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grains classification
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Introduction: Efficient and accurate varietal classification of wheat grains is

crucial for maintaining varietal purity and reducing susceptibility to pests and

diseases, thereby enhancing crop yield. Traditional manual and machine

learning methods for wheat grain identification often suffer from

inefficiencies and the use of large models. In this study, we propose a

novel classification and recognition model called SCGNet, designed for

rapid and efficient wheat grain classification.

Methods: Specifically, our proposed model incorporates several modules

that enhance information exchange and feature multiplexing between group

convolutions. This mechanism enables the network to gather feature

information from each subgroup of the previous layer, facilitating effective

utilization of upper-layer features. Additionally, we introduce sparsity in

channel connections between groups to further reduce computational

complexity without compromising accuracy. Furthermore, we design a

novel classification output layer based on 3-D convolution, replacing the

traditional maximum pooling layer and fully connected layer in conventional

convolutional neural networks (CNNs). This modification results in more

efficient classification output generation.

Results: We conduct extensive experiments using a curated wheat grain

dataset, demonstrating the superior performance of our proposed method.

Our approach achieves an impressive accuracy of 99.56%, precision of

99.59%, recall of 99.55%, and an F1-score of 99.57%.

Discussion: Notably, our method also exhibits the lowest number of

Floating-Point Operations (FLOPs) and the number of parameters, making

it a highly efficient solution for wheat grains classification.
KEYWORDS

wheat grains classification, feature multiplexing, sparsely connected, 3-D
convolution, the number of parameters
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1 Introduction

Wheat, being one of the most extensively cultivated crops

globally (Li et al., 2019; Zhou et al., 2021), holds vital genetic and

morphological information within its seeds. The distinct

characteristics and values exhibited by different wheat grain

varieties underscore the importance of selecting high quality

varieties. This selection is not only pivotal for augmenting wheat

yields and enhancing quality but also crucial for safeguarding crops

against pests and diseases (Mefleh et al., 2019; Saeed et al., 2022).

The purity of wheat grain varieties is of paramount importance

to breeding specialists, wheat cultivators, and consumers at large

(Hussain et al., 2022). Unfortunately, the integrity of seed markets

faces challenges from unscrupulous traders who engage in deceptive

practices. They market low-quality seed varieties as high-quality

ones, posing a threat to consumers and disrupting the seed market.

To counteract such issues, accurate classification techniques are

imperative (Fanelli et al., 2023).

Historically, professionals relied on traditional methods for

varietal identification of wheat grains. However, these methods

are slow, labor-intensive, and susceptible to subjective biases. The

inherent similarity in the characteristics of various wheat grains

further complicates the identification process.

In recent years, the integration of computer vision techniques

into wheat grain recognition has witnessed significant

advancements (Li et al., 2019). Researchers have explored two

primary types of approaches for feature extraction and

classification: machine learning-based methods and deep

learning-based methods.

Machine learning methods, while effective, require substantial

agricultural knowledge, manual feature selection, and classifier

design (Lu et al., 2022). This process demands significant human

effort and may not match the recognition speed achieved by deep

learning approaches.

Deep learning methods offer notable advantages, automating

feature extraction and achieving superior classification accuracy.

They exhibit strong generalization capabilities, streamlining model

training and significantly enhancing recognition speed. However,

challenges such as the need for extensive training data and the high

number of parameters in deep learning models can impede

deployment on resource-constrained devices. For instance, the

computational intensity associated with these models can overwhelm

devices with limited resources, leading to frequent crashes during

usage. The sheer volume of computations required may exceed the

processing capacity of these devices, compromising their stability and

usability. Moreover, resource-constrained devices may lack the storage

capacity necessary to accommodate the extensive parameters of these

models, rendering deployment infeasible.

To address these challenges, we propose the Sparsely Connected

Group Convolution Network (SCGNet) for efficient and accurate

wheat grain classification. Our model is designed to offer a non-

destructive, efficient, and rapid classification solution, aligning with

the overarching goal of addressing the complexities associated with

wheat grain identification and classification. We highlight the key

contributions of this paper as follows:
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• We introduce a novel approach known as “Group Mixing

(GM)”, which involves splitting and rearranging group

convolutions based on a strategic criterion. This

innovative technique resolves issues related to

information exchange among groups, enhances feature

multiplexing, and simultaneously reduces the Floating-

Point Operations (FLOPs) of the convolutional layers.

• We present a method for connected group convolutions,

called “Sparsely Connected(SC)”, facilitating the cascading

transfer of feature information between groups without

compromising vital details. This advancement further

decrease s the computa t iona l demands o f the

convolutional layers.

• We incorporate 3-D convolution and revamp the

convolutional classification layer within SCGNet. This

novel approach replaces traditional layers like pooling and

fully connected layers commonly found in conventional

convolutional neural networks (CNNs). The result is a

reduction in the overall number of model parameters,

leading to a more streamlined architecture and

faster recognition.
The structure of this paper is organized as follows: Section 2

provides a brief review and summary of various methods employed

for wheat grain recognition, along with the challenges they address.

In Section 3, we present comprehensive details regarding the

proposed SCGNet architecture. Section 4 encompasses our

creation of a wheat grains dataset, outlines our experimental

procedures, and presents the experimental results. We also

perform an in-depth analysis and comparison of classification

outcomes generated by various network models using the wheat

grain dataset. Finally, in Section 5, we summarize the primary

contributions of this paper and engage in a discussion regarding

potential directions for future research.
2 Related works

Currently, various identification methods have been gradually

applied to wheat grain classification, and in the following, we

provide an overview and summary of these studies and

summarize the advantages and disadvantages of all methods

in Table 1.
2.1 Machine learning-based methods

Machine learning-based methods leverage digital image

processing techniques to preprocess data acquired from collected

images, followed by manual feature design, feature extraction, and

ultimately, classification and recognition employing suitable

classifiers like Support Vector Machine (SVM). For instance,

Delwiche et al. (Delwiche et al., 2013) employed optical-grade

reflectors to capture wheat grain images for assessing surface

damage. They parameterized kernel morphology and texture
frontiersin.org
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features from both main and reflected views, employing parametric

(Linear Discriminant Analysis, LDA) and non-parametric (k-

Nearest Neighbors, KNN) classification models, respectively. This

approach achieved a recognition accuracy of up to 94%. Günes ̧ et al.
(Günes ̧ et al., 2014) proposed a method for recognizing wheat

varieties using digital image processing techniques. Their system

extracted image features using the Gray Level Covariance Matrix

(GLCM) and Linear Binary Pattern (LBP) methods, classifying

them with a k-nearest neighbor classifier. Kurtulmus ̧ et al.

