations, thereby harnessing allelic

diversity in the germplasm (Selvaraj et al., 2021). Currently,

molecular advances and genome sequencing platforms with lower

costs have aided in cloning and functionally dissecting a series of

genetic factors/quantitative trait loci (QTLs) in rice (Varshney et al.,

2014; Abbai et al., 2019). Genetic studies have shown that multiple

factors control each quality trait reflecting the intricate nature of the

rice quality traits (Li et al., 2022). The genes affecting these

physicochemical characteristics are related to starch biosynthesis,

the metabolism of seed storage proteins (SSPs), and specific

nutraceutical compounds (Biselli et al., 2015). Grain chalkiness,

for example, is associated with many genes such as Flo2, Chalk5,

GIF2, LTPs, GBSS I, OsPUL, OsBT1, OsBE1, and SSIIa (Li et al.,

2014a; Wang et al., 2018), and several QTLs have been detected and

widely distributed across the rice genome (Zhang H. et al., 2019;

Hori et al., 2021), two of which have been fine-mapped by

association and linkage mapping, such as qPGWC-7 (Zhou et al.,

2009), qPGWC-8 (Guo et al., 2011; Zhao et al., 2016), and one QTL

cluster mapped on chromosome 4 by single and joint mapping

studies between the markers id4007289 and RM252. Loss of

function mutations and genic interactions between the alleles of

well-known genes responsible for biosynthesis of starch, viz., GBSSI,

SS2a, SS3a, SS4b, BE2b, and, ISA1 gene have been shown to increase

the amount of resistant starch in rice, which is believed to be crucial

for improving human health (Zhang C. et al., 2019; Fujita et al.,

2022; Miura et al., 2022).

Regarding the percentage of rice recovery determining rice

grain quality, approximately 34 genes/QTLs have been

documented in all rice chromosomes, which are largely

influenced by the environment (Bao, 2014). A common QTL for

grain size and head rice recovery was also detected on chromosome

3, suggesting a relationship between these two traits at the genetic

level (Tan et al., 2001). An increase in grain yield has been reported

in near-isogenic lines (NILs) introduced with the null allele of rice

chalkiness gene PDIL1-1, explaining significant differences in

phenotype between the genetic makeup of the rice cultivars;

however, there was an increase in grain chalkiness (Hori and Sun,

2022). The appearance and rice grain quality are closely related to

its rice grain size (Xie et al., 2013; Bao, 2019). Interestingly,

pleiotropic effects have been reported in 25 cloned QTLs

identified for multiple grain size-controlled traits, namely rice

yield, appearance, and grain quality (Wang et al., 2018).

Furthermore, the gw2 WY3 allele had positive effects on grain

yield, but reduced grain quality by increasing PGC (%) and

decreasing HRR (%) (Song et al., 2007).

Fragrant rice is a special group with a distinct aroma, flavor, and

medicinal, antioxidant, and stress-resistance properties. To date,

more than 200 aroma compounds have been documented in

fragrant rice (Champagne, 2008) and 2-acetly-1-pyrroline (2-AP)
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has been recognized as the most prominent compound contributing

to aroma production in rice (Poonlaphdecha et al., 2016; Wakte

et al., 2017) which is under the control of a recessive gene Badh2.

RNA Seq studies have shown that the expression of heavy metal

transporters in response to zinc at the transcriptional and post-

transcriptional levels, and their epigenetic modifications, regulate

the biosynthesis of 2-AP in aromatic rice varieties (Imran et al.,

2022). The haplotype diversity of the Badh2 gene was investigated

in 22 fragrant landraces from Thailand, identifying four new

haplotypes (H1, H2, H3, and H4). These badh2 alleles may serve

as functional markers, and landraces with a favorable haplotype

(H1) could be employed as genetic resources in rice breeding

programs (Chan-In et al., 2020). Several other genes affecting seed

development and quality traits have been characterized, such as

GW2 (Song et al., 2007), GS3 (Sun et al., 2018), GS2 (Hu et al.,

2015), GS5 (Xu et al., 2015), GS9 (Zhao et al., 2018), GW5 (Duan

et al., 2017), GLW7 (Si et al., 2016), and OsMAPK6 (Liu et al., 2015).

Therefore, understanding the molecular basis of these traits is a

prerequisite for identifying novel alleles and donors related to high

grain quality, which could considerably improve rice breeding

efficiency (Yano et al., 2016; Wang et al., 2017; Abbai et al., 2019;

Misra et al., 2019; Verma et al., 2021; Zhong et al., 2021). These

newly recognized superior versions of quality genes might then be

taken together through the rapid and undoubtedly proved concept

of ‘haplotype introgression’ (Bevan et al., 2017). Nevertheless, the

lack of information regarding the superior haplotype combinations

of several key grain quality genes has been one of the major

bottlenecks, and the 3000-rice genome project (3K-RGP) offers

enormous potential for harnessing the haplotype diversity of grain

quality genes in rice (Li et al., 2014b).

