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Spatial prediction of winter
wheat yield gap: agro-climatic
model and machine
learning approaches
Seyed Rohollah Mousavi1†,
Vahid Alah Jahandideh Mahjenabadi2*†, Bahman Khoshru2

and Meisam Rezaei2*

1Soil Science and Engineering Department, Faculty of Agricultural, College of Agriculture & Natural
Resources, University of Tehran, Karaj, Iran, 2Soil and Water Research Institute (SWRI), Agricultural
Research, Education and Extension Organization (AREEO), Karaj, Iran
This study aimed to identify the most influential soil and environmental factors for

predicting wheat yield (WY) in a part of irrigated croplands in southwest Iran, using

the FAO-Agro-Climate method and machine learning algorithms (MLAs). A total of

60 soil samples and wheat grain (1 m × 1 m) in 1200 ha of Pasargad plain were

collected and analyzed in the laboratory. Attainable WY was assessed using the FAO

method for the area. Pearson correlation analysis was used to select the best set of

soil properties for modeling. Topographic attributes and vegetation indices were

used as proxies of landscape components and cover crop to map actual WY in the

study area. Two well-known MLAs, random forest (RF) and artificial neural networks

(ANNs), were utilized to prepare an actual continuous WY map. The k-fold method

was used to determine the uncertainty of WY prediction and quantify the quality of

prediction accuracy. Results showed that soil organic carbon (SOC) and total

nitrogen (TN) had a positive and significant correlation with WY. The SOC, TN,

normalized different vegetation index (NDVI), and channel network base level (CHN)

were recognized as the most important predictors and justifying more than 50% of

actual WY. The ANNs outperformed the RF algorithm with an R2 of 0.75, RMSE of

400 (kg ha−1), and RPD of 2.79, according to statistical indices. The uncertainty

analysis showed that themaximum uncertainty of the predictionmap [400 (kg ha−1)]

was very low compared to the mean value [4937 (kg ha−1)] of WY map. Calculation

yield gap using the FAO-agro-climatic model showed that the average yield gap of

the region was about 50% of actual yield. The findings of this study demonstrated

that integrating simulated attainable crop growth using crop model and a set of soil

and environmental covariates with the ANNs algorithm can effectively predict WY

gaps in large areas with acceptable and reasonable accuracy. The study emphasizes

that the implementation of efficient management practices has the potential to

enhance agricultural production in the study area and similar regions. These results

represent a significant advancement of sustainable agriculture and provide valuable

insights for ensuring global food security.
KEYWORDS

spatial modeling, crop yield, environmental factors, soil properties, learning models,
uncertainty analysis
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1 Introduction

The accurate prediction of wheat yield (WY) is essential for

ensuring global food security and supporting sustainable

agricultural practices (Ruan et al., 2023). Wheat is one of the

most widely cultivated crops worldwide, serving as a staple food

for a significant portion of the global population. Therefore, it is

imperative to understand the multifaceted factors that influence

WY and to develop reliable prediction models. These models can

optimize productivity and inform decision-making processes in the

agricultural sector (Pant et al., 2021).

Soil and environmental factors play a crucial role in

determining WY (Araus et al., 2003; Jahandideh Mahjenabadi

et al., 2022). Factors such as soil nutrient content [exchangeable

potassium, total nitrogen (TN), etc], pH levels, and organic matter

composition affect soil fertility and nutrient availability, ultimately

impacting the growth and health of wheat plants (Norouzi et al.,

2010; Zhang et al., 2022). In Addition, crop yield is also influenced

by a range of factors, including the spatial variability of soil, nutrient

availability, landscape characteristics, and management practices.

These factors contribute to the genetic potential of the soil-

landscape component and the biophysical environment,

ultimately affecting crop yield both directly and indirectly

(Bobryk et al., 2016). Recent research has highlighted the

significant role of field topography in the variation of WY,

because it affects soil moisture content and soil properties, which

both have a direct impact on crop productivity (Ajami et al., 2020).

Various studies have emphasized the importance of integrating

terrain attributes with soil and crop variables when modeling yield

and soil parameters (Brown et al., 2004; Beaudette et al., 2013).

Traditional WY mapping and measurement are often reliant on

intensive field and labor activity, which can be time consuming,

expensive, and require the experience of scientists, especially for

large areas (Taghizadeh-Mehrjardi et al., 2020; Mousavi et al.,

2023). Also, conventional digital soil mapping employs

geostatistical approaches that have been widely employed to

model the soil or WY relationships between one or several

covariates. Kriging model assumes a linear relationship among

WY and, covariates, is difficult to model when using a huge

number of covariates (Wadoux et al., 2019).

