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Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family

Orchidaceae, is a traditional Chinese herb with medicinal and edible value.

Interestingly, G. elata requires symbiotic relationships with Mycena and

Armillaria strains for seed germination and plant growth, respectively. However,

there is no comprehensive summary of the symbiotic mechanism between fungi

and G. elata. Here, the colonization and digestion of hyphae, the bidirectional

exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the

role of microorganisms and secondary metabolites in the symbiotic relationship

between fungi and G. elata are summarized. We comprehensively and deeply

analyzed the mechanism of symbiosis between G. elata and fungi from three

perspectives: morphology, nutrition, and molecules. The aim of this review was

to enrich the understanding of the mutualistic symbiosis mechanisms between

plants and fungi and lay a theoretical foundation for the ecological cultivation of

G. elata.
KEYWORDS
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1 Introduction

Orchidaceae is one of the largest plant families, comprising 750 genera and

approximately 27 000 species (Dressler, 1981; Dressler, 1993; Chase et al., 2015).

Orchids can be divided into three categories according to their different physiological

characteristics. Fully photoautotrophic orchids obtain all necessary carbon from

photosynthesis (Cameron et al., 2006). Partially mycoheterotrophic orchids require

mycorrhizal fungi to stimulate seed germination and seedling growth and then develop
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green leaves and photosynthesize (Arditti, 1967). They obtain

carbon from both fungi and photosynthesis (Rasmussen and

Rasmussen, 2009). Fully mycoheterotrophic orchids are

achlorophyllous and obtain their entire carbon supply from their

associated mycorrhizal fungi (Leake, 1994). Over 99% of orchids

live in nature as mycoheterotrophs (Merckx, 2013), of which more

than 200 achlorophyllous orchid species from at least 25 lineages

are full mycoheterotrophs (Leake, 1994; Merckx, 2013), including

Gastrodia elata Blume. G. elata, known as “Tianma” in China, is a

precious herbal medicine with high medicinal and nutritional value

(Zheng et al., 2022) and is regarded as one of the most important

medicinal herbs in Oriental countries (Sun et al., 2023).

G. elata, as a rootless, leafless, achlorophyllous, and fully

mycoheterotrophic orchid, cannot produce nutrients by

photosynthesis and can only survive symbiotically with fungi (Ho

et al., 2021; Shan et al., 2021). It requires symbiotic interactions with

Mycena and Armillaria strains to obtain nutrients for its complex

life cycle. The seeds of G. elata are dust-like and lack nutritional

reserves, which makes seed germination under natural conditions

entirely dependent on Mycena (Park and Lee, 2013a). Mycena

strains are responsible for the nutrient supply during seed

germination, protocorm growth, and differentiation in the early

stages of G. elata growth (Xu and Guo, 1989; Kim et al., 2006).

Armillaria strains eventually replace Mycena strains as new

symbionts of G. elata for tuber expansion, flowering, and fruit

setting (Zhang and Li, 1980; Xu and Guo, 1989; Guo and Wang,

2001; Sekizaki et al., 2008; Park and Lee, 2013a). Different strains, as

well as the growth rate and hyphal activity of symbiotic fungi,

directly influence the quality and yield of G. elata (Guo and Wang,

2001; Wang et al., 2001a; Sun and Chen, 2003).

The coevolution of plants and fungi has been ongoing for over

400 million years, resulting in four main mycorrhizal types:

ectomycorrhizas, arbuscular mycorrhizas, orchid mycorrhizas and

ericoid mycorrhizas (Shi et al., 2023). The symbiosis between G.

elata and fungi is one of the most unique mycorrhizas in orchids.

Substantial knowledge on the interaction between G. elata and

fungi, including structural and ultrastructural changes, nutrient

transport, signal exchange, and genetic differences, has been

gained through previous studies (Liu, 1981; Xu and Guo, 1991;

Wang et al., 1997; Xu et al., 2001; Yuan et al., 2018; Cai et al., 2023).

Different fungal strains affect the growth and quality of G. elata

(Cha and Igarashi, 1995; Guo and Wang, 2001; Sekizaki et al., 2008;

Guo et al., 2016), and fungal hyphae colonize G. elata by forming

densely coiled structures called pelotons (Wang et al., 1997). The

hyphae are digested to provide nutrients for G. elata and obtain

nutrients from G. elata cells (Lan et al., 1994; Genre et al., 2020).

Strigolactone was discovered to be an important signal that

promotes the symbiotic relationship between G. elata and

Armillaria (Yuan et al., 2018). The genomes of G. elata and

Armillaria have recently been successively released, providing

molecular evidence for their symbiosis (Xu et al., 2021; Cai

et al., 2023).

In this review, we focus on the roles of Mycena and Armillaria

in the life cycle of G. elata from the cellular scale to the ecosystem

scale. Finally, the current understanding of the morphological,

nutrient exchange, and molecular mechanisms underlying these
Frontiers in Plant Science 02
symbiotic relationships is presented. This serves as both a

theoretical guide for the planting and production of G. elata and

a reference for the study of the symbiotic relationship between

orchid mycorrhizae.
2 Overview of G. elata and
its applications

2.1 Classification of G. elata

There are over 100 species in the genus Gastrodia

(Orchidaceae), distributed in East Asia, Southeast Asia, and

Oceania, with 36 species in China (Zhou et al., 2021b; Plant Plus

of China, 2023; Plants of the World Online, 2023) (Table 1). Among

them, G. elata is the most widely cultivated in China. There are six

forms of G. elata: G. elata Bl. f. glauca, G. elata Bl. f. viridis, G. elata

Bl. f. flavida, G. elata Bl. f. elata, G. elata Bl. f. pilifera, and G. elata

Bl. f. alba (Zhou and Chen, 1983). Among them, G. elata Bl. f.

glauca, G. elata Bl. f. viridis, G. elata Bl. f. flavida, G. elata Bl. f. elata

are the four major forms that have been domesticated and

cultivated. They have different inflorescence colors and tuber

shapes. For example, the inflorescence colors of G. elata Bl. f.

glauca, G. elata Bl. f. viridis, G. elata Bl. f. flavida, and G. elata Bl. f.

elata are dark, green, yellow, and red, respectively. In these

subspecies, the mature tubers of G. elata Bl. f. glauca are the

largest and have the highest contents of gastrodin (Wang

et al., 2019).