Genome-wide association studies (GWAS) have become

popular for the genetic dissection of complex traits into QTL/

candidate genes that might be deployed in precision breeding

programs aimed at crop improvement (Lipka et al., 2015, Tibbs et

al., 2021). It is considered more efficient than bi-parental mapping

approaches considering the naturally occurring genetic diversity,

high-density genetic markers, and fewer linkage disequilibrium to

identify candidate genes (Alqudah et al., 2020). Statistical methods

with varying degrees of reliability substantially influence the

significant MTAs determined by GWAS (Gawenda et al., 2015;

Visscher et al., 2017; Wen et al., 2018). The commonly used single-

locus mixed model independently scans each SNP marker for

association with a phenotypic trait (Waugh et al., 2014; Gupta

et al., 2019). However, this model lacks accuracy in estimating the

SNP effects and identifies false negatives if the desired trait is

governed by many genes at different loci (Wang et al., 2016),

which is a common scenario in most quantitative traits or in case

it requires a Bonferroni correction (Wen et al., 2018). It has also

been proposed that single-locus models fail to detect the epistatic

interactions that may exist between the closely linked genes

(Gawenda et al., 2015) and are less suitable for harnessing the

haplotype diversity of genes of interest that exist in the germplasm

(Lu et al., 2011; Contreras-Soto et al., 2017; N’Diaye et al., 2017). To

overcome the shortcomings of single-locus models, multi-locus

models such as multi-locus random SNP-effect MLM (mrMLM)

(Wang et al., 2016); multi-locus mixed model (MLMM) (Segura
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et al., 2012), iteractive modified sure-independence screening

expectation maximization Baysian least absolute shrinkage and

selection operator (ISIS EM-BLASSO) (Tamba et al., 2017),

FASTmrMLM (multi-locus random SNP-effect) (Tamba and

Zhang, 2018), FASTmrEMMA (fast multi-locus random-SNP-

effect efficient mixed model analysis) (Wang et al., 2016),

polygenic-background-control-based least angle empirical Bayes

(pLARmEB) (Zhang et al., 2017), and integration of Kruskal–

Wallis test with empirical Bayes (pKWmEB) (Ren et al., 2018)

were developed that test multiple SNP markers simultaneously to

capture the molecular basis underlying different complex traits in

different crop species (Wang et al., 2016) by overcoming the strong

population structure and high linkage disequilibrium between the

markers. In this investigation, we performed a GWAS and

conducted a candidate gene-based association study in a set of

3K-RGP panels, analyzed the haplotype diversity of candidate

genes, and evaluated the performance of different haplotypes

associated with grain aroma, head rice recovery (HRR, %), and

percentage of grains with chalkiness (PGC, %) to accelerate the

design of next-generation quality-rich rice varieties by

incorporating superior haplotypes for use in future rice

improvement programs.
Materials and methods

Plant materials and phenotyping

A subset panel of 3K re-sequenced genomes (https://doi.org/

10.1186/2047-217X-3-7) was obtained from the IRRI South Asia

Regional Center, NSRTC Campus, Varanasi, Uttar Pradesh, India.

The 196 rice accessions used in our investigation were collected from

89 countries belonging to four major populations: Xian(indica) (171),

aus/boro (22), tropical Geng (japonica) (3), intermediate type (2), and

two semi-dwarf varieties Pusa Basmati 1121 and PB-1

(Supplementary Table 1). The 198 accessions were planted in

randomized plots in the field at the ICAR-Indian Agricultural

Research Institute (IARI), New Delhi, India with four replications

within Kharif 2020 and Kharif 2021. The uniform growth of seedlings

was confirmed by germinating seeds on a raised seedbed, and 21 days

old plantlets were transplanted. Each accession was sown in two rows,

with each row consisting of 10 plants at a distance of 20 cm × 15 cm

within and between the two rows. Standard practices were followed

for field management. At maturity, paddy seeds from each plot were

collected in bulk and dried in hot air ovens. Approximately 150 g of

seeds was dehusked andmilled in a laboratory rice husker andmilling

machine (model JGMJ 8098, China) after cleaning the paddy with the

optimal level of moisture. Three traits related to grain quality were

recorded using the Standard Evaluation System in rice (http://

www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-

system.pdf): grain aroma, head rice recovery (HRR, %), and

percentage of grains with chalkiness (PGC, %). The grain aroma

was estimated for each accession using a sensory method (Sood and

Siddiq, 1978). Two fragrant Basmati rice varieties, viz., Pusa-1121

with an aroma score of 3, PB-1 with an aroma score of 2, and a non-

aromatic rice Pusa-44, were used in the analysis, and each sample was
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evaluated by seven experts to confirm the phenotype. Following

milling, head rice recovery (HRR, %) and percentage of grains with

chalkiness (PGC, %) were calculated manually and using a

stereomicroscope based on the SES Scale 9, respectively.

Meanwhile, the range, mean value, deviation, and phenotypic

coefficient of variation (CV) were calculated for each trait using R

Studio (Supplementary Table 2). Correlations of quality traits among

themselves were also studied by measuring the linear correlation

calculated using the R package corrr (https://cran.r-project.org/bin/

windows/base/). Heritability was estimated for all three quality traits

using R package variability.
Genotyping

The genomic data of 198 accessions selected from the 3K RG

panel were analyzed. The SNP dataset (3K RG 1M GWAS SNP) was

downloaded from the repository of rice variants in the public

domain SNP-seek(http://snp-seek.irri.org/_download.zul). Missing

data were imputed using Beaglev5.4 software. Quality control was

performed using TASSELv5.2.82 software to obtain a filtered subset

of 553,831 SNPs with a minor allele frequency >5% and a major

allele frequency <95% for genome-wide association analysis.
Cluster analysis, population structure,
and kinship

Neighbor-joining clustering was performed based on the SNP

data using TASSELv5.2.82 software and visualized using the

interactive tree of life (iTOL) software. The subgroups were

assessed using a Bayes ian model-based approach in

STRUCTUREv2.3.4 (Pritchard et al., 2000) and PCA analysis.

The structural analysis was executed with the presumed number

of subgroups ranging between one and seven, with each K repeated

thrice. A burin-in period of 100,000 iterations followed by 100,000

Markov Chain Monte Carlo (MCMC) simulations were

implemented for every run, and the number of subgroups was

then determined using the Evanno DKmethod (Evanno et al., 2005)

embedded in the STRUCTURE HARVERSTER software (Earl and

VonHoldt, 2012). Component analysis was performed using the

Genome Association and Prediction Integrated Tool (GAPIT) R

package (Lipka et al., 2012). Number of significant principal

components explaining the population variance and structure

were determined by plotting a scree plot in R. For kinship

calculation, the Centered_identity-by-state (IBS) default method

was employed in TASSELv5.2.82 software (Bradbury et al., 2007).