(Kurtulmus ̧ et al., 2016) introduced a recognition method

combining machine vision and neural networks. They calculated

features from different color components and constructed a feature

database using chili pepper seeds as the study object. Sequential

feature selection methods with various criterion functions were

employed to select effective features, achieving variety classification

of eight pepper seeds with a Multilayer Perceptron (MLP) accuracy

of 84.94%. Sabanci et al. (Sabanci et al., 2017) extracted four shape

features, three color features, and five texture features, inputting

these features into an artificial neural network (ANN) constructed

as a multilayer perceptron (MLP), resulting in improved

classification results. Ni et al. (Ni et al., 2019)designed an

automatic maize surface defect inspection system. Initially, they

pre-processed touching kernels using a novel k-means clustering

guided curvature method, enhancing the identification of broken

kernels and system robustness. Subsequently, they integrated a deep
Frontiers in Plant Science 03
convolutional network into the system for detecting maize surface

defects, achieving an accuracy of 98.2%.
2.2 Deep learning-based methods

Deep learning-based methods typically involve the construction

of specialized deep learning models for recognition and

classification tasks (Huang et al., 2017; Zhang et al., 2022b; Zhang

et al., 2023). In these approaches, the deep learning model takes the

original image data as input, processes it at the pixel level, and

automatically extracts contextual information and global features

from the image by employing various combinations of convolution

and pooling operations. Finally, the model produces classification

and recognition results through specific functions. For instance,

Kozłowski et al. (Kozłowski et al., 2019) conducted a comparison of

nine different CNNs for wheat grain classification. They used

reference performance indicators such as training time, inference

speed, and accuracy rates and compared them with traditional

machine learning methods. The results showed that traditional

methods achieved a relatively low classification accuracy of

around 75%, whereas CNN methods achieved an accuracy

exceeding 93%. Javanmardi et al. (Javanmardi et al., 2021)

proposed a method that utilizes CNNs as generalized feature

extractors, combined with artificial neural networks, for feature

extraction and classification. They tested this approach on 2250 test

samples, achieving a correct classification rate of 98.1% with a total

processing time of 26.8 seconds. Deep learning-based methods can

achieve satisfactory results in terms of accuracy metrics, but it is

worth noting that these high-precision CNNs are accompanied by a

high number of parameters and FLOPs, and thus some scholars

have focused on how to thin the models.

One noteworthy approach is MobileNet (Howard et al., 2017),

which introduces depth-wise separable convolutions, which split

standard convolutions into depth-wise convolutions and point-wise

convolutions, this reduces the number of parameters and

computations significantly. ShuffleNet (Zhang et al., 2018)

employs group convolutions and channel shuffling to enhance the

fusion of channel information while reducing computational cost,

group convolutions split the input channels into separate groups,

reducing the complexity of convolutions. MobileNetV2 (Sandler

et al., 2018) utilizes the inverted residuals structure, which helps in

maintaining a balance between computational efficiency and

representational power, it uses linear bottlenecks and shortcut

connections to improve information flow. Moreover, BiSeNetV2

(Yu et al., 2021) presented a branching network where the detail

branch focused on underlying details using a larger spatial

dimension, while the semantic branch captured advanced

semantics with large convolutional kernels, these branches were

then fused through an aggregation layer, enhancing the model’s

capabilities. Inspired by these innovations, Yang et al. (Yang et al.,

2021a) devised a branch network by modifying the VGG16 model.

By removing the fully connected layer and adjusting the position of

the Batch Normalization (BN) layer, they crafted a novel network

capable of classifying peanut varieties. This tailored model exhibited

remarkable accuracy improvements over the original design while
TABLE 1 Advantages and disadvantages of different methods.

Methods Scholar Advantages Disadvantages

Machine
learning

(Delwiche
et al., 2013)

No extensive data
sets are necessary
for training,
resulting in
decreased
computational
resource
requirements.

Scholars must possess a
pertinent agricultural
knowledge background
and manually choose
suitable features.

(Günes ̧
et al., 2014)

(Kurtulmus ̧
et al., 2016)

(Sabanci
et al., 2017)

(Ni
et al., 2019)

Deep
learning

(Kozłowski
et al., 2019)

It can
automatically
extract features,
possesses a strong
ability to
generalize, and
does not require
the design of
special classifiers.

A large amount of
training data is required
and the number of high-
precision neural network
model parameters is
large.wedge background
and manually choose
suitable features.

(Javanmardi
et al., 2021)

(Yang
et al., 2021a)

(Zhao
et al., 2022)

Deep
Learning and
Hyperspectral

(Weng
et al., 2021)

The extracted
feature
information is
richer and more
resistant
to interference.

High-quality equipment
for collecting data and
large datasets for
training are required.(Shen

et al., 2021)

(Yang
et al., 2021b)

(Zhang
et al., 2022a)
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maintaining a reduced parameter count. Zhao et al. (Zhao et al.,

2022) employed YOLOv5 for detecting the quality of wheat grains

and introduced a lightweight wheat grain detection network,

WGNet, based on YOLOv5. WGNet utilized the FPN neck

module and hybrid attention module to address performance

degradation issues and reduced network parameters through

network pruning. This approach significantly improved inference

speed while maintaining high detection accuracy.
2.3 Methods based on hyperspectral
imaging combined with deep learning

Neural networks have demonstrated outstanding performance,

prompting some scholars to explore their combination with

hyperspectral imaging techniques. For instance, Weng et al.

(Weng et al., 2021) aimed to characterize the degree of Fusarium

head blight (FHB) infestation on wheat grains. They extracted

reflectance spectra from hyperspectral images of healthy and

FHB-infected wheat grains with varying levels of infestation

(light, moderate, heavy). Five effective wavelengths (EWs) were

randomly selected from the spectra, and different combinations of

EWs were used to generate reflectance images (RIs) with LeNet-5.