However, wild G. elata is considered to possess higher

medicinal value and is more popular and expensive than

cultivated G. elata . As a result, wild G. elata is being

overexploited and has been listed as a vulnerable species by the

International Union for Conservation of Nature (IUCN) (Tsai et al.,

2014; IUCN Red List, 2023). In China, G. elata has also been

included in the second-grade protected plants according to the “List

of National Key Protected Wild Plants (the second batch)” (List of

National Key Protected Wild Plants, 2023).
2.2 The application value of G. elata

G. elata has many pharmacological effects (Wang et al., 2021b;

Zhou et al., 2021a) and contains over 200 bioactive components

and plant secondary metabolites, such as gastrodin (4-hydroxy

methyl phenyl-b-D-glucopyranoside), gastrodigenin (p-

hydroxybenzyl alcohol), p-hydroxybenzaldehyde, vanillin (4-

hydroxy-3-methoxybenzaldehyde) , par ishin , G. e lata

polysaccharides, amino acids, and other compounds, which have

been demonstrated to be the main components associated with the

pharmacological activity of G. elata (Yu et al., 2005; Kim et al.,

2007; Chen et al., 2011b). Among these, gastrodin and

gastrodigenin are regarded as phytochemical indicators of G.

elata in the Chinese pharmacopeia and are used in G. elata

quality control (Sun et al., 2023).

G. elata has historically been used to treat headaches, vertigo,

epilepsy, dizziness, paralysis, rheumatism, etc. (Kim et al., 2007).
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TABLE 1 36 Species of Gastrodia in China.

Serial
Number

Chinese name Latin Name
Time of

first published
Protective grade

1 Tianma Gastrodia elata Bl. 1856 Second-grade, VU

2 Wuhui tianma (Bai Tianma) Gastrodia albida T. C. Hsu & C. M. Kuo 2011 CR, CITES Appendix II

3
Changguogeng Tianma

(Mengla Tianma)
Gastrodia albidoides Y. H. Tan & T. C. Hsu 2012

4 Yuan Tianma Gastrodia angusta S. Chow & S. C. Chen 1983
Second-grade, EN, CITES

Appendix II

5
Taiwan Tianma

(Wuruihui Tianma)
Gastrodia appendiculata C.S.Leou & N.J.Chung 1991 CITES Appendix II

6 Bihua Tianma Gastrodia clausa T. C. Hsu, S. W. Chung 2012

7 Badai Tianma Gastrodia confusa Honda & Tuyama 1939 VU, CITES Appendix II

8 Nibadai Tianma
Gastrodia confusioides T. C. Hsu, S. W. Chung &

C. M. Kuo
2012

9 Damingshan Tianma
Gastrodia damingshanensis A. Q. Hu & T.

C. Hsu
2014

10 Gaoshan Tianma Gastrodia dyeriana King & Pantl. 1896

11 Xia Tianma Gastrodia flavilabella S. S. Ying 1984 CITES Appendix II

12 Zhezhu Tianma Gastrodia flexistyla T. C. Hsu & C. M. Kuo 2010

13 Chun Tianma Gastrodia fontinalis T. P. Lin 1987 CITES Appendix II

14 Fujian Tianma
Gastrodia fujianensis Liang Ma, Xin Y. Chen &

S. P. Chen
2019

15 Xi Tianma Gastrodia gracilis Blume 1856 CITES Appendix II

16 Nan Tianma Gastrodia javanica (Blume) Lindl. 1840 CITES Appendix II

17 Gaoxiong Tianma Gastrodia kaoshiungensis T. P. Lin 2018

18 Hainan Tianma
Gastrodia longitubularis Q. W. Meng, X. Q. Song

& Y. B. Luo
2008

19 Menghai Tianma Gastrodia menghaiensis Z. H. Tsi & S. C. Chen 1994 CITES Appendix II

20 Nantou Tianma
Gastrodia nantoensis T. C. Hsu & C. M. Kuo ex

T. P. Lin
2016

21 Beichatian Tianma Gastrodia peichatieniana S.S.Ying 1987 CITES Appendix II

22 Dong Tianma Gastrodia pubilabiata Sawa 1980 CITES Appendix II

23 Baidian Tianma Gastrodia punctata Aver. 2006

24 Qingyunshan Tianma
Gastrodia qingyunshanensis Jiu X. Huang, H. Xu

& H. J. Yang
2021 VU

25 Hongbaoshi Tianma Gastrodia rubinea T. P. Lin 2019

26 Chaji Tianma Gastrodia shimizuana Tuyama 1982

27
Pingdong Tianma
(Sushi Tianma)

Gastrodia sui C. S. Leou, T. C. Hsu & C. L. Yeh 2011

28 Duanzhu Tianma Gastrodia theana Aver. 2005

29 You Tianma Gastrodia tuberculata F. Y. Liu & S. C. Chen 1983 CITES Appendix II

30 Wulai Tianma Gastrodia uraiensis T. C. Hsu & C. M. Kuo 2010

31 Wuyishan Tianma Gastrodia wuyishanensis D. M. Li & C. D. Liu 2007 CITES Appendix II

32 Huaping Tianma
Gastrodia huapingensis X.Y.Huang, A.Q.Hu &

Yan Liu
2015

(Continued)
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These effects were documented in Shennong’s Classic of Materia

Medica (Shennong Bencaojing), which dates back to approximately

2000 years ago. Modern pharmacology research has shown that the

tuber of G. elata has neuroprotective (Lu et al., 2022), anti-

inflammatory, antidiabetic (Yang et al., 2018), antioxidative,

antiepileptic, anticonvulsive, antipsychotic, anxiolytic,

antidepressant (Gao et al., 2023; Huang et al., 2023), circulatory

system modulating, memory-enhancing (Chen et al., 2011a; Chen

et al., 2011c), cardiovascular disease ameliorating (Chen and Sheen,

2011), and other effects. Liu et al. (2018) summarized the

mechanism by which G. elata acts on neurological diseases and

psychiatric disorders, including modulating neurotransmitters,

antioxidation, anti-inflammation, anti-apoptosis, suppressing

microglial activation, regulating mitochondrial cascades, and

upregulating neurotrophins. The efficacy of G. elata in treating

cardiovascular diseases is mediated by its multitarget

pharmacological properties, including reducing inflammation,

inhibiting apoptosis, regulating autophagy, improving

metabolism, inhibiting oxidative stress, and modulating the gut

microbiota (Sun et al., 2023).
2.3 The life cycle of G. elata

Because of the complexity of the G. elata life cycle, vegetative

growth and reproduction have long been a subject of biological

speculation. Scientists did not know how vital symbiotic fungi were

for G. elata growth until they fully comprehended the entire

embryonic cycle (Zhou, 1981). The whole life cycle of G. elata,

from seed germination to flowering plants, can take nearly three

years and includes five stages: seed germination, protocorm growth

and development, the first asexual reproduction to the formation of

an immature tuber, the second asexual reproduction to the

formation of a mature tuber, and the bolting, flowering and seed

setting of the mature tuber (Figure 1). Among them, the first four

stages are called the nutritional growth period of G. elata, and the

last stage is the reproductive growth period. Generally, G. elata

seeds are mixed with the Mycena strain and sown from June to

August of the first year (Zhou, 1981; Xu et al., 1989). The seed coat

ruptures as the embryo continues to grow during germination,

releasing an oval-shaped tissue known as the protocorm.