The structure, kinship matrix, and average trait value of each

accession were used for the association studies based on SNP data.
Linkage disequilibrium analysis

Linkage disequilibrium (LD) decay distance between the pair of

SNP markers was calculated on each chromosome as the squared
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coefficient of correlation (r2) values of alleles using LDkit software.

The position on the chromosome at which the r2 value reduced to

half of its average maximum value was defined as the decay in LD

(Huang et al., 2010).
Candidate gene-based association analysis
and identification of superior haplotypes

We performed GWAS on 198 rice accessions using the MLM

and CMLM model with filtered 553,831 SNP markers and default

settings in GAPIT software to estimate the significant SNP-MTAs

for grain aroma, HRR%, and PGC%. Three multi-locus models,

namely mrMLM, FASTmrMLM, and FASTmrEMMA, were also

constructed using the mrMLM R package (https://cran.r-

project.org/web/packages/mrMLM/index.html) to accurately

detect the candidate QTN effect values and confirm the true

associations. Considering an LOD score value ≥3 as the threshold,

significant QTNs were identified (Duan et al., 2017). The common

QTNs detected by the two different ML-GWAS models and SL-

GWAS models were predicted to be good candidates for rice quality

traits. Local haplotype blocks of each robust QTN were generated

with all filtered SNP using PLINKv1.9 (www.cog-genomics.org/

plink/1.9/) as per standard methodology (Gabriel et al., 2002). LD

heatmaps were generated using the LDBlockShow tool. All genes

located within the LD decay distance of the identified QTNs were

extracted and subjected to comprehensive gene annotation studies

to identify the candidate loci for each quality trait using The Rice

Annotation Project-Database (RGAP, http://rice.uga.edu/),

Information Commons for Rice (IC4R, http://ic4r.org/), and

Gramene (https://www.gramene.org/) databases and used for gene

mining. The haplotypes for each of these candidate loci were

estimated considering the non-synonymous coding SNPs in the

SNP-Seek database (https://snp-seek.irri.org/), and Student’s t-test

was performed to test the significant differences among the

haplotypes. The haplotypes revealed and the phenotypic

distribution of each grain quality trait were then represented as

boxplots using the ggplot2 package in R Studio.
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Results

Trait variance and correlations

Three grain quality-related traits, grain aroma, head rice

recovery (HRR, %), and percentage of grains with chalkiness

(PGC, %), were investigated in the selected subset of 198

accessions sampled from 3,000 re-sequenced genomes in the IRRI

Rice Genome Project (3K-RGP). Rice accessions consisting of a

diverse set of Xian, japonica, aus/boro, intermediate type cultivars,

and two check varieties viz., PB-1121 and PB-1 were planted at the

research field of ICAR-IARI, New Delhi in 2020 and 2021. The

statistical parameters were estimated, and the results are listed in

Supplementary Table 2. HRR (%) and PGC (%) followed a

negatively skewed distribution, whereas the grain aroma followed

a positively skewed distribution (Figure 1). Furthermore,

correlation analysis among the three traits indicated a statistically

significant variation between the paired quality traits at the 5% and

1% levels of significance, except for the relationship between HRR

(%) and PGC (%). Grain aroma was positively associated with HRR

(%) (PCC = 0.28) and negatively associated with PGC (%) (PCC =

−0.17), which is consistent with several previous studies (Sanchez

et al., 2023; Song et al., 2007; Adjah et al., 2020; Qiu et al., 2021). In

addition, HRR (%) and PGC (%) had a very weak positive

correlation with a Pearson correlation coefficient (PCC) of 0.03,

which was also consistent with current correlation studies and

BLUP estimates (Sanchez et al., 2023; Nirmaladevi et al., 2015;

Vemireddy et al., 2015; Cruz et al., 2021; Ali et al., 2023). Broad-

sense heritability (H2) estimates were high for HRR (%) (0.99) and

PGC (%) (0.98) which was consistent with similar studies (Sanchez

et al., 2023; Ali et al., 2023). The considerably low H2 for grain

aroma (0.28) suggested that its environmental influence was

attributed to the experimental conditions, as pointed out in an

earlier study (Vemireddy et al., 2015). These findings indicate a

close relationship among the abovementioned quality traits and

suggest their potential role in the genetic improvement of rice

grain yield.
B CA

FIGURE 1

Phenotypic distribution of head rice recovery (HRR, %), grain aroma (AR), and percentage of grains with chalkiness (PGC, %) in a subset of 198
rice accessions.
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Population structure and linkage
disequilibrium analysis

According to principal component analysis, there were three

subpopulations in the selected rice panel (Figure 2C). The scree plot

suggested the significance of three PCs in the subset selected, with

the first two PCs (PC1 and PC2) explaining a cumulative percent

variance of 77.8 (Figure 2B). Neighbor-joining (NJ) clustering also

revealed three distinct clusters based on genetic distances derived

from SNP differences in the selected rice accessions (Figure 2A).

Cluster 1 was identified as the smallest cluster consisting of 4.04% of

indica rice accessions belonging to indx and ind1b subpopulations.