Additionally, a residual attention convolutional neural network

(RACNN) was constructed, increasing width and depth, and

incorporating channel attention and residual modules to

recognize varying degrees of FHB infection in wheat grains. Shen

et al. (Shen et al., 2021) proposed a spectral imaging-based method

for detecting impurities in wheat. They employed spectral imaging

to study the spectral features of the target data and converted them

into frequency domain spectra for terahertz pseudo-color imaging

of wheat and its impurities. This was combined with a CNN to

create a model called Wheat-V2, designed for identifying impurities

in wheat images. Zhang et al. (Zhang et al., 2022a) utilized 2D

convolution with an attentional mechanism to extract spatial and

textural features, while 3-D convolution was used for spatial and

inter-spectral information extraction in maize cultivar

identification. This combination of 2-D and 3-D convolution

showed good feature extraction complementarity. However,

classification methods based on hyperspectral imaging often

require a substantial amount of data and high-quality equipment

for data acquisition. This instrument-dependent nature can be a

burden for economically underdeveloped regions where the high

cost of multispectral and hyperspectral cameras is prohibitive for

widespread adoption. To address this, some scholars (Yang et al.,

2021b) designed the Spectrogram Generative Adversarial Network

(SPGAN) to expand the wheat grain dataset. SPGAN utilizes a

generative adversarial network to generate synthetic datasets based

on a small set of real datasets. These synthetic datasets serve as the

foundation for the Progressive Neural Structure Search (PNAS)

generative network structure, which classifies three types of wheat

grains. The SPGAN-PNAS framework achieved an F1-score of

96.2%, outperforming traditional neural networks.

To summarize, machine learning-based methods do not require

much data to have better performance although they need to extract

features manually, while deep learning-based methods require a
Frontiers in Plant Science 04
large amount of data to support them, at the same time, deep

learning-based methods eliminate the need to manually design and

extract features, which means that researchers do not need to have a

richer background in agricultural knowledge. Hyperspectral-based

methods combined with deep learning can extract richer feature

information but require sophisticated data acquisition equipment.
3 Proposed SCGNET

Figure 1 provides an exhaustive overview of the proposed

innovative SCGNet architecture. The left segment of the figure

illustrates the overall structure of SCGNet, while the central part

delves into the constituent sub-modules, namely the Downsample

layer and SCG block. The right-hand portion zooms in further to

unveil the sub-components of the SCG block. SCGNet is a

comprehensive network composed of various elements, including

a conventional convolutional layer, multiple repetitively stacked

Downsample layers, SCG blocks, and a 3-D classification

convolutional layer. The primary objective of these components is

to capture and process the intricate features of the input image data.

The Conventional Convolutional Layer utilizes a 3×3

convolutional kernel with a stride of 1. Its role is to perform an

initial extraction of the coarse-grained features inherent in the

image data.

The Downsample Layer is crucial in reducing image size and

controlling channel dimensionality. It consists of two convolutional

layers: one using a 1×1 kernel with a stride of 1, and the other

utilizing a 2×2 kernel with a stride of 2. This combination enables

control of image size and channel simultaneously.

The SCG block represents the core of our architecture,

consisting of a series of repetitively stacked down sampling layers

and SCG block components(GM module and SC module). More

details about the important sub-modules of the SCG block: the GM

module and the SC module, will be elaborated upon in subsections

3.1.1 and 3.1.2. Additionally, it incorporates two 1×1 ordinary

convolutional layers to regulate channel dimensions. The primary

purpose of the SCG block is to extract fine grained features from the

image and simultaneously reduce the overall parameter count of the

entire SCGNet, thereby enhancing efficiency.

The 3-D Convolutional Classification Layer is specifically

designed for classification tasks and employs 3-D convolutions to

produce the final classification results.

In Table 2, we present a detailed breakdown of each module

within SCGNet, offering a comprehensive reference for the

configuration and specifications of our network’s components.
3.1 SCG block

The SCG block serves as the main module of the entire network.

Within the SCG block, we integrate the Group Mixing module and

the Sparsely Connected module, along with two convolutional

layers using 1×1 kernel sizes, to constitute the SCG block. These

two 1×1 kernel convolutional layers play distinct roles: one for

increasing and the other for decreasing the channel dimensionality.
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TABLE 2 Detailed specifications for each module within SCGNet.

Input Layers Kernel size Stride Channel Repeat

224×224 Conv2d 3×3 2 3 1

112×112 Downsample 2×2 2 3 1

56×56 SCGNet-block 3×3 1 96 3

56×56 Downsample 2×2 2 96 1

28×28 SCGNet-block 3×3 1 192 3

28×28 Downsample 2×2 2 192 1

14×14 SCGNet-block 3×3 1 384 9

14×14 Downsample 2×2 2 384 1

7×7 SCGNet-block 3×3 1 768 3

7×7 3-D Conv Classification 3×3 1 768 1

Total Trainable Parameters: 1,078,091.
F
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FIGURE 1

Given a 224×224×3 image of wheat grain, it passes through an initial convolutional layer to extract the coarse-grained features. Following that, we
stack four successive SCG blocks to obtain the fine-grained features of the image and reduce the parameters. In addition, we add down sampling
modules before each SCG block module to ensure image size consistency in the computation process. Finally, the output classification result is
determined by a 3-D convolutional classification layer that we have constructed.
ntiersin.org
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The GM module and SC module serve as the core components

within the SCG block. Following the Depthwise Convolution (DW

Conv), we introduce a BN layer to normalize the data, thus

contributing to the potential acceleration of CNN training. The

1×1 Group convolution (G-Conv) primarily serves the purposes of

parameter sharing and feature interaction among subgroups.

This aids in reducing the model’s parameter count while

facilitating mutual feature learning among subgroups. After the

G-Conv layer, we not only apply the BN layer but also opt for the

Swish activation function over the traditional ReLU. The Swish

activation function has a smoothness that enhances the forward

propagation optimization, in addition, the function exhibits a high

saturation threshold, which remains unsaturated even when the

inputs converge to 0, thus facilitating the flow of gradients during

the training process.

In various deep learning architectures, the concept of feature

fusion is crucial. Such as ResNet (He et al., 2015) and FPN (Lin

et al., 2017), these architectures often employ the element-wise Add

operation for feature fusion.

The Add operation directly combines the matrix information

from input features and output features without altering the image’s

dimensionality. The number of channels remains the same, but the

operation increases the amount of information along each

dimension. However, in certain cases, such as ShuffleNet (Zhang

et al., 2018), a Concat operation is used instead of Add during

feature fusion.