Protocorms progressively begin to form after approximately 20

days (Xu et al., 1989). The protocorm goes through cell division and
Frontiers in Plant Science 04
tissue development, and at the top, a slender bud (some also

produce branches) emerges. The meristem at the apex of the

slender buds and branches continually expands, forming many

bulbs with a diameter of approximately 2 mm. This form of G. elata

is called the vegetative propagation corm (Zhou, 1981). The first

asexual reproduction of vegetative propagation corms is initiated by

exploiting Armillaria. When the bulb becomes a long strip with a

diameter greater than 1 cm, it is considered an immature tuber.

Immature tubers are tiny tubers of G. elata that cannot grow scapes

and can be used for asexual reproduction (Xu et al., 1989);

furthermore, G. elata spends the winter of that year as immature

tubers. In the spring of the next year (approximately April), the

immature tuber ends its dormancy for the second asexual

reproduction. At this point, the immature tuber is similar to a

mother tuber, developing a new tuber at its front end, which will

form a mature tuber in autumn (Figure 2B). Immature tubers are

sacrificed because their nutrients are exhausted by mature tubers.

The flesh of mature tubers is thick and spherical, with an 8-20 cm

body length. Notably, a protocorm can form multiple immature

tubers, while an immature tuber can only produce one mature

tuber. In the spring of the third year, the mature tubers end

dormancy. Ultimately, a scape emerges from the mature tuber,

and in summer, a flower develops from the scape to produce seeds.

The nutrients for reproductive growth come entirely from mature

tubers. The stored nutrients complete the whole process from

bolting to seed maturation (Hsieh et al., 2022). More than 80% of

the whole life cycle of G. elata is spent underground as a tuber

(Yuan et al., 2018). Only the scape is exposed above the ground, and

sunlight helps bees to carry out pollination (Sugiura, 2017). This is

why wild G. elata is hard to find.

Currently, successful artificial cultivation and industrialization

of G. elata can be achieved, primarily by mimicking wild cultivation

beneath the forest floor. This lays the industrial foundation for the

application of traditional Chinese medicine. However, there are

many uncertain factors in the long life cycle, such as climate and

wild animals, which increase the difficulty of cultivating G. elata.

Recently, some scientists have tried to make the process less time-

consuming by a tissue culture approach (Hsieh et al., 2022). During

the life cycle, G. elata should be dormant for at least one winter;

otherwise, the size and yield of the mature tubers will decrease.

However, the mechanism is still unknown. We may be able to

reduce the planting time of G. elata in the future by shortening its

dormancy time.
TABLE 1 Continued

Serial
Number

Chinese name Latin Name
Time of

first published
Protective grade

33 Bawangling Tianma
Gastrodia bawanglingensis Z.H.Chen, Z.Y.Zhang

& X.Q.Song
2023

34 Changzhu Tianma Gastrodia longistyla Q. Liu, J.D. Ya & X.H. Jin 2021

35 Riben Tianma Gastrodia nipponica (Honda) Tuyama 1939

36 Fei Tianma Gastrodia callosa J.J. Sm. 1931
Second-grade, the second-grade protected plants according to the “List of National Key Protected Wild Plants (the second batch)”. CITES Appendix II, Appendix II of the Convention on
International Trade in Endangered Species of Wild Fauna and Flora. VU, Vulnerable; EN, Endangered; CR, Critically Endangered (in the International Union for Conservation of Naturean
Natural Resource).
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3 Classification and function of
symbiotic fungi

3.1 Mycena

It is estimated that a single plant of G. elata produces more than 2

million seeds; naturally, the seed germination rate is extremely low, and

the yield is unstable (Zhou et al., 2005; Hsieh et al., 2022) because the
Frontiers in Plant Science 05
seeds of G. elata are minute, with most containing an undifferentiated

embryo that lacks a well-defined endosperm (Xu et al., 1990). Because

of the lack of nutritional reserves, seed germination in nature entirely

depends on Mycena strains, which provide nutrients needed for seed

germination and protocorm development (Arditti, 1967; Xu et al.,

1990; Xu and Guo, 1991; Kim et al., 2006; Dearnaley, 2007). Therefore,

these fungi that can promote the germination of G. elata seeds are also

known as germinating fungi.
A B

FIGURE 2

Symbiotic fungi act as a bridge to connect the nutrient exchange between leaf/wood and G. elata. (A), Mycena. (B), Armillaria.
FIGURE 1

The life cycle of Gastrodia elata. Mycena is essential for the stage denoted by the red arrowhead, Armillaria is necessary for the stage depicted by
the green shear head, and no fungi are required for the stage indicated by the blue shear head.
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Germinating fungi of the genus Mycena belong to the family

Mycenaceae of Basidiomycota and feed on dead trees and fallen

leaves (Li et al., 2021). Xu et al. (1980) successfully discovered the

sexual reproduction process of G. elata using the leaf fungal bed

method, proving that under natural conditions, the sexual

reproduction stage of G. elata can only germinate when

nourished by germinating fungi. In 1989, protocorms were

collected, and conventional tissue separation and monomer

separation methods were used to isolate 12 strains that can

effectively promote the germination of G. elata seeds (Xu and

Guo, 1989). They also successfully induced growth of the fruiting

body of the germinating fungus and identified it as Mycena

osmundicola by morphological and microscopic observation and

enzyme ester isozyme analysis. To study the existence of

germinating fungi in the distribution areas of wild G. elata, (Xu

et al., 2001) collected deciduous humus soil from the original site

to sow G. elata seeds and isolated 11 strains from germinated

protocorms. After mixing and sowing G. elata seeds, they obtained

three fungi that had a promoting effect on germination. To study

the diversity of fungal strains for seed germination of G. elata,

scientists isolated 132 strains from the roots of 45 orchid plants

and found that Mycena dendrobii (Guo et al., 1999), Mycena

anoectochila (Xu et al., 2001), and Mycena orchidicola (Fan et al.,

1996) could promote seed germination of G. elata. Guo et al.