A total of 26.26% of the Xian subpopulations, viz., ind1a, ind1b,

ind2, and ind3, were included in cluster 2. However, cluster 3 was

recognized as the largest and the most diverse cluster, comprising

69.69% of the total accessions, were Xian, japonica, aus/boro, and

intermediate-type subpopulations. LD decay analysis was

conducted using the filtered SNPs. Maximum r2 estimated on the

90th percentile of chromosomes 1 to 12 was 0.3, 0.25, 0.35, 0.25,

0.35, 0.3, 0.3, 0.25, 0.3, 0.35, 0.25, and 0.25, respectively. As shown

in Figure 3, variations were observed in the LD decay distance

among the 12 chromosomes, with the fastest decay occurring in

chromosome 12. These SNPs were found to be distributed across

the whole rice genome, with an average number of SNP per kb 1.28

sufficiently dense to identify significant associations and QTLs.
Association analysis

Associations for all three traits (Aroma, HRR (%), and PGC

(%)) were studied using single-locus approaches (MLM and
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CMLM) for QTL detection and three multi-locus methodologies

(mrMLM, FASTmrMLM, and FASTmrEMMA) to identify QTNs.

Using the MLM method, 198, 198, and 198 single nucleotide

polymorphic (SNP) markers corresponding to 23, 22, and 32

QTLs were found to be associated with aroma, HRR (%), and

PGC (%), respectively, considering the threshold value of -log (P)

value = 3 (Supplementary Table 3), similar to multiple recent

GWAS studies (Kikuchi et al., 2017; Bheeanahalli et al., 2021; Hu

et al., 2022). Of these, 24 QTNs for aroma using mrMLM (10),

FASTmrMLM (11), and FASTmrEMMA (3). For HRR (%), eight,

11, and four QTNs were detected using mrMLM, FASTmrMLM,

and FASTmrEMMA, respectively, and 23 QTNs were correlated

with PGC (%) using mrMLM and FASTmrMLM (Supplementary

Figure 1). Manhattan and quantile-quantile plots of all the three

quality traits presented in Figure 4 implied that false associations

were controlled and the SNPs detected by ML-WAS methods were

true associations; however, we witnessed inflation in Q–Q plots

with incorporated population structure. This inflation persisted

because the mixed linear approach (accounting for structure)

utilized the first three PCs as covariates in the regression.

However, the PC-adjusted model-based estimates of standard

errors remove the structure problem, providing correctly

calibrated p-values, which has been well documented in several

studies (Price et al., 2006; Zhang et al., 2008; Voorman et al., 2011).

One of the QTNs detected for aroma (qAR-1-1) was located in

proximity to the well-known rice fragrance gene Badh2 (151 kb).

The recessive gene BADH2 is well established to govern the

synthesis of 2-acetyl-1-pyroline (2-AP) in aromatic rice (Imran

et al., 2022). Furthermore, we found that qHRR-3-1 existed in the

same region adjacent to OsRLCK113 (cysteine-rich receptor-like

kinase 28 precursor gene, LOC_Os03g31260) (Li et al., 2022) and the

gene encoding the ring zinc finger protein (LOC_Os03g31320) (65–
B

C

A

FIGURE 2

Model and PCA based analysis of genetic structure of 198 rice accessions. (A) NJ clustering of 198 rice accessions constructed using 5,53,229 SNPs
evenly distributed throughout the genome. (B) Scree plot depicting the genetic variation with principal components. PC1, PC2, and PC3 represent
the first, second, and third principal components, respectively. (C) Biplot depicting three clusters identified in the selected rice panel.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1304388
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sachdeva et al. 10.3389/fpls.2023.1304388
66), with confirmed roles in controlling grain yield and quality traits

in rice. qPGC-3-1 and qPGC-3-2 were located adjacent to OsLTP1.3

(Ltpl28-Seed Storage/Protease Inhibitor/Ltp Family Protein

Precursor, LOC_03g59380), OsCESA2 (Cellulose Synthase,

LOC_03g59340) and OsCPK8 (Camk_Camk_Like.24- Calcium

Dependent Protein Kinases, LOC_03g59390) genes regulating
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grain quality traits in rice. Similarly, qPGC-7-2 overlapped with a

gene encoding a retrotransposon protein located in the vicinity of

no apical meristem genes ONAC65 (LOC_07g27330) and ONAC102

(LOC_07g27340), which serves as a regulator of starch and

accumulation of proteins, thereby improving grain quality in rice

(Wang et al., 2020).
B

C

A

FIGURE 4

GWAS for grain quality traits in rice accessions. Manhattan and Quantile-Quantile plots derived through the mrMLM, FASTmrMLM, and
FASTmeEMMA methods depicting the distribution of QTNs on 12 rice chromosomes for grain aroma (AR), head rice recovery HRR (%), and
percentage with grain chalkiness PGC (%). Pink dots indicate all the QTNs mapped by more than one GWAS method, while all the QTNs identified by
a single method are indicated by the light colored dots shown above the gray dotted lines. The known genes around QTNs are marked in red, and
putative candidates around the identified QTNs are marked in dark blue.
FIGURE 3

Chromosome-wise linkage disequilibrium decay based on 198 accessions. The decline in LD-r2 between SNP markers is presented as a function of
physical distance in base pairs.
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In addition, assessment of the results of SL-GWAS and ML-

GWAS revealed 39 QTNs in common based on a critical LOD score

≥3, explaining 0.03%–9.57% of the phenotypic variation (R2)

(Table 1). The fact that half of the detected QTNs (19/39)

overlapped with previously reported genes/QTLs supports the

consistency of our results. Among these, 7, 13, and 19 were
Frontiers in Plant Science 07
associated with AR, HRR (%), and PGC (%), respectively. Seven

candidate QTNs significantly related to AR were located on

chromosomes 1, 3, 8, 10, 11, and 12. For HRR (%), 13 putative

QTNs were found to be distributed on chromosomes 2, 3, 6, 7, 8,

and 11. A total of 19 QTNs correlated with PGC (%) were found to

be located on chromosomes 1, 2, 3, 5, 7, 9, 10, 11, and 12. Of these,
TABLE 1 QTNs for the three quality traits detected concurrently by using single- and multi-locus GWAS methodologies.