The Concat operation, unlike Add, applies different weights to

feature maps and then merges them based on the number of

channels in the input matrix. This can increase the image’s

dimensionality while preserving information along each

dimension. The Concat operation aligns input features with the

output feature map and leverages the semantic information from

feature maps of different scales to achieve superior performance by

expanding the number of channels. Therefore, to leverage semantic

information from feature maps of different scales and increase

dimensionality, we employ the Concat for feature fusion.

3.1.1 Group mixing
Traditional CNNs primarily consist of convolutional layers,

activation functions, pooling layers, and fully-connected layers

(Krizhevsky et al., 2012). The trainable layers within CNNs

typically comprise convolutional layers and fully-connected layers

(Gao et al., 2018). Among them, the main role of the convolutional

layer is to perform feature extraction on the input image. Each

neuron in a convolutional layer is connected to multiple neurons in

spatially proximate regions of the preceding layer. The convolution

operation involves sequentially applying a convolution kernel to the

input features through element-wise matrix multiplication and

aggregating the results while incorporating biases.

The presence of a large number of convolution operations in

convolutional layers leads to a substantial increase in the number of

parameters and FLOPs. To illustrate this, let’s define the input

feature map as F ∈ Rh×w×c, and the convolution kernel as K ∈
Rh×w×c, with Kn representing the number of convolution kernels. A

standard convolutional operation is performed between the feature

map and Kn convolutional kernels, with a default stride of 1. The
Frontiers in Plant Science 06
number of parameters for this operation is calculated as Equation 1:

Parameters = Kh � Kw � Fc � Kn (1)

At this point, the FLOPs are determined as Equation 2:

FLOPs = Kh � Kw � Fc � Fh � Fw � Kn (2)

Here, Fh and Fw represent the height and width of the input

feature map, respectively. Kh and Kw denote the height and width of

the convolution kernel, Fc is the number of channels in the feature

map, and Kc is the number of channels in the convolution kernel. in

which case, Kc = Fc. To address this computational complexity,

MobileNet (Howard et al., 2017) introduced depthwise separable

convolution. This technique divides the convolution operation into

two steps: depthwise convolution and pointwise convolution. In the

depthwise convolution, a single convolution kernel is applied

independently to each channel in the depth direction of the

feature map. The outputs are then concatenated to generate the

same number of output channels, followed by pointwise convolution

using a 1×1 unit convolution kernel. With this decomposition, the

number of convolutional parameters as Equation 3:

Parameters = Kh � Kw � Fc + Fc � Kn (3)

And the FLOPs as Equation 4:

FLOPs = Kh � Kw � Fh � Fw � Fc + Fc � Fh � Fw � Kn (4)

Clearly, there is a significant reduction in both parameters and

FLOPs after applying depthwise convolution and pointwise

convolution. However, constrained by the computational power

of GPUs, there is a need to further reduce parameters and FLOPs.

To address this, AlexNet (Krizhevsky et al., 2012) introduced group

convolution. This technique involves grouping different feature

maps of the input layer and applying different convolution

kernels to each group. Group convolution has been successfully

employed in various networks, including Xception (Chollet, 2017),

MobileNet (Howard et al., 2017), ResNeXt (Xie et al., 2017), and

others, demonstrating excellent performance.

Group convolution is a technique used in CNNs to reduce the

computational cost of convolutional layers. It divides the input

feature map into mutually exclusive groups based on channels,

where each group operates with a 1×1 convolution kernel. This

division results in each group having a subset of the input channels,

with a proportionate reduction in the number of parameters. The

number of parameters and FLOPs are reduced to 1/G of the original

values, where G is the number of groups.

However, group convolution also brings an Issue of

Independence. While group convolution significantly reduces

computational requirements, it has a drawback. The feature

information in each subgroup is relatively independent, and there

is limited interaction between the groups. This can lead to a lack of

effective information exchange between channels.

To address the issue of independence and enhance information

exchange between the groups, we propose a “Group Mixing”

approach. First, group convolution is divided into G primary

groups (Gi). Each primary group contains a subset of the

channel’s feature information. Then, each primary group (Gi) is
frontiersin.org
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further divided into j subgroups (Gj
i), where j ranges from 1 to i.

This secondary division allows for a more fine-grained separation of

channel information within each primary group. Finally, the critical

step in Group Mixing involves taking one subgroup (Gj
i) from each

primary group (Gi) and combining them in an ordered manner.

These subgroups are concatenated to create new subgroups (Ĝ i) in

a way that disrupts and recombines the feature information.

By using the Group Mixing method, feature information from

each primary group is mixed in an orderly manner to generate new

groups (Ĝ i). For example, G1 contains information from all Gj
i. This

process enhances the interaction and information exchange

between different groupings and channels. For the new G1, it

comprises each Gj
1 component, and each new Ĝ i mixed group is

defined as Equation 5:

bGi =o
j

j=1
Gj
i (5)

Group Mixing is a strategy to balance computational efficiency

(achieved through group convolution) with the need for

information exchange and interaction between feature channels,

particularly in the context of group convolution. This helps in

maintaining the representational power of the network while

reducing computational complexity. It disrupts and recombines

feature information in an ordered manner, allowing for more

effective interaction between subgroups, thus addressing the issue

of independence observed in group convolution. Figure 2 provides a

visual representation of our proposed method.
3.1.2 Sparsely connected
Traditionally, in CNNs, the output of group convolutions is

connected to the subsequent layer in a manner that resembles a fully

connected layer, as depicted in Figure 3A. This design choice is

made to ensure that most of the feature information is preserved
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since there is typically no information exchange among individual

subgroups. As a result, dense connections are used to pass feature

information to the next layer. However, with the introduction of

“Group Mixing” as discussed in Section 3.1.1, the problem of

information exchange between group convolutions has already

been addressed to a significant extent, making the dense

connections unnecessary. In the essence of convolutional

operations, where a feature map is convolved with a kernel, the

operation spans both height and width dimensions, constituting a

spatial convolution. The 1×1 convolution operation, often utilized

in CNNs, is equivalent to a fully connected operation. Building on

this understanding, Sparsely Connected offers an alternative

perspective on the convolution operation, specifically in the

channel dimension.