On the other hand, machine learning algorithms (MLAs), as an

alternative, have demonstrated great potential for overcoming these

limitations (Elavarasan et al., 2018; Wadoux et al., 2019). They have

the ability to handle high-dimensional datasets, capture nonlinear

relationships, and discern intricate patterns in the data (Van

Klompenburg et al., 2020). Over the years, numerous ML

algorithms have been employed for crop detection and yield

prediction across different locations. By applying these MLAs,

researchers have aimed to enhance accuracy and enable informed

decision making in agricultural practices (Drummond et al., 2003;

Mishra et al., 2016). Among the ML models, random forest (RF)

and artificial neural networks (ANNs) have emerged as popular

choices for predicting crop yields. RF models leverage an ensemble

of decision trees to make robust predictions, while ANNs models

simulate the interconnectedness of neurons in the human brain to

capture complex relationships (Liu et al., 2012). These algorithms
Frontiers in Plant Science 02
have been successfully applied in various agricultural contexts, such

as digital soil mapping (Rostaminia et al., 2021; Mousavi et al., 2022;

Khosravani et al., 2023; Rezaei et al., 2023), showcasing their

effectiveness in predicting crop yields based on environmental

factors and soil properties (Taghizadeh-Mehrjardi et al., 2020;

Wang et al., 2020; Basir et al., 2021). As regards, Boori et al.

(2023) indicate that the rapid advances in satellite technologies

and MLAs, particularly ANNs, have the potential to offer affordable

and comprehensive solutions for accurate grain prediction. By

utilizing ANNs and other ML models, satellite data can be

analyzed to make precise predictions regarding crop yields. A

study conducted by Roell et al. (2020) applied the RF model to

estimate maps of the winter WY in Denmark by incorporating soil

variables, climate factors, and topography attributes. They revealed

that the RF model used in the study performed well in predicting

WY in the study area. Also, Alvarez (2009) conducted a study

focusing on WY prediction in Argentine grassland with the aid of

environmental parameters and soil physical properties. The

research findings indicated that the ANN outperformed the

technique in predicting WY. Similar finding was reported by

other researchers, Basir et al. (2021) and Jahandideh Mahjenabadi

et al. (2022), which focused on predicting crop yield, that is, wheat

and rice by using ANN and RF MLA and found the highly accurate

performance for yield prediction.

To meet the growing food demand, global agricultural

productivity needs to increase. By 2050, an additional 1 billion

tons of cereals will be required, which means increasing production

from 2.1 to 3.0 billion tons. This can be achieved by closing the yield

gap or increasing the potential yield of crops (Alexandros and

Bruinsma, 2012; Hatfield and Beres, 2019). As regards, Fischer et al.

(2014) found that increasing potential yield is an important factor

in increasing actual yield; therefore, increases in actual yield are a

result of improved agronomic practices and would require the

implementation of multiple practices. Moreover, when it comes to

crop modeling, it is crucial to consider the yield gap calculation as

well as the management of nutrients and water supply. By doing so,

we can accurately predict crop yields and identify areas where

improvements in nutrient and water management can be made to

reduce the yield gap and increase productivity.

To the best of our knowledge, there has been limited

investigation into modeling actual and gap WY by incorporating

the three components of climate, soil, vegetation, and topographic

attributes. Jahandideh Mahjenabadi et al. (2022) conducted a study

that solely focused on soil biological properties and neglected wheat

potential production by crop modeling, or FAO-agro-climatic

model, as well as the consideration of yield gap. The impact of

environmental covariates and soil physio-chemical properties on

the prediction of actual WY was not evaluated. Furthermore, they

failed to take into account the uncertainty of the actual WY

prediction map, which could be useful in assessing the

performance of ML algorithms. As a result, there is still a gap in

knowledge regarding the influence of other factors on the actual and

potential attainable WY amount in the Pasargad plain. To solve this

lack of information and knowledge, this study was conducted with

the aim of identifying (i) the primary factors that control actual WY;

(ii) investigating the quality of two MLAs, RF, and ANNs in the
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prediction of actual WY; and (iii) calculating the potential

production of WY to achieve the yield gap map in the

agricultural lands. The ultimate goal of this research is to prepare

a spatial prediction map of the actual, uncertainty, and yield gap of

wheat and identify areas with high and low production capability.

This information will be useful for future land use planning and

agricultural management.
2 Materials and methods

2.1 Study area description

The study area covers 1200 ha in the Pasargad plain, located in

Fars province in the southwest of Iran (Figure 1). Based on

climatology data from the closest meteorological station, the area
Frontiers in Plant Science 03
is classified as semiarid with an average rainfall of 350 mm and

temperature of 12.5°C. The coldest month is January, and the

hottest is July. The study area is situated on the Piedmont and

plain landscape with an average slope gradient of 3% and an altitude

range of 1747–1780 m. a. s. l. The soils in the study area are

classified according to the U.S. soil classification system. They fall

under the order of Inceptisols, specifically the Typic Haplocambids

and Typic Haplocalcids subgroups (Soil Survey Staff, 2022). The

Pasargad plain is a key agricultural zone in Iran that has been under

continuous cultivation and exploitation for a long time. The

dominant land use in the area is irrigated agriculture, with wheat

being the main crop in the crop pattern schedule (Jahandideh

Mahjenabadi et al., 2022). So, according to this background,

quantifying the production gaps of lands seems to be a very

important plan for optimizing agricultural management and

future land use planning.
B

C

A

FIGURE 1

(A) Worldwide, (B) Iran country, and (C) boundary of the study area and sampling soil–wheat yield plots 1 m × 1 m.
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2.2 Research workflow