Trait QTN Chr Position LOD R2(%)1 Method2 LOC3/QTL4

Aroma (AR) qAR-1-1 1 20227999 0.05–9.03 0.05–7.5 1,2,3,4,5

qAR-1-2 1 38383904 3.59 3.16 1,2,3 GA20ox-2

qAR-3-1 3 10338993 4.46–5.74 0.13–5.89 1,3,4

qAR-8-1 8 10892476 5.54–6.54 4.25–4.93 3,4 LTP48/CQAP1

qAR-10-1 10 17265187 4.503 0.09–2.57 1,2,5 OsCESA7

qAR-11-1 11 6394202 3.9514 0.03–6.53 1,2,3 OsSRP-PLP

qAR-12-1 12 15819670 6.1642 0.09–3.94 1,2,5 CQAP3

Head Rice Recovery
HRR (%) qHRR-2-1 2 24752396 5.0096 0.05–5.71 1,2,5 hwh1, AQCV031a

qHRR-3-1 3 17840988 3.9148 0.09–4.47 1,2,4 LOC_Os03g31310

qHRR-6-1 6 3667482 6.8549 0.08–8.20 1,2,3

qHRR-6-2 6 3730045 8.0183 0.09–5.51 1,2,3

qHRR-7-1 7 20413747 3.7534 0.05–3.97 1,2,5 LOC_Os07g34130

qHRR-7-2 7 26771672 4.1753 0.06–4.47 1,2,5 LOC_Os07g44830

qHRR-7-3 7 28019959 6.168 0.06–6.95 1,2,3

qHRR-8-1 8 4580996 6.3682 0.05–7.59 1,2,5

qHRR-8-2 8 16979079 3.2005 0.07–2.00 1,2,4

qHRR-11-1 11 21623134 6.7537 0.06–4.22 1,2,4 LOC_Os11g36640

qHRR-11-2 11 24456311 7.8223 0.06–7.02 1,2,4

qHRR-11-3 11 27996997 7.3025 0.07–4.78 1,2,4 OsPCBP

qHRR-11-4 11 28857401 6.0719 0.05–5.69 1,2,3 OsRhmbd18

Percentage with grain chalkiness PGC (%) qPGC-1-1 1 14474816 3.6322 3.59 1,2,3 LOC_Os01g25530

qPGC-1-2 1 5928150 3.2289 5.51 1,2,3 LOC_Os01g11110

qPGC-2-1 2 25081182 3.54–7.22 8.45–9.57 1,2,3,4 LOC_Os02g41720

qPGC-2-2 2 7633393 7.19 6.15 1,2,3 LOC_Os02g13990, AQGB108b

qPGC-2-3 2 7660595 5.08 2.95 1,2,4 AQGB109c, AQGB084d

qPGC-2-4 2 34652183 3.69 1.55 1,2,4 LOC_Os02g56565

qPGC-3-1 3 35098972 3.75–4.18 2.08–4.98 1,2,3,4

qPGC-3-2 3 33802678 3.99–4.48 2.8-6.1 1,2,3,4

qPGC-3-3 3 326950 4.87 3.52 1,2,3

qPGC-3-4 3 4530119 4.76 3.34 1,2,4

qPGC-5-1 5 6812458 4.23 8.51 1,2,3

qPGC-7-1 7 620874 6.4849 0.07–1.14 1,2,3

qPGC-7-2 7 15975911 3.07 2.35 1,2,4 LOC_Os07g27420

(Continued)
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four QTNs were detected by both SL-GWAS and at least two ML-

GWAS methods (qPGC-2-1, qPGC-3-1, qPGC-3-2, and qPGC-7-

3). As many as 75 cloned genes were closely associated with rice

yield and appearance quality within the genomic ranges ( ± 100 kb)

of the 39 QTNs detected by the SL-GWAS andML-GWASmethods

(Figure 5; Supplementary Table 4).
Mining of potential candidate loci

We selected common QTNs mapped using the SL-GWAS and

ML-GWAS algorithms for a detailed study. The candidate genes

were identified based on haplotype analysis of non-synonymous

coding SNPs in each candidate gene located inside the LD block

defined for the selected QTN.

qAR-1-2, located at 38,383,904bp on chromosome 1, showed

association signals with grain aroma using MLM, CMLM, and

mrMLM methods with a Logarithm of Odds (LOD) score of 3.59%

(Table 1). A total of 54 kb LD block (38,375,000 bp–38,429,000 bp)

was generated (Figure 6A) as per the method described above

(Gabriel et al., 2002). Gene annotations suggested five candidates

for this block: LOC_Os01g66100 (gibberellin20oxidase2 gene,

OsGA20ox2) , LOC_Os01g66110 (a methyltransferase) ,

LOC_Os01g66120 (no apical meristem protein-encoding gene,

OsNAC6), LOC_Os01g66130 (an armadillo/beta-catenin repeat

family protein, OsPUB16), and LOC_Os01g66140 (plus-3 domain-

containing protein). Among these, LOC_Os01g66110 is the most

likely gene because the heavy metal transporter genes involved in the

biosynthesis of 2-AP, which determines the aroma in fragrant rice,

are known to be regulated by DNA methylases via active histone

modifications (Imran et al., 2022). Missense mutations in

LOC_Os01g66110 resulted in three allelic combinations. Genotypes

with superior HapA exhibited higher average aroma scores, whereas

genotypes with HapB and HapC showed lower aroma scores

(Figure 6B). Another candidate gene, LOC_Os01g66140, directly

interacts with histone H4 and zinc ions, explaining its role in 2-AP

biosynthesis. Three haplotypes were observed for LOC_Os01g66140,

and haplotype A showed a significantly higher average aroma score

than the other two haplotypes.