(1999) isolated M. dendrobii from wild Dendrobium densiflorum

and conducted symbiotic germination experiments with seeds of

12 orchid species, and the results showed that the fungus could

promote the growth of G. elata and D. densiflorum. From this, we

speculate that germinating fungi can not only promote the

germination of G. elata seeds but also coexist with other orchid

plants, indicating that germinating fungi have a wide range of

applications. In existing studies, most mycorrhizal Mycena were

isolated from various members of the Orchidaceae or protocorms

of G. elata. Species ofMycena with tiny basidiomata are abundant,

which complicates identification without basidiomata solely based

on the few reliable DNA sequences in GenBank (Figure 3A).

Currently, only four species (M. osmundicola, M. orchidicola, M.

dendrobii, and M. anoectochila) are known to be able to form

basidiomata in cultivation and have thus been successfully

identified (Xu and Guo, 1989; Fan et al., 1996; Guo et al., 1997;

Guo et al., 1999). Therefore, these four species have become

commonly used fungi for seed germination of G. elata in China

(Guo and Wang, 2001; Park and Lee, 2013a; Pan et al., 2015;

Kitahara et al., 2022).
3.2 Armillaria

The genus Armillaria belongs to the family Physalacriaceae of

Basidiomycota (Sipos et al., 2018). Armillaria has a strong ability

to degrade cellulose and lignin, making it the causative agent of

forest root rot (Sipos et al., 2017). However, Armillaria is essential

for the growth of G. elata. Mycorrhizal symbiosis between

Armillaria and G. elata was first described by Kusano, 1911. In

1965, Xu successfully cultivated G. elata for the first time by using

wood with Armillaria (Xu, 2013), and he summarized a set of
Frontiers in Plant Science 06
asexual propagation and cultivation techniques suitable for the

large-scale production of G. elata.

The classification and identification of Armillaria is relatively

complex. The sexual reproduction of Armillaria makes species

identification based on the morphological characteristics of fruiting

bodies reasonable. However, the macroscopic and microscopic

characteristics of fruiting bodies overlap widely among related

species (Antonıń et al., 2009; Park et al., 2018). After the discovery

of the tetrapolar heterothallic coordination mechanism of Armillaria

and the difference in colonymorphology between haploid and diploid

fungi, this method was widely used to identify fungal species.

However, single-spore (haploid) isolates must be available for

mating assays. This restricts their value in identifying samples

collected as rhizomorphs, which are frequently connected to G.

elata tubers (Guo et al., 2016). Recent years have seen a rise in the

use of molecular data, notably DNA sequence data, to identify fungal

species (Cai et al., 2011). Coetzee et al. (2000) clarified the

phylogenetic relationships among biological species of Armillaria

from China based on the sequences from tef1-alpha and IGS-1 genes

and resolved four main phylogenetic groups, namely, the “Armillaria

mellea”, “Armillaria ostoyae”, “Armillaria tabescens”, and “Armillaria

gallica” clusters. Guo et al. (2016) phylogenetically analyzed Chinese

Armillaria samples using the sequences of the internal transcribed

spacer region, translation elongation factor-1 alpha gene and beta-

tubulin gene and revealed at least 15 phylogenetic lineages of

Armillaria from China, in which 7 phylogenetic lineages of

Armillaria were used for the cultivation of G. elata. They also

found that G. elata f. glauca and G. elata f. elata form symbiotic

relationships with various phylogenetic lineages of Armillaria.

In the G. elata growth stage, Armillaria is the only nutrient source,

and the growth rate, activity, and other characteristics of the strain

directly affect the quality and yield of G. elata. Hyphae are the nutrient

organ of Armillaria. The rhizomorph is an adaptive metamorphosis of

hyphae that occurs under adverse environmental conditions or in the

later stages of growth. It mainly plays a role in transporting nutrients,

water, and oxygen while constantly proliferating, extending, and

searching for new nutritional sources (Wong et al., 2020). However,

fewArmillaria species can benefit the growth ofG. elata (Figure 3B).A.

mellea, A. gallica, Armillaria sinapina, Armillaria singula, Armillaria

nabsnona, etc., are widely used in the cultivation ofG. elata (Zhang and

Li, 1980; Xu andGuo, 1989; Guo andWang, 2001; Sekizaki et al., 2008).

Additionally, because Armillaria species degeneration occurs during

multigenerational reproduction because of the unstable compatibility

of foreign strains with G. elata in the primary production area, a focus

of study has been on isolating and identifying more and better

Armillaria strains to increase strain resources.
4 Mechanism of interaction between
symbiotic fungi and G. elata

4.1 The process of fungal colonization
and digestion

Previous studies on the symbiotic germination of G. elata seeds

and Mycena offered extensive information on the changes in
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structure and ultrastructure (Peterson and Currah, 1990; Xu, 1990;

Uetake et al., 1997; Fan, 1998; Fan et al., 1999a; Fan et al., 1999b;

Fan et al., 2002; Chen et al., 2014; Li et al., 2020b). Mycena invades

G. elata seeds, first penetrating the seed coat layer and then moving

through the suspensor remnant, stipe cell, peloton cells, and

digestive cells (Figure 4). Mature seeds of G. elata have an oval-

shaped proembryo surrounded by a thin seed coat layer (Xu and

Guo, 1989). The proembryo consists of stipe cells, proembryo cells,

and meristematic cells. A layer of suspensor remnant rich in

nutrients such as polysaccharides is attached to the periphery of

the stipe cell, resembling a gelatinous cell structure, and is a vestige

of stipe cells that degenerate during embryonic development (Xu

and Fan, 2001). Hyphae of Mycena can invade from any cell in the

seed coat, accumulate in the suspensor remnant, and then enter the

stipe cell (Fan et al., 1999b). The stipe cell is the only pathway for

hyphae to invade the proembryo (Li et al., 2020b). When hyphae
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invade the proembryo from the stipe cell, the proembryo will