This research was designed in five main steps, which were

carried out in the following order: (1) field survey: soil sampling was

conducted from the surface layer (0 cm–30 cm) and WY plots were

established at 1 m × 1 m intervals, laboratory analysis was

performed to determine physio-chemical properties, and WY

(kg ha−1) was calculated. In parallel, environmental covariates

such as topographic attributes were extracted from DEM and RS
Frontiers in Plant Science 04
data from the Sentinel-2 product. The most important soil variables

were selected using Pearson correlation analysis, (2) confusion

matrix: the dataset was randomly split into calibration (80%) and

validation (20%) sets, and WY was spatially modeled using RF and

ANN MLA, (3) validation of MLA performance, (4) determination

of the relative importance (RI) of soil and environmental covariates,

and (5) preparation of spatial prediction and its uncertainty map

using the best ML model and k-fold cross-validation method,

respectively (Figure 2).
FIGURE 2

The research work flow of modeling WY (kg ha−1).
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2.3 Soil sampling and laboratory analysis

The soil survey and sampling were done at 60 spatial locations

in the study area (Figure 1C). All soil samples were gathered from 0-

cm to 30-cm depth based on a semi-regular method with an average

of 500-m interval from 5 May to 15 May 2019. Along with soil

sampling, the actual WY (kg ha−1) was recorded by using a 1 m ×

1 m plot (Figure 1C) at four repeats to gather a sample with a

representative of WY at each point (same location as the sampling

points). Afterward, the soil samples were transferred to the

laboratory and were air dried, passed through a 2-mm sieve, and

then physical and chemical properties were determinedusing the

standard method. The measured soil properties include the soil

texture component, that is, sand, silt, and clay (Gee and Bauder,

1986), SOC (Walkley and Black, 1934), TN (Page et al., 1982),

cation exchange capacity (CEC) (Sumner and Miller, 1996), pH,

and electrical conductivity (EC).
2.4 Environmental covariates

The WY predictor variables are composed of three sources:

topographic attributes, RS indices, and soil variables. The best set of

soil variables was selected based on Pearson correlation analysis.

Environmental factors were chosen based on expert opinion and

literature (Dedeoğlu and Dengiz, 2019; Wang et al., 2020). For more

information, Table 1 presents the list of soil and environmental

covariates used to predict WY. The RS covariates were SAVI (soil-

adjusted vegetation index), WDVI, and wetness, which were

prepared from the band ratio of sentinel-2 images in SNAP

software version 9.0. Additionally, topographic attributes such as

texture, convexity, elevation, and CHN were included. These
Frontiers in Plant Science 05
attributes were extracted from the digital elevation model (DEM)

in SAGA GIS software version 4.7.
2.5 Machine learning algorithms

The prediction of irrigation WY was accomplished using ANN

and RF algorithms, along with auxiliary variables such as

topographic attributes, remotely sensed indices, and soil variables.

We chose these algorithms due to their success in digital soil

mapping, as demonstrated in previous studies (Saeed et al., 2017;

Rostaminia et al., 2021; Rezaei et al., 2023). More detailed

information about the performance of utilized ML algorithms is

given below.

2.5.1 Random forest
RF is a popular algorithm for digital mapping, because it can

handle high-dimensional data, nonlinear relationships, and

interactions between features. It is also robust to over-fitting and

missing values, making it suitable for noisy and incomplete data

(Breiman, 2001). The RF utilizes a collection of decision trees,

where each tree is created using a randomly selected subset of the

training data and variables. Decision trees were introduced by

(Breiman et al., 1984) and consist of binary bifurcations that

recursively split the training data by selecting the variable and

threshold at each split, which creates two subsets with the highest

degree of homogeneity possible. One of the advantages of RF

models is that they select both the training data and candidate

variables for each split of each tree, which reduces overfitting and

improves prediction accuracy. Additionally, RFs provide

information about the importance of each variable used in the

prediction. Here, the RF is impeded by the “random forest”
TABLE 1 List of environmental covariates were applied for predicting WY.