The SL-GWAS and ML-GWAS test results verified peaks on

chromosome 7 for HRR (%). qHRR-7-2, located at 26,771,672 bp
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and encoding a proline-rich family protein, was significantly

linked to HRR (%) with the FASTmrEMMA method with an

LOD score of 4.17 (Table 1). Using MLM, this SNP showed

associations with HRR (%) with a high level of significance (p =

3.84 × 10−6) and an R2 of 5.43%. An LD block of 26,760,000 bp to

26,798,000 bp was constructed using pairwise estimation of LD

(Figure 7A). The fine mapping of this genetic region associated

with HRR (%) identified five candidate genes using genome

annotation tools: LOC_Os07g44830 belonging to the proline-rich

family, LOC_Os07g44840 encoding a transposon with unknown

func t i on , and LOC_Os07g44850 , LOC_Os07g44860 ,

LOC_Os07g44900, and LOC_Os07g44910 are gibberellin receptor

protein-encoding genes. The LOC_Os07g44910, annotated as

putatively expressed gibberellin receptor GID1L2 protein,

showed significant differences in HRR (%) between the

haplotypes (Figure 7B). Therefore, HapA is a superior genotype

and rice accessions with a higher frequency of HapA could be

selected from the current panel to improve head rice recovery (%)

in rice. Earlier studies clearly indicated the role of Gibberellic Acid

in controlling panicle architecture and yield traits in rice

(Deveshwar et al. , 2020). Moreover, LOC_Os07g44910

colocalized with the dense and erect panicle 2 (DEP2) gene,

which is mainly involved in rachis elongation and branching in

panicles (Li et al., 2003; Wan et al., 2005), and the GW7 gene,

which encodes a TONNEAU1-recruiting motif protein that

improves grain yield and quality by directly interacting with

GW8 (OsSPL16) (Li et al., 2010; Reig-Valiente et al., 2018). We

utilized the IC4R database to confirm the functional role and

analyzed the expression profile data of LOC_Os07g44910 in rice

and found that the gene encodes an alpha/beta hydrolase fold-3

domain-containing protein with the highest expression in the

seedlings and young shoots. Previous studies have reported that

the D14 gene encoding an alpha/beta hydrolase family protein

inhibits rice tillering via the strigolactone signaling pathway (Gao

et al., 2009; Wang et al., 2015; Guo et al., 2020); thus, it is likely

that LOC_Os07g44910 influences grain yield in rice.

qPGC-2-3 was another QTN detected by multiple models and

showed associations with the percentage of grains using chalkiness

FASTmrMLM methods with an LOD value of 5.08. This QTN was

also detected by the MLM and CMLM methods with a p value of

3.05 × 10−6. An LD block was defined for this QTN (83.63 kb), and
TABLE 1 Continued

Trait QTN Chr Position LOD R2(%)1 Method2 LOC3/QTL4

qPGC-7-3 7 16539429 3.9–5.16 3.9–5.37 1,2,3,4

qPGC-9-1 9 11755843 5.0082 2.7252 1,2,4

qPGC-9-2 9 16443727 5.696 3.528 1,2,4

qPGC-10-1 10 14524700 5.05 3.21 1,2,4

qPGC-11-1 11 8517398 3.5495 2.8693 1,2,4

qPGC-12-1 12 3125286 4.3352 3.4133 1,2,4
1R2(%): phenotypic variance explained.
2Methods 1–5 represent MLM, CMLM, mrMLM, FASTmrMLM, and FASTmrEMMA, respectively.
3Locus name based on MSU 7.0.
4QTL ID based on Gramene QTL Database. aLi et al. (2003); b,c,dWan et al. (2005).
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five candidate genes were identified in this region (Figure 8A).

LOC_Os02g13990 (U2 small nuclear ribonucleoprotein A) and

LOC_Os02g14000 (actin-related protein 2/3 complex subunit 3)

only had synonymous SNPs with a -log (P) value less than 3.

LOC_Os02g14120 is a Brassinosteriod Insensitive 1 Associated

Receptor Kinase 1 precursor gene (OsBAK 1-9). Non-synonymous

mutations in OsBAK 1-9 resulted in three major haplotypes: HapA,

HapB, and HapC. The accessions with favorable HapA displayed

lower PGC (%) than accessions with HapB and HapC types

(Figure 8B). The identified favorable allele and functional site in

LOC_Os02g14120 reduces the degree of chalkiness in rice by

breeding. Differences in rice grain quality have been attributed to
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the regulation by a set of other genes involved in multiple pathways

that influence grain appearance quality. LOC_Os02g14110 is

annotated as an aminotransferase, Class I and Class II domain-

containing protein gene, and the third candidate gene,

LOC_Os02g14090, is a berberine and berberine-like domain-

containing protein gene. Previous research has also verified that

brassinosteroid-associated receptor kinase genes, putatively

expressed aminotransferases, and berberine and berberine

domain-containing protein genes govern quality traits, viz.,

chalkiness and grain shape (Biselli et al., 2015) in rice, which led

us to hypothesize that LOC_Os02g14120, LOC_Os02g14110, and

LOC_Os02g14090 may be rice grain PGC (%) regulatory genes.
FIGURE 5

Chromosomal distribution of all loci for grain quality traits using MLM, CMLM, mrMLM, FASTmrMLM, and FASTmeEMMA. The naming of QTNs starts
with a letter ‘q’ subsequently followed by two or three letter identifiers and the chromosome number. In case numerous QTNs are mapped for a
quality trait on corresponding chromosome at that point naming is done based on their relative location on the chromosome. Seventy-five known
genes are labelled with yellow script; black color represents candidate genes for the quality traits under study.
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B

A

FIGURE 6

Haplotype analysis of LOC_Os01g66110. (A) Linkage disequilibrium (LD) based heatmap for qAR-1-2. (B) Boxplot for grain aroma depicting three
allelic combinations of LOC_Os01g66110. X-axis shows the three different alleles of LOC_Os01g66110 and Y-axis shows the average aroma scores.
B