differentiate into peloton cells and digestive cells. Proembryo cells

with a peloton are called peloton cells (Fan et al., 1999a), while

digestive cells are large proembryo cells that have the capacity to

break down hyphae (Fan et al., 1999a). At the initial stage when

proembryo cells are invaded by hyphae, organelles such as

mitochondria, endoplasmic reticulum and vacuoles may play a

role in the digestion of hyphae (Xu and Fan, 2001). Gradually

dominant hyphae can utilize nutrients from embryonic cells for

reproduction. The cytoplasm and organelles of the proembryo cells

will no longer exist, and the hyphae will be full of cells and form a

peloton (Xu and Fan, 2001). In the peloton cells, hyphae are

complete in structure, rich in contents, vigorous, and sometimes

vacuolated. Digestive cells are the key sites of hyphal digestion, in

which hyphae expand rapidly, integrity is destroyed, cytoplasm and

organelles are all released, and hyphae decay. After leaving the
A

B

FIGURE 3

Phylogenetic positions of Mycena and Armillaria. (A), Position of Mycena based on 28S LSU ribosomal RNA sequences. Mycena found in Gastrodia
confusa by Ogura-Tsujita et al., 2009, Gastrodia pubilabiata by Kitahara et al., 2022, and Gastrodia elata from GenBank. (B), Position of Armillaria
based on ITS sequences. The GenBank ID are shown in parentheses, and the strains used for Gastrodia are highlighted in red. The tree was
constructed using neighbor-joining with 1000 bootstrap replicates.
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peloton cells, the hyphae extend inward into larger cells, where they

no longer form hyphae and are gradually digested. Digested hyphae

reach apical meristematic cells through intercellular transmission

(Lan et al., 2002). The meristematic cells obtain nutrients and

undergo vigorous division, and the embryo expands, breaking

through the seed coat and germinating, forming protocorms. The

protocorm differentiates into vegetative propagation corm and

vascular tissue. The hyphae invading the embryo cells continue to

infect the top of the protocorm along cortical cells, but when they

are near the top of the protocorm and below the meristematic cells,

the hyphae no longer continue to infect upward (Li et al., 2020b).
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Regardless of whether the protocorm has a nutritional relationship

with Armillaria, it can undergo asexual reproduction to form a

vegetative propagation corm. The vegetative propagation corm

needs nutrients from Armillaria as soon as possible; otherwise, it

will die due to nutrient depletion. Li et al. (2020b) found that there

was a tubular endocytic network attached to the lysed hyphae in

cortical cells, so they concluded that the hyphae were digested by

endocytosis. These discoveries provide crucial clues for the

symbiotic seed germination of G. elata with Mycena.

Armillaria invades the vegetative propagation corm of G. elata

in turn through the susceptible fungal cells, the hyphal channel or

the hyphal flow, the peloton cells, the hyphal flow, and the digestive

cells (Figure 5). The cell layer of the vegetative propagation corm is,

from outside to inside, the epidermis, peloton cells in the cortex, the

hyphal channel or hyphal flow of susceptible fungal cells, and

digestive cells in the endodermis (Xu and Guo, 2000). Armillaria

must first develop rhizomorphs attached to the epidermis ofG. elata

before invading it. The hyphae in the rhizomorph penetrate the

epidermal cells of G. elatawith mechanical force and directly enter a

layer of cortical cells outside the endodermis (Xu, 2001). This layer

of cells is known as susceptible fungal cells by certain scientists

(Wang et al., 1997; Xu, 2001; Xu and Fan, 2001). During the

colonization process, the outer sheath and cortex of the

rhizomorph are gradually dissolved, leaving only a layer of

membrane surrounding the hyphae but still maintaining the

morphology of the rhizomorph, which is called the hyphal

channel (Wang et al., 1997; Xu, 2001; Xu and Fan, 2001). The

hyphae of Armillaria break through the membrane; that is, it loses

the form of the rhizomorph and spreads into the cells of the new

susceptible fungal cells in the form of hyphae. The bundle-shaped

hyphae are called hyphal flow (Wang et al., 1997; Xu, 2001; Xu and

Fan, 2001). At this point, the hyphae can nourish themselves with

the protoplasm of susceptible fungal cells and colonize the

surrounding areas. The hyphae invade the digestive cells inward

and the peloton cells outward, with the hyphae flow as the center.

The cell walls of the colonized cells exhibit papillary protrusions

(Wang et al., 1997; Xu, 2001; Xu and Fan, 2001). After penetrating

the papillary protrusions, the hyphae reach digestive cells, where

Armillaria is digested (Xu and Mu, 1990). Within cortical cells,

hyphae are enveloped by vesicles generated by the protoplasm of the

cells. These vesicles twist and coil the hyphae into pelotons,

facilitating their gradual division into fragments for subsequent

digestion and absorption (Wang et al., 1997; Xu, 2001; Xu and Fan,

2001). The hyphal fragments are released into digestive cells via

hyphal flow. Additionally, pelotons have the capacity to breach cell

walls and enter adjacent cortical cells (Xu and Mu, 1990). In

digestive cells, Armillaria is ultimately digested and absorbed, and

viable hyphae cease to exist.
4.2 Nutrient acquisition in
symbiotic relationships

In nature, some mycoheterotrophic orchids are associated with

ectomycorrhizal fungi and form tripartite symbioses between trees,

mycobionts and orchids (McKendrick et al., 2000). The G. elata
FIGURE 4

Mycena invade the seeds of G. elata. Seed-coat layer (A). Suspensor
remnant (B). Stipe cell (C). Peloton cells (D). Digestive cells (E).
Meristematic cells (F). Released cytoplasm and organelles of the
hyphae (G). Hyphae (H). Papillary protrusion (I). Peloton (J). Hyphal
fragments (K). The proembryo cells in the initial stage of hyphal
invasion (L). Digested hyphae (M).
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growth process is a ternary germination and cropping system (Yuan

et al., 2020), which depends on a symbiotic relationship with

Mycena and Armillaria. Symbiotic fungi decay leaves or wood to

obtain nutrients for their own growth and provide nutrients for G.

elata due to colonization and digestion (Suetsugu et al., 2020).

Symbiotic fungi act as a bridge to connect the nutrient exchange

between leaf/wood and G. elata (Figure 2). Scientists have

investigated the effects of different wood as a substrate on the size

and ergothioneine concentrations in G. elata (Rong and Cai, 2010).

Park and Lee (2013b) investigated 14 tree species and suggested that

the use of Ulmus davidiana might increase the production of G.

elata tubers.