Parameters Symbol Description Source

Soil organic carbon SOC (%) Soil organic carbon content Lab analysis

Total nitrogen TN (%) Soil total nitrogen content Lab analysis

Soil-adjusted vegetation index SAVI NIR�Rð Þ =  NIR + Rð Þ∗  1  +  Sð Þ Sentinel-2 images

Weighted difference vegetation index WDVI WDVI = NIR�ðg� RÞ Sentinel-2 images

Normalized difference vegetation index NDVI NIR − RED=NIR + RED Sentinel-2 images

Wetness index Wetness
0:0315 (Blue)  +  0:2021(Green)  −  0:3102 (Red)  +  0:1594 (NIR) −

 0:6806(SWIR1)  −  0:6109 (SWIR2)
Sentinel-2 images

Terrain surface texture Texture The variations in elevation and roughness of the terrain surface Digital elevation model

Terrain surface convexity Convexity Is a measure of the convexity or concavity degree of a terrain surface Digital elevation model

Elevation Elevation (m) Elevation from sea level Digital elevation model

Channel network base level CHN (m)

Difference between
the DEM and a

surface interpolated
from the channel

Digital elevation model
The abbreviations of all covariates are describe in this table.
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package, and it was tuned by mtry and ntree hyperparameters by

the “caret” package for predicting WY.

2.5.2 Artificial neural network
ANNs are dynamic computational networks that are capable of

describing intricate nonlinear relationships among related variables

(Ripley, 1996; Were et al., 2015). ANNs are essentially a collection

of functions that can be used to fit algorithms without making any

assumptions about the distribution of errors (Gahegan, 2003). This

makes ANNs a highly flexible and powerful technique, offering the

potential advantage of abstraction when applied to large-scale

domains. When running an ANNs model, two parameters, size

and weight decay coefficient, must be optimized. Size refers to the

number of neurons in the hidden layer, and the weight decay

coefficient is a tuning parameter to prevent over-fitting of the model

so that the weights are multiplied by a coefficient less than 1 at each

update. This prevents the weights from growing too large, which

usually changes logarithmically. In this study, the values of 0.1, 0.01,

and 0.001 were evaluated by the caret package and ultimately

optimized with a weight coefficient of 0.1 and 5 hidden

layer neurons.
2.6 Model validation and
uncertainty analysis

2.6.1 Model validation
To validate the model, a random holdback cross-validation

procedure was used by randomly partitioning the dataset into 80%

for training and 20% for testing. This allowed us to train our models on

a subset of the data while reserving a portion of the data for model

evaluation to ensure the robustness of our results. Also, 10-fold cross-

validation method with 10 repetitions during the model training

process, where the dataset is divided into 10 equal parts, with each

part used as the validation set once, while the remaining nine parts are

used as the training set. The purpose of this approach is to ensure that

the model is trained on a representative sample of the data and to

minimize the risk of overfitting. Finally, model hyperparameters were

fine-tuned the using grid search and cross-validation techniques to

optimize the model’s performance (Kumar, 2018; Meier et al., 2018).

For evaluating the model’s accuracy, the coefficient of determination

(R2), Lin’s concordance correlation coefficient (CCC), root-mean-

square error (RMSE), and relative percent difference (RPD) were

calculated. When RPD is less than 1.0, the prediction performance is

poor; when RPD is between 1.0 and 1.4, the prediction performance is

only useful for determining high and low data; when RPD is between

1.4 and 2.0, prediction performance is fair; when the RPD is between

2.0 and 2.50, the results of prediction and applied models are strong,

and if RPD is more than 2.5, the prediction performance is excellent

(Chang et al., 2001). The accuracy metrics were calculated as follows

(Equations 1–4):

R2 =
o
n

i=1
(ai−bi)

2

o
n

i=1
(bi−bi)

2
(1)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ai − bi)

2

s
(2)

CCC =
2r ∂a ∂b

∂2a + ∂
2
b +(�a + �b)2

(3)

RPD = SD=RMSE (4)

where, ai and bi are the observed and predicted values, �a and �b,

are the average of the observed and predicted values, r is the

correlation coefficient between the observed and predicted values,

and ∂a, and ∂b are the variance of the observed and predicted

values. To assess the accuracy of the results and model

performances, the Kruskal–Wallis (KW) test was used to identify

any statistically significant differences in performance among MLAs

(Demir and Citakoglu, 2023; Rezaei et al., 2023).