A

FIGURE 7

Haplotype analysis of LOC_Os07g44910. (A) Linkage disequilibrium (LD) based heatmap for qHRR-7-2. (B) Boxplot of HRR (%) trait depicting three
allelic combinations of LOC_Os07g44910. The X-axis shows three different alleles of LOC_Os07g44910 and the Y-axis shows average HRR (%).
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Discussion

Increasing living standards underline the need to develop

healthier high-quality rice (Yu et al., 2013; Hori et al., 2015; Sahu

et al., 2017; Wang et al., 2017; Misra et al., 2019; Meng et al., 2022)

for traits such as color, aroma, lack of broken seed grains, grain

length, and flavor. To meet consumer preferences and market

demands, the development of tailored rice with preferred

appearance quality is of utmost importance after rice yield

enhancement (Arite et al., 2009; Abbai et al., 2019; Selvaraj et al.,

2021). Grain quality is a complex quantitative trait (Yu et al., 2013;

Hori et al., 2015; Misra et al., 2019; Meng et al., 2022) governed by

manifold genes, and there is a large gap in our perception of the

networks regulating grain quality in rice (Li et al., 2022). GWAS has

become a robust tool for the rapid identification of genetic factors

(Adjah et al., 2020) associated with traits governed by several genes

in crop plants that are diverse and provides goals for future efforts

aimed at rice improvement (Zhou et al., 2020). However, breeding

by design has achieved limited success because of the lack of

information on the correct genetic loci of desired traits and

precision in deciphering the favorable haplotype combinations of

these genes dissected to date (Fitzgerald et al., 2009; Abbai et al.,

2019; Selvaraj et al., 2021).

Resequencing-based germplasm lines enable the detection of

pre-existing variations, functional sites of genes, and novel alleles

associated with traits of interest (Begum et al., 2015), which may be

explored by GWAS analysis. In this context, the abundant genetic
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variations in 3K RG resequencing projects make it a valuable

reservoir of gene diversity and a prospective source of elite genes

that can be deployed in rice breeding (Abbai et al., 2019; Selvaraj

et al., 2021). Traditional single-locus models, which are commonly

adopted to identify genetic variants in several cereal crops, have

some limitations, neglecting small-effect QTLs in particular. Lower

false positives and higher statistical predictions of multi-locus

algorithms have been established by many association studies

(Yuan et al., 2017; Zhang P. et al., 2019), and researchers usually

combine facts about different ML-GWAS models to mine the genes

that control complex traits.

In the present study, we adopted two SL-GWAS methods and

three ML-GWAS methods to assess three quality traits of 198

selected rice accessions (a subset of 3K RGP). Subsequently,

198,198 and 198 significant SNPs, while 23,22 and 32 QTLs were

identified by MLM underlying AR, HRR (%), and PGC (%),

respectively (Supplementary Table 3). Similarly, 24,23 and 23

significant QTNs were detected using ML-GWAS methodologies

associated with the abovementioned three quality traits

(Supplementary Figure 1). Interestingly, the QTNs mapped by

multi-locus GWAS analysis were more dispersed than those

mapped by the MLM and CMLM methods. The significant loci

detected by the MLM method, for example, were confined to

specific chromosomes, indicating its failure to identify new loci

across the entire rice genome. Several QTNs identified by multi-

locus methods were distributed across the other chromosomes,

among which 39 common QTNs were considered powerful, robust,
B

A

FIGURE 8

Haplotype analysis of LOC_Os02g14120. (A) Linkage disequilibrium (LD) based heatmap for qPGC-2-3. (B) Boxplot of PGC (%) trait depicting three
allelic combinations of LOC_Os02g14120. X-axis shows three different alleles of LOC_Os02g14120 and Y-axis shows average PGC (%).
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and worthy when applied to discover low individual QTN effect

values for quality traits in rice.

Several rice grain quality genes, such as Badh2, DEP2, GW7,

OsCESA2, and OsCPK8, have been functionally characterized over

the past 10 years (Deveshwar et al., 2020; Imran et al., 2022; Yan

et al., 2022). Among these, Badh2, the fgr gene, the major gene

causing fragrance in rice and a frameshift mutation in its exonic

region, is the functional allele associated with fragrance (Quero

et al., 2018; Tibbs et al., 2021). DEP2/SRS1 encoding the dense and

erect panicle 2 gene positively regulates panicle morphology and its

outgrowth, suggesting its direct role in regulating rice grain size and

yield at the genetic level (Li et al., 2010). GW7 is annotated as a gene

encoding a TONNEAU1-recruiting motif protein that

simultaneously controls grain width and quality (Li et al., 2010).

Combining the cloned genes/QTLs reported in earlier genetic

studies, 19 QTNs and their ±100 kb genomic regions superimposed

the previously annotated grain-quality genes. QTNs clusters were

mapped for HRR (%) on chromosome 7 (qHRR-7-1, qHRR-7-2, and

qHRR-7-3) located in the vicinity of GW7 and DEP2, which are

responsible for grain yield and quality, and another cluster was

detected on chromosome 11 (qHRR-11-1, qHRR-11-2, qHRR-11-3,

and qHRR-11-4) near the F-box and DUF domain-containing genes

with confirmed roles in improving yield potential and quality in

rice. Additionally, 20 novel QTNs were excluded from the genomic

loci of earlier studies, and the markers detected may be the putative

QTNs governing quality traits in rice.
Dissecting four candidate genes of grain
quality traits

Using multiple models for association studies, three QTNs

(qAR-1-2, qHRR-7-2, and qPGC-2-3) were confirmed to have

major gene effects on grain quality. The candidate region of 38.37

Mb to 38.42 Mb in qAR-1-2 was fine-mapped considering a

threshold value of r2 >0.2 (Figure 6A). Five genes located in this

genomic region were possible candidates governing aroma in rice,

and haplotyping was performed for each of the five genes.