Building on our previous discussion, when the input feature

map F ∈ Rh×w×c is convolved with the convolution kernel K ∈
Rh×w×c, this convolution is equivalent to a fully connected operation

in both the spatial dimensions and the channel dimension. With

this understanding, we introduce “ Sparsely Connected,” a method

primarily aimed at reducing the number of fully connected

operations. When the input feature map F ∈ Rh×w×c is convolved

with the convolution kernel K ∈ Rh×w×c in the channel dimension,

we no longer perform a fully connected operation. Instead, we

adopt a sparsely connected approach in the channel dimension by

employing a certain stride. Simply put, the feature map is convolved

with only a part of the convolution kernels. For instance, with

stride=3, 2 convolution kernels after one convolution operation are

discarded. Regarding the choice of stride, we conducted a series of

comparative experiments in the ablation study in Section 4.5, as

shown in Table 3, verifying that the best performance is achieved

when stride = 3. Also, as the stride gets larger, the model exhibits

worse performance.

By implementing Sparsely Connected, we eliminate the

necessity for Fc to be multiplied by Kn, thereby significantly
FIGURE 2

Schematic diagram of Group Mixing transformation.
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reducing the computational burden associated with convolution

operations while preserving the essential information required for

subsequent processing.

Based on the previous description, we can integrate “Sparsely

Connected” with “Group Mixing”.

In the after of Group Mixing, we obtain Kn feature maps

following group convolution. Subsequently, we partition these Kn

feature maps into g groups and employ g independent convolution

kernels K ∈ Rh×w×c. The step size between feature maps and

convolution kernels for each convolution operation is set to g,

and Kc ≤ Fc. By performing convolution on the entire input Kn/g

times, the number of feature maps is reduced to Kn/g. At this

juncture, the parameter count for convolutional computation is

calculated as Equation 6:

Parameters =
Fc
g
� Kn

g
� g + Kc � g (6)

The FLOPs are determined as Equation 7:

FLOPs =
Fc
g
� Kn

g
� Fh � Fw � g + Kc �

Kn

g
� Fh � Fw � g (7)

Clearly, by incorporating the “Sparsely Connected” approach,

we further reduce the number of parameters in the CNN, enabling it

to operate more efficiently. Moreover, this approach facilitates the

seamless transfer of feature information from one layer to the next
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without compromising the effectiveness of the feature information.

F igure 3B nice ly i l lu s t r a t e s our proposed spar se ly

connected approach.
3.2 3-D convolutional classification layer

The classical structure of a CNN typically includes

convolutional layers, pooling layers, and fully connected layers.

Traditionally, these networks used average pooling and multiple

fully connected layers. Earlier networks like AlexNet (Krizhevsky

et al., 2012), VGGNet (Simonyan and Zisserman, 2015), and

GoogLeNet (Szegedy et al., 2015), for instance, featured three

consecutive fully connected layers. However, these fully connected

layers contained a large number of parameters due to their fully

connected nature. In fact, in the case of AlexNet (Krizhevsky et al.,

2012) on the ImageNet dataset, the three fully connected layers

accounted for approximately 96% of the total number of parameters

in the entire network, which is nearly the sum of all parameters in

the network. Importantly, experimental results demonstrated that

this design did not substantially compromise the classification

performance of the CNN.

Many studies have revealed that the weight matrix of these fully

connected categorization layers is often very sparse, suggesting that

only a few features are essential for category prediction. The

problem of excessively large fully connected layers has garnered

attention from researchers. Consequently, in recent works, (Tan

and Le, 2020; Dai et al., 2021; Liu et al., 2022), the last two fully

connected layers in the network structure were replaced with a

global average pooling layer followed by a single fully connected

layer. This modification significantly reduced the total number of

parameters in the CNN. For example, in the case of the lightweight

network MobileNet (Howard et al., 2017) on the ImageNet dataset,

the fully connected layer accounted for approximately 24% of the

total network parameters.

In the initial design of SCGNet, we also adopted this approach:

replacing the last two layers with a single global pooling layer and a

single fully connected layer. However, during the design process, we

discovered that even with only one fully connected layer, it still
BA

FIGURE 3

Difference between Fully Connected and Sparsely Connected. (A) Fully Connected, (B) Sparsely Connected.
TABLE 3 Results of the sparsely connected method when different
strides are taken for ablation studies of SC modules.

Methods Accuracy↑ FLOPs↓ Parameters↓

SC, stride=2 99.56% 34.97 M 1.06 M

SC, stride=3 99.56% 34.43 M 1.03 M

SC, stride=5 97.08% 33.91 M 1.01 M

SC, stride=7 94.27% 30.18 M 0.94 M

SC, stride=9 86.25% 28.67 M 0.89 M
(Optimal: red Suboptimal: blue).
↑ indicates that the larger the value of the item, the better, and ↓ indicates that the smaller the
value of the item, the better.
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accounted for a significant portion of the CNN’s parameters. This

means that the number of parameters in the fully connected layer is

still a large percentage of the overall CNNs. To address this, we

propose a novel classification layer based on 3-D convolutional

operations. This new layer completely replaces the traditional global

pooling and fully connected layers, resulting in a reduction in the

number of parameters and FLOPs in the network.

In a typical CNN, several convolutional layers are employed to

progressively extract features essential for image recognition and

classification through convolution operations. These convolutional

layers output larger-sized feature maps. Subsequently, these feature

maps are passed through a Global Average Pooling layer, which serves

the purpose of further downsizing these large feature maps. After

traversing multiple pooling layers, these feature maps are then used as

inputs for the fully connected layer. The role of the fully connected

layer is to connect each node to all nodes in the previous layer and

ultimately output a one-dimensional vector. The classification result is

obtained by applying the softmax classification function.

Based on our prior description of global pooling and fully

connected layers, we can simplify the process when an input

feature map F ∈ Rh×w×c passes through the global pooling layer

as follows:

Firstly, we can streamline this step by employing Fc convolution

kernels, each with dimensions Fh ×Fw ×1. This implies that Fh and

Fw remain consistent with Kh and Kw, respectively, while

maintaining uniform weights set at 1/Fh ×Fw.

Secondly, to facilitate the seamless connection between the

output of the pooling layer and the input of the fully-connected

layer, we approximate the fully-connected layer by substituting it

with a convolutional layer. The size of the convolutional kernel in

this context becomes 1×1×Kc.

Subsequently, we amalgamate these two convolutional

operations, yielding a 3-D convolution operation with a

convolutional kernel size of Fh × Fw × Kc. This 3-D convolution

layer is predominantly utilized in constructing the entire
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classification layer. This approach simplifies both the pooling

layer and the fully connected layer into a single 3-D

convolutional layer, as eloquently depicted in Figure 4.