Symbiotic fungi not only provide nutrients for G. elata but also

obtain nutrients from it (Xu and Guo, 1989; Lan et al., 1994; Xu and

Guo, 2000; Lan et al., 2002). From the time the proembryo cells are

initially able to digest hyphae to the point when they are colonized

by hyphae is the stage of mutual benefit in the symbiotic

relationship between Mycena and G. elata. Lan et al. (2002)

labeled M. osmundicola with 3H-glucose, and the seeds of G. elata

were sown on the saprophytic leaves of labeled M. osmundicola.

They discovered that many developing silver grains were also found

in the newly formed vascular tissue of vegetative propagation

corms, indicating that M. osmundicola not only provided

nutrients during seed germination and protocorm formation but

also needed nutrients from germinating fungi during vegetative

propagative corm differentiation and growth. In the symbiotic

nutrient chain between G. elata and Armillaria, during hyphal

flow, Armillaria can utilize the protoplasm of susceptible fungal

cells, which is a favorable stage for Armillaria. Lan et al. (1994)

demonstrated this by using 3H-glucose to label G. elata with the

pouring method. In cortical cells, Armillaria can utilize the

nutrients of cortical cells for division and growth and can invade

new cortical cells via a peloton cell. Moreover, some hyphae are also

digested by G. elata cortical cells, which is beneficial for the growth

of both G. elata and Armillaria. Cortical cells are the site of
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symbiosis between G. elata and Armillaria. In digestive cells, the

complete digestion and absorption of hyphae is a favorable stage for

G. elata.

The carbon source has been revealed to be critical to establish

optimal symbiosis (Kiers et al., 2011; Hennion et al., 2019). The

nutrient exchange between plants and mycorrhizal fungi is that

plants provide photosynthetically fixed C to symbiotic fungi, and

they benefit from fungi by absorbing mineral nutrients, such as N

and P (Bücking and Kafle, 2015; Jacquemyn et al., 2015; Wang et al.,

2017). Cameron et al. (2006) demonstrated for the first time

mutualism in orchid mycorrhizae, bidirectional transfer of C

between a green orchid and its fungal symbiont, and a fungus-

dependent pathway for organic N acquisition by an orchid.

However, (Fochi et al., 2017)investigated the expression of fungal

and plant nitrogen (N) transport and assimilation genes in

mycorrhizas formed between the fungus Tulasnella calospora and

the achlorophyllous protocorms of the photosynthetic orchid

Serapias vomeracea. Their research suggested, for the first time,

that nutrients flow back to the fungal partner from the

nonphotosynthetic orchid host (Dearnaley and Cameron, 2017).

Yeh et al. (2019) proposed that cells of nonphotosynthetic orchids

export ammonium (NH4
+) to their fungal partners and receive N, P

and C for germination and growth. In addition, decayed pelotons

can also release N, P and C to nonphotosynthetic orchids when

pelotons are digested (Bougoure et al., 2014). This result is largely

consistent with the nutrient exchange between G. elata and

symbiotic fungi. The nonphotosynthetic orchid G. elata

completely replaces its photosynthetic capacity by taking up C

from symbiotic fungi (Suetsugu et al., 2020). The symbiotic fungi

Mycena and Armillaria obtain C through parasitism of fallen leaves

or wood, providing all C sources to maintain the germination and

growth of G. elata (Kikuchi et al., 2008a; Kikuchi et al., 2008b).

Because the cell walls of fungi are mainly composed of glucan and

chitin (Ruiz-Herrera and Ortiz-Castellanos, 2019; Chen et al.,

2020), the digestion of hyphae may provide a large amount of
FIGURE 5

Armillaria invades the vegetative propagation corm of G. elata. Epidermal cells (A). Peloton cells (B). Susceptible fungal cell (C). Digestive cells (D).
Rhizomorph (E). Outer sheath (F). Membrane (G). Hyphae (H). The hyphal channel (I). Hyphal flow (J). Papillary protrusion (K). Peloton (L). Hyphal
fragments (M).
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organic C and N for G. elata. Moreover, high levels of sucrose

accumulate in G. elata tubers at all stages, indicating that sucrose

may be the main form of carbohydrates transported to G. elata at

the symbiotic interface (Ho et al., 2021). Symbiotic cells are the

main sites for extracellular sucrose exchange at the heterotrophic

interface of fungi. Sugar transporters have been identified that are

located on contiguous plant and fungal cells, and these transporters

may regulate sugar exchange, ensuring benefits for both partners in

this symbiotic relationship (Hennion et al., 2019). The sucrose

transporter gene SUT4 in G. elata was shown to mediate sucrose

import at the symbiotic interface for carbon allocation of

Armillaria-colonized juvenile tubers (Ho et al., 2021). Based on

the amplification of the gene encoding trehalase in the genome of

Gastrodia menghaiensis, a species closely related to G. elata, (Jiang

et al., 2022) proposed that it may have evolved the ability to use

trehalose as its organic carbon source. The absence of nitrate

transporters and the increase in the number of urease genes

indicate that the absorption of nitrogen by G. menghaiensis

mainly occurs in the form of ammonium. While most raw

nutrients primarily originate from fungi, the highly expressed

genes for fatty acid and ammonium root transporters indicate

that fungi obtain nutrients from G. menghaiensis. G. elata may

share some features withG. menghaiensis, however, further research

is needed. Arginases can hydrolyze arginine acid in hyphae to urea,

which is further hydrolyzed to ammonium and carbonic acid by

ureases (Witte et al., 2005). The number of genes encoding ureases

in G. elata is sharply increased, indicating that urea metabolism

may be an important source of N for G. elata (Yuan et al., 2018).

Through experimental studies, the penetration of Armillaria into

G. elata is divided into two forms (Xu and Guo, 2000; Morrison, 2004).

One is normal physiological colonization. G. elata induces Armillaria

colonization by secreting specific chemicals, such as strigolactone (Hua

et al., 2024), and then secretes enzymes to digest Armillaria for energy.

The more Armillaria colonizes, the more energy G. elata acquires and

the more quickly it grows. The other is pathological infection;

Armillaria will penetrate the digestive layer of the mother tuber

(immature tuber), infiltrate the stele layer, and subsequently invade

the new tuber along the vascular bundle, resulting in the decay of the

new tuber. However, this rarely happens. When Armillaria’s

nutritional supply is insufficient and G. elata’s development or

resistance declines, Armillaria will use the nutrients in G. elata to

grow (Xu and Guo, 2000). Therefore, we speculate that if G. elata has

strong inducibility to the corresponding Armillaria and the invasion of

Armillaria is weak, G. elata grows normally. In contrast, if inducibility

is weak and invasiveness is strong, G. elata will be consumed.