2.6.2 Uncertainty analysis
There are various approaches for quantifying the uncertainty of

model outputs, and one of these methods is the empirical approach

that uses residuals between modeled outputs and observed data to

quantify the prediction interval. k-fold cross-validation is a

statistical technique used to evaluate the performance of a ML

model. It involves splitting the data into k subsets, or folds, where k

is a positive integer. The model is then trained on k-1 of these folds

and evaluated on the remaining fold. This process is repeated k

times, with each fold serving as the test set exactly once. The results

are averaged across the k iterations to produce a more robust

estimate of the model’s performance. k-fold cross-validation is a

commonly used method for assessing the uncertainty of prediction

maps, as it provides a measure of how well the model generalizes to

new data. In this study, uncertainty was estimated using 10-folds

(Vanwinckelen and Blockeel, 2012). The implementation of this

method involved the use of ML models and coding in the open-

source statistical software R.
2.7 Attainable potential of wheat and
yield gap

Calculating the potential production of crops is of utmost

importance in agricultural planning and management. Yield

potential is defined as the yield of a cultivar when grown in

environments to which it is adapted, with non-limiting nutrients

and water supplyand pests, diseases, weeds, lodging, and other

stresses effectively controlled (Evans and Fischer, 1999). By

determining the potential production of different crops, farmers

can allocate their resources, such as land, water, and fertilizers, more

efficiently. This helps maximize yields and minimize waste

(Taghizadeh-Mehrjardi et al., 2020). The estimation of the

potential yield of irrigated wheat is a crucial aspect of crop

management. The FAO-agro-climatic model is a widely used

approach that incorporates genetic potential plant and climate

data, including radiation, temperature, and land potential, to
frontiersin.org
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determine the expected production. Researchers can refer to Sys

et al. (1991); Mousavi et al. (2017), and Taghizadeh-Mehrjardi et al.

(2020) for a more comprehensive understanding of the calculation

process involved in determining the potential yield of irrigated

wheat using the FAO model. Furthermore, for quantifying the yield

gap the relation proposed by Fischer et al. (2014) yield gaps was

applied and the value is expressed as a percentage of actual and

potential yield as (Equation 5):

Yield  Gap = 1 −
actual   production

Potential   production
� 100 (5)
3 Results

3.1 Summary statistical of wheat yield

The summary statistics of WY and soil-environmental

covariates are presented in Table 2. The minimum and maximum

WY are varied from 2500 kg ha−1 to 7430 kg ha−1, with a mean

value of 4937 kg ha−1. From the variability of WY and soil-

environmental covariates according to their CV (%), the results

demonstrated that SOC, TN, elevation, and CHN are in the low

variability class, WY, WDVI, wetness, and convexity are in the

moderate, and SAVI and NDVI are in the high-variability class

according to the category defined by Wilding (1985).
3.2 Correlation analysis of WYS and
soil variables

The results of relationship between soil variables and WY are

presented in Figure 3. According to the correlation results, only soil

organic carbon (SOC) (r = 0.30) and TN (r = 0.30) had a positive

and significant correlation with WY. Other soil variables (CCE, pH,
Frontiers in Plant Science 07
Silt, Clay, and Sand) did not show a significant correlation in

this analysis.
3.3 Comparison of machine
learning models

The ability of two MLA (ANNs and RF) to predict actual WY in

the study area was validated based on fivefold with 10 times cross-

validation. Results for the R2, CCC, RMSE, and RPD for each MLA

are presented in Table 3. The R2, RMSE, and RPD for WY using the

ANNs algorithm (0.75, 0.80, 400, and 2.79, respectively) were better

than the RF algorithm (0.68, 0.72, 500, and 2.20, respectively).

Therefore, both algorithms performed well in predicting actual WY,

while from a statistical point of view, the ANNs algorithm

performed better than RF. The results of the KW test (p = 0.05)

indicated that the models’ predictions were robust with minimal

errors, and there was no statistically significant difference in the

prediction performance between the ANN and RFmodels (Table 4).
3.4 Relative importance of predictors

Given the fact that the ANN model outperformed in predicting

actual WY, the RI results were discussed based on the output of

ANNs. In total, nine soil and environmental covariates were utilized

for modeling and generating a prediction map of actual WY, as

demonstrated in Table 1. For illustrative purposes, the maps

corresponding to the top four covariates are presented in

Figure 4. The results of the RI analysis indicated that SOC, TN,

NDVI, and CHN were found as the most influential covariates, and

account for 13.5%, 13%, 12.5%, and 12% of the total variance of

WY, respectively (Figure 5). Furthermore, the combination of these

top four covariates covers more than 50% of WY. It is worth noting

that SOC and TN are related to soil properties (Figures 4A, B),
TABLE 2 Summary statistics of WY and environmental covariates at 60 point and plot observation.

Parameters Unit Min Max Mean Median SD ABS CV (%)

WY kg ha−1 2500 7430 4937 4750 1117 22.6

SOC % 0.79 1.38 1.08 1.07 0.12 11.0

TN % 0.08 0.14 0.11 0.11 0.01 11.1

SAVI – −0.04 1.07 0.51 0.36 0.33 65.0

WDVI – 1036 4666 2688 2495 762 28.4

NDVI – −0.03 0.71 0.34 0.24 0.22 65.0

Elevation m 1754 1770 1762 1761 4.12 0.23

CHN m 1753 1767 1760 1760 3.40 0.19

Wetness – −4453 −1509 −3296 −3354 547 16.6

Texture – 0.00 45.8 7.48 2.44 10.3 137

Convexity – 9.82 54.2 35.16 36.03 10.05 28.6
Min, minimum; Max, maximum; SD, standard deviation; ABS CV, absolute coefficient of determination; WY, wheat yield; SOC, soil organic carbon; TN, total nitrogen; SAVI, soil-adjusted
vegetation index; WDVI, weighted difference vegetation index; NDVI, normalized difference vegetation index; CHN, channel network base level; Wetness, wetness index; Texture: terrain surface
texture; Convexity, terrain surface convexity.
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NDVI is associated with vegetation indices (Figure 4C), and CHN