When this integrated layer performs the classification task,

assuming the number of categories to be classified is denoted as i,

we adjust Kc to be Fc − i +1. In other words, the prediction for each

category necessitates only Fc − i +1 input feature maps. This

disambiguation strategy optimally conserves computational

resources within the CHANNEL dimension, thereby reducing

parameters and computational complexity while preserving the

essential category connections for accurate prediction and

ensuring efficient categorization output.

Our proposed method combines global pooling and fully

connected layers into a unified 3-D convolutional layer, resulting

in significant computational efficiency gains without compromising

classification accuracy. By implementing this approach, we

significantly reduce computational resources in the CHANNEL

dimension. This reduction aids in lowering the number of

parameters and computations while preserving the connectivity

necessary for category prediction and maintaining efficient

categorization output.
4 Experimental results and analysis

In this chapter, we begin by introducing the wheat grains

dataset that we have utilized, as well as detailing the

preprocessing procedures it underwent. Subsequently, we delve

into an exploration of the impact of specific parameter settings on

the classification capabilities of SCGNet. Following that, we conduct

a comprehensive comparison with a series of CNNs commonly

employed for image classification. Our objective is to evaluate and

highlight the advantages of our proposed SCGNet, with a focus on

key metrics such as accuracy, parameters, FLOPs, and other

relevant factors.
FIGURE 4

3-D convolutional classification layer.
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4.1 Dataset description

The dataset samples we utilized were sourced from the

experimental field of the School of Life Science and Technology

at Henan Institute of Science and Technology. These samples were

generously provided by our colleagues at the School of Life Science

and Technology. Following a careful evaluation, we specifically

selected the following wheat varieties for inclusion in our dataset:

“Bainong 419,” “Bainong 207,” “Bainong 307,” “Luomai 28,”

“Xinmai 26,” “Hengshui 6632,” “Nongda 3416-18,” and “Neile

288.” These varieties represent commonly cultivated wheat types

in China and serve as a comprehensive representation of

wheat diversity.

To capture high-quality images of these wheat samples, we

employed a stereo microscope, as depicted in Figure 5.

To minimize any potential external environmental interference,

we utilized black light-absorbing flannel as the background for

capturing wheat grains images. The image collection process was

conducted under natural indoor lighting conditions. For each wheat

grain, we captured three images from different angles. It’s important

to note that when assembling the dataset, wheat grains from the

same variety but with varying angles were categorized together.
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To ensure the quality and consistency of our dataset, a meticulous

data collection process was employed. Initially, all wheat grains were

subjected to a drying procedure in a well-ventilated indoor

environment. Subsequently, a total of 8,000 seeds, with 1,000 grains

selected from each wheat variety, were carefully handpicked. We chose

three specific shooting angles for image capture: Ventral groove

downward, Ventral groove toward the front, and Ventral groove

upward. These images were saved in PNG format with a pixel

resolution of 2688×1520. This comprehensive approach to data

collection ensured the richness and completeness of our dataset,

contributing to the robustness of our study. Consequently, we

amassed a total of 24,000 images. The correspondence between each

wheat variety and its corresponding number is detailed in Table 4.

4.2 Data pre-processing

After the initial dataset collection, we diligently undertook a

comprehensive dataset preprocessing pipeline. Our approach

encompassed several crucial steps which are briefly described

below (Zhuang et al., 2022).

Background Removal: In Figure 6, noticeable artifacts such as

small white dots and lines were discernible in the original images.
FIGURE 5

Image acquisition device: stereo microscope.
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These imperfections arose from the inherent characteristics of the

stereo microscope, capturing minute particles like lint and dust

during the imaging process. To mitigate the influence of these

extraneous elements on the subject matter, we employed

sophisticated keying algorithms known as Background Matting

and Background Matting V2 (Sengupta et al., 2020; Lin et al.,

2021) to effectuate background removal across our dataset. The

image with the background removed is shown in Figure 7.

Image Resizing: The original images, as captured by the stereo

microscope, featured dimensions of 2688×1520 pixels. Following

the background removal in the previous step, we uniformly resized

the images to 800×800 pixels, specifically focusing on isolating

wheat seed grains. Subsequently, we further scaled down the image

dimensions to 224×224 pixels, maintaining proportional scaling.

Standardization: To ensure consistency and facilitate

convergence during training, we are based on experience

standardized each image by setting the mean and standard

deviation to (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225),

respectively. This standardization process was pivotal in

optimizing the numerical properties of the images.

Dataset Split: For proper model evaluation, we randomly

partitioned the dataset into the training set, validation set, and

testing set with 7:1:2 ratio. This division allowed us to validate the

model’s performance on unseen data, adhering to best practices in

experimental design.

Transfer Learning: During the training phase, we employed

transfer learning techniques by loading weight files pre-trained on

the ImageNet dataset into our training model and the comparative
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models used in our experiments. This practice leveraged knowledge

acquired from a large-scale dataset to enhance the performance of

our models on the specific task at hand.
4.3 Evaluation criteria

In our evaluation of the network models, we employ several key

metrics, including accuracy, precision, recall, and the F1-score, to

assess the recognition performance of each model. The

mathematical expressions for these metrics are provided in

Equations 8–11.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TN

FP + TN
(9)

Recall =
TP

TP + FN
(10)

F1 =
2PR
P + R

=
2TP

2TP + FP + FN
(11)

Here, let’s clarify the definitions of the variables used in these

equations. True Positive (TP) represents the instances that truly

belong to a category and are correctly recognized by the classifier,

while False Negative (FN) represents instances that belong to a

category but are incorrectly categorized. On the other hand, False

Positive (FP) signifies instances that do not belong to a category but

are incorrectly recognized as belonging to that category, and True

Negative (TN) corresponds to instances that do not belong to a

category in reality and are correctly recognized as such. In addition,

we show the confusion matrix (Srinivasu et al., 2022)of the

experimental results in Figure 8.
4.4 Comparison experiment

Throughout our experiments, when assessing the performance

of different networks, we consider not only recognition accuracy but

also other critical metrics, such as the number of parameters,

average recognition time, and FLOPs. These metrics hold

particular importance in our work, as our primary focus is on
B CA

FIGURE 6

The presentation of the same sample in the dataset with different shooting angles, the image has high clarity and the interference of the background
on the subject content is obvious. (A) Ventral groove upward, (B) Ventral groove toward the front, (C) Ventral groove downward.
TABLE 4 Correspondence between number, quantities and species
name of wheat grains of different varieties in the dataset.