Therefore, only the combination of G. elata with strong inducibility

and Armillaria with weak invasion ability can allow G. elata to obtain

nutrients through corresponding strategies for maintenance.
4.3 Adaptation of fungi to symbiosis

The increased secretion of some enzymes by fungi is beneficial

for establishing symbiotic relationships. The seed coat of G. elata is
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composed of only lignin (Li et al., 2016), and the lignin-degrading

ability of the germination-promoting fungus Mycena is the

potentially key to their symbiosis. Manganese peroxidase is a

fungal lignin-modifying enzyme, and when Mycena breaks

through the seed coats of G. elata, manganese peroxidase and

laccase are responsible for the degradation of lignin (Manavalan

et al., 2015). Ren et al. (2021) conducted transcriptome analysis and

found that the upregulation of manganese-dependent peroxidase

short genes was conducive to the invasion of G. elata seeds by

hyphae. In addition, the expression of laccase genes was

significantly upregulated to produce more laccase for degrading

the lignin seed coat. Compared with nonsymbiotic Armillaria,

Armillaria that were symbiotic with G. elata had more glycoside

hydrolases, carbohydrate-binding modules, and glycosyl

transferases (Zhan et al., 2020; Cai et al., 2023). These enzymes

contribute to the degradation of cell walls, fungal colonization and

secondary metabolic synthesis, (Deng et al., 2021; Liu et al., 2021)

which may contribute to the successful establishment of symbiosis

between Armillaria and G. elata. Virulence attenuation is related to

the enhanced adaptability of fungi to G. elata. Once symbiosis is

established, G. elata begins to grow with increased biological

activity, while the fungi are restricted (Fan et al., 1999a). Ren

et al. (2021) showed this through comparative transcriptome

analysis of seed symbiotic Mycena hyphae and pure cultured

hyphae, and furthermore, they sequenced and analyzed the

genome of Mycena and found that 5024 genes were annotated in

the pathogen-host interactions database, among which more than

half were linked to reduced virulence and loss of pathogenicity.

Zhan et al. (2020) assembled a draft genomic sequence of A. gallica

012m and found that the gene families related to the pathogenicity/

saprophytic phase, including hydrophobins, carbohydrate active

enzyme AA3, and cytochrome P450 monooxygenases, had

significantly contracted in A. gallica 012m, which might be

beneficial for G. elata to reduce injury. They also found, through

genome-guided analysis, that rhizomorphs exhibit higher infectivity

compared to vegetative mycelia. This characteristic aids G. elata in

nutrient acquisition, as rhizomorphs continually colonize G. elata’s

nutritional stems and generate hyphae that G. elata can

subsequently digest. Guo et al. (2016) revealed at least 15

phylogenetic lineages in China through the phylogenetic analysis

of Armillaria, of which 7 species that are less virulent and aggressive

or preferentially saprotrophic are related to cultivated G. elata.

Virulence experiments demonstrated that A. mellea has a greater or

equal virulence than A. ostoyae, A. ostoyae has a greater virulence

than A. gallica and A. cepistipes, and A. tabescens has the weakest

virulence among those five species (Gregory, 1985; Morrison, 2004;

Caballero et al., 2022). The reason is that the saprophytic

colonization scores of Armillaria with monopodially branched

rhizomorphs are significantly higher than those of dichotomously

branched species, while the dichotomously branched species are

more aggressive than monopodially branched species (Morrison,

2004) (Table 2). Therefore, we speculate that Armillaria with

monopodially branched rhizomorphs is more suitable for

cultivating G. elata.
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4.4 Response of G. elata to fungi

The evo lu t ionary adapta t ion of G. e la ta to the

mycoheterotrophic lifestyle was critically dependent on gene loss.

The genome of G. elata has been continuously reported in recent

years, offering insights into how G. elata adapted to heterotrophy in

Mycena and Armillaria. In G. elata, genes important in the control

of flowering time, the circadian clock, nutrient absorption,

immunity, growth of the roots and leaves, and photosynthesis

were all severely lost (Yuan et al., 2018; Park et al., 2020; Xu

et al., 2021; Bae et al., 2022).

The expansion of many gene families in G. elata is additional

evidence for adaptation to the mycoheterotrophic lifestyle of fungi.

Phylogenetic analysis showed that the number of genes of G. elata

concerned with mycorrhizal association was significantly expanded

(Bae et al., 2022; Jiang et al., 2022). These phenomena represent

evolutionary events and may be the result of G. elata adapting to a

heterotrophic lifestyle in the presence of Armillaria (Yuan et al.,

2018; Bae et al., 2022). Yuan et al. (2018) found that the increase in

the number of genes encoding carotenoid cleavage dioxygenases

and ABC transporters indicated that G. elata has a strengthened

ability to interact with Armillaria to improve the efficiency of

establishing symbiotic relationships. Genes involved in the Ca2+

spiking process have been shown to regulate the colonization of

plants by fungi and are found in large quantities in G. elata. Some

glycoside hydrolases from gene families were highly expressed in

the cortex layer of G. elata, which supports the view that the hyphae

of Armillaria are digested in the digestive cells of G. elata.

Strigolactone is a plant hormone that has been proven to have

branch-inducing effects in Armillaria (Yuan et al., 2018; Favre-

Godal et al., 2020). The number of key genes for the biosynthesis

and secretion of strigolactone has grown in G. elata (Yuan et al.,
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2018). Jiang et al. (2022) found that 36 beta-glucosidase genes and 4

glycoside hydrolase family 18 chitinases in G. menghaiensis may be

involved in the degradation of the fungal cell wall to provide

nutrients for G. menghaiensis.

Gene contraction in G. elata is a characteristic facilitating

adaptation to the mycoheterotrophic lifestyle. G. elata seed

germination is hampered not only by insufficient nutritional

reserves and an impermeable seed coat but also by the presence

of seed germination inhibitors such as phenolics and abscisic acid

(Van Waes and Debergh, 1986; Ren et al., 2021). The

downregulation of 9-cis-epoxycarotenoid dioxygenase (NCED-2)

expression in G. elata reduces abscisic acid production, thereby

alleviating abscisic acid’s suppression of seed germination.

Additionally, a significantly downregulated receptor protein

(PYL12-like) can hinder abscisic acid signaling and thereby break

seed dormancy (Ren et al., 2021).