serves as a proxy for topography (Figure 4D). NDVI was the third

important factor in the prediction of WY. Based on the field

observations, the WY recording was done among ripening and

harvesting dates, so it is revealed that the NDVI can be a powerful

vegetation index for predicting/monitoring crop yield in this period

of the wheat growth cycle. CHN, as a proxy of topography, was

identified as the fourth top important covariate in the prediction of

WY by affecting the movement of water across the landscape, which

in turn influences soil moisture and nutrient availability for the

crops. From the source of utilized covariates, the quantitative results

of RI demonstrated that topographic attributes (41.23%) followed

by soil variables (32.70%), and vegetation indices (26.07%) had the

largest potential for predicting actual WY in the study area.
3.5 Spatial prediction, uncertainty
map, and wheat yield gap

According to Figure 6 and previous sections, the prediction map

of actual WY was created using the spatial distribution described by

ANNs. Based on the prediction map, the minimum and maximum

values varied from 2500 (kg ha−1) to 7000 (kg ha−1) of WY in the

area, and the trend of the prediction map also revealed that more

than 60% of the study area, mostly in the northern, western,

southwest, and part of the central, had the highest actual wheat

production in the range of 5000 to 7000 (kg ha−1). For instance, the

trend of WY prediction maps strongly corresponds to SOC, TN,

and then NDVI (Figures 4, 5). The lower actual WY content was

mostly observed in the eastern part of the area (Figure 6A). These

areas are consistent with the CHN pattern shown in Figure 4D,
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where higher values of CHN are related to erosion and the loss of

soil nutrients. According to the field observations, the area with a

high-actual WY content has better management by the farmer, in

addition to fertilizer and soil organic matter.

The uncertainty analysis by the k-fold method showed that the

maximum uncertainty of the prediction map [400 (kg ha−1)] was

very low compared to the mean value [4937 (kg ha−)] of the WY

map (Figure 6B). The identification of the areas with the highest

uncertainty, particularly in the east and northeast zones with the

lowest WY values, is significant as it draws attention to the need for

more focused and effective soil fertility management and crop

system strategies in these areas.

The calculated potential WY by the FAO-agro-climatic method

(Sys et al., 1991) was equal to 10350 kg ha−1. This result is

comparable with Zeynadini et al. (2020) findings in the Sepidan

plain, adjacent to the study area, with a yield of 9846 kg ha−1. This

indicates a significant range yield gap of 32.3% to 73.2% between the

maximum and minimum of actual WY production according to

potential yield content (Figures 6A, C). These results justify the

variability and potential for improvement in WY production within
TABLE 3 Model prediction performance statistics for RF and ANN
models applied to actual WY prediction.

Statistical indices
ML models

RF ANN

R2 0.68 0.75

CCC 0.72 0.80

RMSE (kg ha−1) 500 400

RPD 2.20 2.79
FIGURE 3

Pearson correlation coefficient test between WY (kg ha−1) and soil physico-chemical properties. Underlined correlation values between WY and soil
variables are significantly different from zero (p = 0.05).
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the study area. So, by identifying the factors that contribute to the

variability in WY production and implementing targeted

interventions to address these factors, it may be possible to

increase WY production and narrow the range of the gap

between the limits of actual WY production. Based on the RI

analysis (Figure 5), it was found that TN and SOC are the most

significant factors affecting the prediction of actual yield. Therefore,

it appears that a significant portion of the current yield gap can be

attributed to soil fertility (i.e., physical, chemical, and biological

properties) and water supply. It is acknowledged that little

information about soil profiles is available, however, the RI and

Pearson correlation analysis illustrated that the most important
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land suitability assessment indices, for example, salinity, alkalinity,

CEC, particle size distribution, and slope gradient, were not limiting

factors in the Pasargad plain.

4 Discussion

In this study, the importance of accurately predicting actual WY

has been underscored for ensuring global food security and

fostering sustainable agricultural practices. The primary objective

was to discern the key soil and environmental factors influencing

WY in a specific segment of irrigated croplands in southwest Iran.

This investigation has employed the FAO-agro-climate method in

conjunction with machine learning algorithms (MLAs) to achieve a

comprehensive understanding of the factors influencing WY in the

designated region.