Number Species name Quantities

1 Bainong-207 3000

2 Bainong-419 3000

3 Hengshui-6632 3000

4 Luomai-28 3000

5 Neile-288 3000

6 Nongda-3416-18 3000

7 Xinmai-26 3000

8 Xunong-14084 3000
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reducing these values to enhance the feasibility of deploying these

models on mobile devices, thus improving their speed and efficiency

in mobile applications. To quantify these metrics, we utilized the

open-source project torchstat, which allowed us to calculate

parameters, FLOPs, and other relevant statistics for each network.

To assess the efficacy of our proposed SCGNet, we present a

comprehensive analysis of nine deep learning models for image

classification to assess their effectiveness and suitability for various

practical applications. We employ a consistent training, validation

and testing dataset to ensure a fair and robust comparison, focusing

on evaluating key performance metrics such as accuracy, precision,

recall, F1-score, FLOPs, the number of parameters, and average

recognition speed.

Our analysis covers a spectrum of network architectures,

including traditional models with classical design principles

models such as ResNet50, EfficientNet and RegNetX, lightweight

models optimized for resource-constrained environments such as

MobileNetV3, and ShuffleNetV2, network models with a

transformer structure such as Vision Transformer and Swin

Transformer, as well as deep models aimed at achieving SOTA

accuracy such as RepLKNet and MAGE.
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Figure 9 visually presents the accuracy results obtained during

training for each of these network models, providing an intuitive

overview of their performance. Additionally, Figure 10 reports the

training loss, validation loss, training accuracy, and validation

accuracy for SCGNet. Tables 5, 6 present a comprehensive

summary of the results from the comparative experiments in the

testset, encompassing various evaluation metrics.

For comprehensive reference, we have meticulously documented

all parameter settings utilized in the training of SCGNet. We use the

validation set to evaluate the performance of the model with different

parameter settings and finalize all the hyperparameters. These settings

are presented in Table 7, allowing for a clear understanding of the

experimental setup and facilitating reproducibility. In the comparative

experiments involving different networks, since there are different

versions of baseline and various improvements, we adhered to

officially recommended parameter settings for these models to ensure

consistency and fairness in our evaluations.

For Traditional Network Models, while foundational in the

field, displayed suboptimal performance compared to more recent

innovations. ResNet50, with its increased depth and residual

connections, improves recognition accuracy but still falls short

due to its relatively shallow architecture. If the depth of the

network is increased without restriction, although the model is

able to achieve better performance, the number of parameters of the

model will also increase dramatically. EfficientNet-B0 incorporated

Neural Architecture Search (NAS) principles to amalgamate depth,

width, and channel scaling, achieving formidable recognition

capabilities but at the expense of increased parameter complexity.

RegNetX-200MF refined the NAS approach, achieving substantial

parameter reduction while maintaining accuracy, albeit with a slight

deficit compared to SCGNet.

For Lightweight Network Models, including MobileNetV3, and

ShuffleNetV2, demonstrated a harmonious balance between

accuracy and computational efficiency. MobileNetV3, building

upon its predecessor, introduced NetAdapt and various

NetPruningVersions (NPVs) alongside an algorithm to optimize

convolutional kernels and channels, further enhancing its

performance. ShuffleNetV2 adopts a split-and-concatenate

strategy to reduce overall computational demands.

For the Transfomer Network Models, namely Vision

Transformer and Swin Transformer, their performance is already

very close to that of SCGNet, and, Swin Transformer is capable of

suboptimal performance in the precision rate metric. However, it

should not be overlooked that they possess a huge number

of parameters.
FIGURE 8

Confusion matrix of SCGNet for eight wheat grains classification
results, Among them, the correspondence between number and
type is detailed in Table 4.
B CA

FIGURE 7

Using the advanced keying algorithm (Sengupta et al., 2020) (Lin et al., 2021) results. (A–C) correspond to (A–C) in Figure 6, respectively.
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FIGURE 10

The SCGNet training loss (A), training accuracy (B), validation loss (C), and validation accuracy (D).
FIGURE 9

Histograms of different methods in the same data set during training.
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For the SOTA Network Models, include RepLKNet and MAGE.

MAGE exhibits the highest accuracy, recall and F1-Socre, while

RepLKNet displays the highest recall. They both exhibit exceptional

precision performance. However, they place excessive emphasis on

metrics such as accuracy, neglecting the balance between speed and

precision, average recognition speed is relatively slow. Moreover,

they have a large number of parameters, FLOPs, with RepLKNet
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and MAGE’s FLOPs being 384 and 614 times higher than that of

SCGNet, respectively.

For SCGNet, the proposed SCGNet exhibits commendable

performance in resource utilization metrics such as FLOPs,

average recognition speed and the number of parameters,

surpassing alternative models in these aspects. Despite its

sub-optimal performance in accuracy and F1-Socre compared

to the MAGE model, the marginal 0.02% difference in

accuracy is deemed negligible. We maintain that sacrificing

such a small improvement in accuracy for the reduction in

FLOPs, average recognition speed and parameter count makes

SCGNet highly cost-effective. This is especially favorable for

t h e mod e l ’ s d e p l o ymen t on mob i l e d e v i c e s w i t h

limited resources.

This strategic trade-off in favor of resource efficiency positions

SCGNet as a compelling candidate for deployment in practical

scenarios, where considerations of computational cost are pivotal.

Such efficiency gains can contribute significantly to the feasibility

and scalability of deploying deep learning models in resource-

constrained environments.
4.5 Ablation study

To ascertain the individual contributions of each module within

the SCGNet model to its overall performance, we conducted a series

of ablation studies. These studies encompass the following

scenarios: (1) SCG block without the GM module (-w/o GM), (2)

SCG block without the SC module (-w/o SC), (3) Instead of

applying a 3-D convolutional classification layer, a traditional

classification layer is used instead, and (4) Replacing the Swish

activation function with the traditional ReLU activation function

(-w/o Swish).

The impact of each ablation study on the model’s performance

is summarized in Table 8.
TABLE 6 Differences between SCGNet and other comparison methods
in terms of FLOPs, Parameters and Average recognition speed.