S ignificant di fferences in aroma scores between the

LOC_Os01g66110 and LOC_Os01g66140 haplotypes were

observed (F igure 6B) . LOC_Os01g66110 , a pu ta t i ve

methyltransferase, has been proposed to play a role in multiple

epigenomic modifications of heavy-metals transporters involved in

the 2-AP biosynthesis pathway. In recent years, the occurrence of

DNA methylation of all types (CHH, CHG, and CG) in genes

related to 2-AP biosynthesis has been reported in rice. ChIP-seq,

bisulfite-seq, and ATAC-seq data of aroma genes also showed active

chromatin modifications as key regulators (Imran et al., 2022) with

strong enrichment of H3K36me3 at 2-AP biosynthesis pathway-

related genes. Another candidate gene, LOC_Os01g66140,

annotated as a plus-3 domain-containing protein, is anticipated to

influence 2-AP biosynthesis genes with metal-binding properties

and DNA-binding domains. BLAST tool and STRING analysis

revealed that LOC_Os01g66140 directly interacts with histone H4

and zinc metal ions, confirming its role in regulating 2-AP content
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in aromatic rice. Prior studies have found that exogenous

application of micronutrients, specifically zinc, could upregulate

genes involved in the biosynthesis of 2-AP in aromatic rice due to

increased levels of proline and proline dehydrogenase (He and Park,

2015). Based on these findings, we propose that LOC_Os01g66110

and LOC_Os01g66140may be related to the grain aroma. Their role

in regulating heavy metal transporters in response to zinc is worthy

of comprehensive studies and confirmation.

The candidate qHRR-7-2 associated with HRR (%),

LOC_Os07g44910, annotated as the gibberellin receptor GID1L2,

is a type of F-box subunit of the S-phase kinase-associated protein 1

(SKP1)-cullin 1 (CUL1)-F-box protein (SCF) E3 complex that

encodes the alpha/beta hydrolase fold-3 domain-containing

protein containing 358 amino acids, belonging to the alpha/beta

hydrolase (ABH) superfamily. The F-box protein (SCF) E3 complex

plays a crucial role in regulating life processes such as cell division

and influences grain size and yield in rice by facilitating proteasomal

degradation of diverse regulatory proteins (Chen et al., 2008;

Nguyen and Busino, 2020). Its loss-of-function mutants, htd4 and

dta-34 have reduced panicle branching, grains/panicle, and seed

size, and show a dwarf phenotype (Wang et al., 2017; Liang et al.,

2019, Liu et al, 2009). For instance, Grain weight 2 (GW2), encoding

E3 ubiquitin ligase, regulates grain weight and grain yield by

ubiquitinating EXPLA 1 and promoting its degradation (Hu et al.,

2015; Mo et al., 2016; Deveshwar et al., 2020). In this study, GWAS

and haplotype analysis results indicated that LOC_Os07g44910

might govern grain weight and grain yield in rice (Figures 7A, B).

Members of this superfamily, such as GS5 (Grain Size 5, putative

serine carboxypeptidase) (Hu et al., 2015) and TGW6 (Thousand

Grain Weight 6, IAA-glucose hydrolase) (Mo et al., 2016), have

been characterized for their roles in influencing grain weight and

yield. These studies showed high consistency with our GWAS

analysis results, confirming with these printed reports proving

that LOC_Os07g44910 might be related to rice recovery % (HRR,

%) in rice.

In the candidate qPGC-2-3, involved in the percentage of grains

with chalkiness, LOC_Os02g14120 is a Brassinosteriod Insensitive 1

Associated Receptor Kinase 1 precursor gene (OsBAK 1-9).

OsBAK1/Top Bending Panicle 1 encodes a somatic embryogenesis

receptor kinase (SERK) domain-containing protein that acts as a

modulating factor in the brassinosteroid signaling pathway, thus

affecting the number of grains and yield in rice (Xing and Zhang,

2010; Gupta et al., 2022). Overexpression of OsBAK-1 drastically

reduced grain yield in rice (Lin et al., 2017), and its high-tillering

mutants are characterized by a reduction in panicle length and seed

size (Deveshwar et al., 2020). The central role of brassinosteroids

(BR) in regulating multiple biological processes such as flowering,

male fertility, and tillering, is becoming more apparent (Lin et al.,

2017; Yuan et al., 2017). Although, brassinosteroids have been

demonstrated to be positive regulators of plant growth processes

and grain development, they most often work in close association

with auxins and cytokinins to affect the efficiency of photosynthesis,

sugar metabolism, and mobilizing resources in crop plants to

influence grain filling (Mo et al., 2016; Deveshwar et al., 2020),

reiterating the need to consider the holistic approach of plant
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developmental processes and their architecture to improve crop

yields. These results suggest that LOC_Os02g14120 may be related

to the percentage of grains with chalkiness (PGC, %), and its role in

modulating the architecture, yield, and grain quality in rice is

valuable for further evaluation and validation.
Conclusions

In this GWAS analysis, 70 QTNs were detected for three grain

quality traits using different multi-locus methodologies. Among

these QTNs, qAR-1-2, qHRR-7-2, and qPGC-2-3, which are closely

associated with AR, HRR (%), and PGC (%), were identified using

both single- and multi-locus methods. In addition, four key

annotated genes (LOC_Os01g66110 , LOC_Os01g66140 ,

LOC_Os07g44910, and LOC_Os02g14120) that govern the three

target candidate genes mentioned above were mined. In conclusion,

several robust QTLs and four candidate functional genes were

shown to possibly control grain aroma, head rice recovery (%),

and the percentage of grains with chalkiness in rice. This

investigation provides valuable information for functional

characterization in the future and molecular marker-based

breeding design to improve appearance quality traits in rice.
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