Low to moderate variability in the topographic attributes seems

to be more related to the physiography of the study area, with a

mean slope gradient close to 3%. For soil properties, similar results

were reported by Mosleh et al. (2016) and Mousavi et al. (2022) in
B

C D

A

FIGURE 4

Four important covariates based on RI analysis. (A) SOC (soil organic carbon), (B) TN (total nitrogen), (C) NDVI (normalized difference vegetation
index), (D) CHN (channel network base level).
TABLE 4 The results of the Kruskal–Wallis (KW) test of accuracy
of predictions.

ML models P-value Critical value Ho*

ANN-RF 0.62 0.05 Rejected
H0*: There is no statistically significant difference in the prediction performance
between MLAs.
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areas with similar topographic conditions. High variability of

vegetation indices, for example, NDVI and SAVI indicate the

wheat heterogenic of cultivation schedule by farmers in the

study area.

NDVI and SAVI are commonly used to assess vegetation health

and vigor, and their variability can be indicative of differences in

crop growth stages, health, or even the implementation of various
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agricultural practices (Pettorelli et al., 2014). It is possible that

farmers in the study area do not follow uniform cultivation

practices for wheat. This diversity in cultivation schedules could

be influenced by climate variations, individual farming practices, or

socio-economic considerations (Laso Bayas et al., 2017). It

highlights the complexity of agricultural activities in the region

and emphasizes the need for a nuanced understanding of the
FIGURE 5

The RI (%) of soil, topography and vegetation indices for predicting actual WY in the study area. WY, wheat yield; SOC, soil organic carbon; TN, total
nitrogen; SAVI, soil-adjusted vegetation index; WDVI, weighted difference vegetation index; NDVI, normalized difference vegetation index; CHN,
channel network base level; wetness, wetness index; texture, terrain surface texture; convexity, terrain surface convexity.
B

C

A

FIGURE 6

Spatial prediction of (A) actual (kg ha−1), (B) uncertainty (kg ha−1), and (C) yield gap (%) maps of WY by ANN model.
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interactions between topography, soil, and vegetation in the context

of agricultural practices. The discussed findings underscore the

importance of considering the physiographic characteristics of a

region when studying its topography, soil properties, and vegetation

dynamics. The observed patterns in the study area suggest a

connection between the landscape features and the agricultural

practices employed by farmers. This insight contributes to a more

comprehensive understanding of the intricate relationships between

natural elements and human activities in the context of agricultural

landscapes.Correlation analysis showed that an increase in SOC and

TN content in the soil can increase actual WY (Grant et al., 2001;

Fan et al., 2005). Similar results were observed by Zhang et al.

(2009), who indicated that both wheat and corn grain yields are

significantly correlated with SOC, TN, and phosphorus. As regards,

Kumhálová et al. (2008) observed a positive and significant

correlation coefficient among SOC and TN with winter rape. For

instance, applying SOC and soil fertilizer (e.g., TN) can lead to an

increase in water holding capacity, soil porosity, aggregate stability,

and a decrease in soil compaction and surface crusting, which can

result in high crop production (Kanchikerimath and Singh, 2001).

Therefore, the SOC and TN were known as representatives of soil in

the spatial modeling of the actual WY.

The variations in soil physical, chemical, and biological

properties are largely influenced by changes in SOC and TN

(Monaco et al., 2008), which have a great impact on crop

productivity (Sainju et al., 2008). SOC and TN play a crucial role

in shaping soil structure and influencing various soil properties.

Increased organic matter content resulting from these components

enhances soil aggregation and stability, thereby impacting soil

texture (Smith et al., 2008). This, in turn, affects important soil

functions such as water retention, drainage, and aeration. High

levels of SOC contribute to improved soil porosity, enhancing water

infiltration, root penetration, and the movement of gases within the

soil (Six et al., 2000). Furthermore, SOC and TN act as significant

sources of nutrients for plants. Microbial decomposition of organic

matter releases essential nutrients such as nitrogen, phosphorus,

and sulfur, directly influencing plant growth and soil fertility

(Bardgett and van der Putten, 2014). SOC also serves as a buffer

for soil pH, with organic acids produced during decomposition

mitigating changes in pH and contributing to a more stable and

favorable pH range for plant growth (Richter and Markewitz, 1995).

Additionally, SOC is a substrate for soil microorganisms, and the

availability of SOC and TN influences the diversity and activity of

soil microbes (Fierer et al., 2012; Khoshru et al., 2020a). A rich

microbial community supported by organic matter enhances soil

biological activity, promoting symbiotic relationships with plants,

disease suppression, and overall ecosystem resilience (Ens et al.,

2009; Khoshru et al., 2020b). The water-holding capacity of soil is

improved by SOC acting as a sponge, aiding in water retention

during dry periods and providing a steady water supply to plants

(Nimmo, 2004). Moreover, SOC contributes to the binding agents

(glues) that hold soil particles together in aggregates, thereby

enhancing soil structure and stability, reducing erosion, and

promoting better water infiltration (Tisdall and Oades, 1982). The

C:N ratio in organic matter is a crucial factor affecting the rate of

decomposition. A balanced C:N ratio promotes efficient
Frontiers in Plant Science 11
decomposition, ensuring a steady release of nutrients without

causing nitrogen imbalances (Moorhead and Sinsabaugh, 2006).