Methods FLOPs↓ Parameters↓ Recognition
speed↓

ResNet50 (He
et al., 2015)

4 12 G 24.37 M 113 ms

ShuffleNetV2 (Ma
et al., 2018)

43.65 M 1.30 M 63 ms

MobileNetV3
(Howard et al., 2019)

59.81 M 2.43 M 70 ms

EfficientNet-B0 (Tan
and Le, 2020)

399.3 M 5.04 M 97 ms

RegNetX-200MF
(Radosavovic
et al., 2020)

203.75 M 2.56 M 89 ms

ViT-B/16
(Dosovitskiy
et al., 2020)

6.15 G 38.62 M 127 ms

Swin Transformer-T
(Liu et al., 2021)

8.33 G 49.42 M 159 ms

RepLKNet-3/7 (Ding
et al., 2022)

12.9 G 76.57 M 213 ms

MAGE (Li
et al., 2023)

20.66 G 179.24 M 164 ms

SCGNet 34.43 M 1.03 M 59 ms
(Optimal: red Suboptimal: blue).
↓ indicates that the smaller the value of the item, the better.
TABLE 5 Differences between SCGNet and other comparison methods in terms of Accuracy, Precision, Recall and F1-Socre under the same testset.

Methods Accuracy ↑ Precision ↑ Recall ↑ F1-Socre ↑

ResNet50 (He et al., 2015) 92.38% 92.58% 92.12% 92.35%

ShuffleNetV2 (Ma et al., 2018) 96.40% 96.21% 96.41% 96.31%

MobileNetV3 (Howard et al., 2019) 95.63% 95.31% 95.79% 95.55%

EfficientNet-B0 (Tan and Le, 2020) 97.77% 97.58% 98.02% 97.80%

RegNetX-200MF (Radosavovic et al., 2020) 97.71% 98.13% 97.51% 97.82%

ViT-B/16 (Dosovitskiy et al, 2020) 99.48% 99.45% 99.57% 99.51%

Swin Transformer-T (Liu et al., 2021) 99.50% 99.48% 99.56% 99.52%

RepLKNet-3/7 (Ding et al., 2022) 99.54% 99.43% 99.67% 99.55%

MAGE (Li et al., 2023) 99.58% 99.50% 99.67% 99.58%

SCGNet 99.56% 99.59% 99.55% 99.57%
(Optimal: red Suboptimal: blue).
↑ means that the larger the value of the item, the better.
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Specifically, (1) -w/o GM exhibits a pronounced effect on

recognition performance. This is attributed to the GM module’s

role in facilitating the exchange of feature information among group

convolutions. The absence of the GM module impedes individual

group convolutions from effectively learning additional features

from one another.

Contrastingly, (2) -w/o SC demonstrates minimal impact on

recognition performance. However, it results in an increase in the

number of parameters, along with metrics such as FLOPs, due to the

use of fully connected.

Moreover, (3) -w/o 3-D Conv yields a tiny effect on recognition

performance. However, the number of parameters and FLOPs are

dramatically increased due to the large number of fully connected

computations involved in the traditional classification layer.

Finally, (4)-w/o Swish, the Swish activation function has a

smoothness that enhances the forward propagation optimization,

and replacing ReLU with Swish brings about a lesser drop in FLOPs

without any loss of accuracy. In addition, our investigation delves

into the impact of varying strides on the model’s performance

within the sparsely connected methodology. We systematically

evaluate the effects of strides set at 2, 3, 5, 7, and 9, employing

three key metrics: accuracy, FLOPs, and the number of parameters.

The results, summarized in Table 3, elucidate the influence of each

stride value on model performance.

Remarkably, when the stride is set to 3, the model demonstrates

optimal recognition performance. As the stride increases, the

computational load of the model diminishes. Simultaneously,

however, there is a discernible and precipitous decline in the

recognition accuracy of the model. This decline is particularly
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pronounced when the stride is set to 9, resulting in a precipitous

drop akin to a cliff.
5 Conclusion

In this research, we introduce a specialized CNN for precise

wheat grain classification. We propose “Group Mixing” to address

information flow issues in group convolution, and “Sparsely

Connected” methodology to reduce parameter redundancy,

minimizing FLOPs and parameters. In addition, we have

innovatively devised a new classification output layer predicated

on 3-D convolution, supplanting the conventional maximum

pooling layer and fully connected layer, replacing traditional

classification layers without sacrificing accuracy. Drawing from

the foregoing advancements, we have conceived an efficient

Sparsely Connected Group Convolution Network, custom-tailored

for the high-resolution classification of wheat grains.

Numerous rigorous experimental evaluations substantiate the

prowess of our proposed SCGNet, which attains an impressive

accuracy rate of 99.56%. Moreover, our approach is notably

characterized by a parsimonious parameter count and reduced

FLOPs, rendering it exceptionally suitable for deployment on

mobile devices.

However, we acknowledge limitations in our dataset and

SCGNet architecture. The dataset lacks diversity in wheat

varieties, necessitating the acquisition of more varied datasets.

SCGNet, tested in controlled high-resolution conditions, needs

validation for low-resolution images from mobile devices.

The amalgamation of computer vision techniques with the

automated non-destructive classification of individual wheat grains

portends significant potential across diverse applications. In

forthcoming endeavors, our research trajectory will encompass the

collection of images representing a broader spectrum of wheat varieties

and possibly other crop seeds. Building upon these comprehensive

datasets, we endeavor to enhance the efficacy of the SCGNet

architecture, with a particular focus on bolstering its robustness,

reducing its parameter count and FLOPs, and venturing into

deployment on mobile terminals. The latter imposes stringent

constraints on model size, an exigent challenge we are poised to tackle.
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TABLE 8 Discriminatory results of different modules for the
implementation of ablation studies on test samples.

Methods Accuracy FLOPs Parameters

-w/o GM 97.43% 34.43 M 1.03 M

-w/o SC 99.47% 61.98 M 1.85 M

-w/o 3-D Conv 99.52% 82.36 M 2.46 M

-w/o Swish 99.56% 35.57 M 1.14 M
TABLE 7 SCGNet hyperparameter settings.

hyperparameter Value

Optimizer AdamW

Initial learning rate 4e-3

Weight decay 0.005

Optimizer decay b1 = 0.9, b1 = 0.999

Batch size 64

Training epochs 50

Learning rate schedule Cosine decay

Label smooth 0.1
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