G. elata must fend against pathogen assaults despite being fully

dependent on symbiotic fungi for survival. Significant defensive

reactions are induced by fungal colonization in G. elata, which

possesses genetic, pharmacological, and physical defenses against

fungi. Armillaria can only colonize vegetative propagation corms

and immature tubers (mother tubers). Newborn tubers can resist

colonization by Armillaria. From the perspective of G. elata, this is

because there is an isolation area without nutrient reserves at the

contact between the vegetative propagation corm and the new

tuber, which limits the spread of Armillaria along the cortical

cells to invade the new tubers. The cell wall of the mother tuber

near the new tuber thickens and becomes corky. Then, a fracture

layer will form at the bottom of the new tuber. The corked and

thickened cell wall is a physical defense structure of G. elata against

Armillaria infection (Fan et al., 1999a).

The epidermal cells of vegetative propagation corms are initially

digested by the matching enzymes released by Armillaria when they

penetrate. G. elata causes cortical cells to create numerous

hydrolases as a form of defense after learning that epidermal cells

have penetrated. Hydrolase breaks hyphae down into tiny

molecules that G. elata may consume, supplying it with ongoing

nutrients for growth. (Wang and Xu, 1993; Fan et al., 1999a)

Additionally, Armillaria has the ability to induce G. elata to

produce a set of defense proteins (Yuan et al., 2020). The

monocot mannose binding lectin antifungal protein family has

been proven to inhibit fungal growth in G. elata (Xu et al., 1998;

Wang et al., 2001b; Nagel et al., 2008). More than 80% of the

gastrodia antifungal protein genes in G. elata are highly expressed

during the growth stage before establishing a stable symbiotic

relationship with Armillaria (Yuan et al., 2018). In addition, G.

elata can transport S-(p-HA)-glutathione phytoalexin to Armillaria

and prevent its excessive growth. Defense proteins and phytoalexins

are chemical defenses of G. elata against Armillaria infection (Yuan

et al., 2018).

G. elata also retains some defense-related genes. Zeng et al.

(2017) used transcriptome approaches to identify 1750 differentially

expressed genes between G. elata seeds and protocorms. Most of

these differentially expressed genes were presumably involved in

plant defense, molecular signaling, secondary metabolism, and

energy metabolism. Zeng et al. (2018) compared the proteomes of
TABLE 2 Rhizomorph growth habit of some Armillaria species
(Morrison, 2004).

Armillaria species Rhizomorph growth habit

A. gallica Monopodial

A. cepistipes Monopodial

A. gemina Monopodial

A. sinapina Monopodial

A. calvescens Monopodial

A. nabsnona Monopodial

A. mellea Dichotomous

A. ostoyae Dichotomous

A. borealis Dichotomous

A. luteobubalina Dichotomous

A. fumosa Dichotomous

A. hinnulea Dichotomous

A. novae-zelandiae Dichotomous

A. limonea Dichotomous
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the early and late stages of protocorms. Among them, defense genes

(e.g., pathogenesis-/wound-related proteins, peroxidases, and

serine/threonine-protein kinase) were highly expressed in late-

stage protocorms, suggesting that fungal colonization triggered

significant defense responses in G. elata. The G. menghaiensis

genome contains 28 terpene synthase genes, which defend against

pathogens (Zeng et al., 2017). The G. menghaiensis genome

contains 65 R genes (resistance), which are important

components of the plant defense system (Ren et al., 2021).
4.5 Microbes can affect the symbiosis of G.
elata and Armillaria

Microbes and their secondary metabolites are also believed to

affect the symbiosis of fungi and G. elata. The fungal community of

tubers in different growth phases and the soils surrounding G. elata

were characterized by high-throughput sequencing (Chen et al., 2019;

Yuan et al., 2020). Mycorrhizosphere bacteria, Rahnella sp. HPDA25

has been proven to secrete indole-3-acetic acid to promote the growth

of A. gallica and its parasitic host G. elata (Liu et al., 2022). The

coculture of HPDA25 and A. gallica also decreased the expression

levels of glycolysis-related genes, which may advance rhizomorph

growth by inhibiting glycolysis in A. gallica. Irpex lacteus tended to

promote the growth of Armillaria in coculture by producing 2,3-

dihydroxydodacane-4,7-dione to selectively inhibit the

phytopathogen and endophyte in the host G. elata, which is

conducive to the symbiosis of G. elata and Armillaria symbiosis

(Wang et al., 2021a). Many beneficial compounds were isolated from

the coculture of Armillaria sp. and the endophytic fungus associated

with G. elata (Li et al., 2019; Li et al., 2020a). In contrast, Armillaria

can also affect the structure of the microbial community associated

with G. elata, as evidenced by the increased diversity of bacteria and

fungi from the immature tuber to mature tuber periods (Yuan et al.,

2018). In addition, early studies have shown that Armillaria, as a

medicinal fungus, can secrete various antibacterial and antifungal

compounds, such as armillaric acid and sesquiterpene aryl esters,

which show strong inhibition against gram-positive bacteria,

Streptococcus spp., yeast, Rifai aggr., Mucor spp., Gliocladium viren,

Fusarium spp., Rhizopus stoloniferp, and Trichoderma spp. (Yuan

et al., 2020).Mycena is a source of plant hormones and nutrients for

G. elata according to a study of the secondary metabolites of fungi

(Liang et al., 2018).
5 Conclusion and future perspectives

The roles thatMycena and Armillaria play in the life cycle of G.

elata are crucial. Various developmental phases result in various

histological and ultrastructural properties during the colonization

and digestion of hyphae in G. elata. The material basis of symbiotic

partnerships is the bilateral flow of nutrients between G. elata and

fungi. Moreover, to adapt to symbiosis, gene expression and enzyme

release are altered in both fungi and G. elata. Additionally, some
Frontiers in Plant Science 12
microbes and their byproducts are advantageous for symbiosis

between fungi and G. elata. We have thoroughly explained the

three components of the symbiotic mechanism: morphology,

feeding, and chemicals.

However, there are still many issues with the symbiotic

mechanism that need to be further clarified. We believe that the

following topics should be the main focus of future research. i)

What are the advantages of G. elata and fungi developing a

symbiotic connection in order for both to adapt to the natural

environment? ii) What evolutionary trends and features do fungi

and G. elata have in their genomes that enable them to develop and

sustain symbiotic relationships? iii) How are the immune systems,

signaling pathways, and metabolic processes of fungi and G. elata

regulated and controlled to adapt to symbiosis?
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