Understanding the intricate interplay between SOC, TN, and

various soil properties is essential for sustainable soil

management. Practices that enhance organic matter content, such

as cover cropping, crop residue incorporation, and organic

amendments, can positively influence soil physical, chemical, and

biological attributes, contributing to improved soil health and

agricultural productivity (Paul and Clark, 1996).

Upon further analysis and consideration, we hypothesize that

the absence of significant correlations for some soil variables (CCE,

pH, Silt, Clay, and Sand) could be attributed to their indirect effects

on the measured outcome. Soil processes are complex and

interconnected, and certain soil variables may influence the

outcome indirectly through their impact on other mediating

factors. Soil properties rarely act in isolation. Instead, they often

interact with each other and with other environmental factors. For

instance, while CCE, pH, and soil texture (silt, clay, and sand) may

not directly impact WY, they could influence nutrient availability,

water retention, or soil microbial activity, which in turn affect crop

growth and productivity (Brady and Weil, 2008). Soil pH, for

example, can influence the availability of essential nutrients to

plants (Neina, 2019). If the pH is within an optimal range,

nutrient uptake may be adequate, even if a direct correlation with

pH is not observed. Similarly, CCE can influence nutrient exchange

capacity, indirectly affecting nutrient availability. Soil texture, which

includes the proportions of sand, silt, and clay, influences water

retention. While these variables may not directly correlate withWY,

they can indirectly impact crop productivity by influencing water

availability to plants. Certain soil properties can influence microbial

communities, and these microorganisms play a crucial role in

nutrient cycling and organic matter decomposition. The indirect

effects of soil microbial activity on nutrient availability can impact

crop yield (Fierer et al., 2012). EC is often an indicator of soil

salinity. While it may not directly correlate with WY, salinity can

have indirect effects on plant water uptake and nutrient absorption,

affecting overall crop health and productivity (Munns and Tester,

2008). Soil conditions can vary spatially and temporally. The lack of

a direct correlation in a specific study may be influenced by the

specific conditions and the timing of data collection. Similarly,

(Nabiollahi et al., 2020) observed that the lack of significant

correlations for some soil properties (CCE, pH, Silt, and EC) with

the measured WY may not directly impact the WY in their

study area.

Several studies have highlighted the effectiveness of ANNs in

predicting crop yield based on various factors such as weather, soil

quality, and management practices. As regards, Miao et al. (2006)

emphasized the importance of ANNs in modeling complex

nonlinear relationships between input and output variables for

crop yield prediction. Similarly, Ayoubi and Sahrawat (2011) and

Norouzi et al. (2010) successfully utilized ANNs to predict grain

yield based on soil properties collected and analyzed through

traditional lab methods in Iran. These findings confirm the

capability of ANNs in predicting crop yield, which is particularly

significant given that crop yield depends on a variety of factors.

Kadir et al. (2014) demonstrated the promising potential of ANNs
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predict WY, suggesting that this approach can be applied to other

crops as well. Other studies, such as Irmak et al. (2006), Drummond

et al. (2003), and Liu et al. (2001), also reported successful outcomes

in using ANNs for data mining, crop yield prediction based on soil

properties, and determining target corn yields, respectively.

However, Taghizadeh-Mehrjardi et al. (2020) found that RF

outperformed support vector machines in land suitability

prediction for wheat and barley yields. Additionally, Jahandideh

Mahjenabadi et al. (2022) found that the RF model was effective in

predicting winter WY when considering only soil biological

properties as predictors.

Jahandideh Mahjenabadi et al. (2022) conducted a

comprehensive study in the Southwest of Iran, employing ML

algorithms to predict the spatial distribution of soil biological

properties and WY. The investigation involved collecting topsoil

samples from 60 locations, recording wheat grain yield at each site,

and measuring various soil properties, including urease, alkaline

phosphatase, basal respiration, microbial biomass carbon, SOC,

MBC : SOC ratio, and metabolic quotient. They utilized the RF

model in the initial phase to predict soil biological properties. They

were employedsix ML algorithms to model wheat grain yield. These

models were optimized and evaluated using 10-fold cross-validation

with the Caret package. Results revealed varying prediction

accuracies among soil biological properties, with qCO2

demonstrating the highest accuracy (R2 adj = 0.80) and BR the

lowest (R2 adj = 0.23). Soil covariates played a significant role in

modeling urease (Ur), qCO2, microbial biomass carbon (MBC), and

the MBC : SOC ratio. Specific environmental predictors, such as

bands 6 and Chanel Network Base Level, were identified as crucial

for alkaline phosphatase (AP) and basal respiration (BR),

respectively. Regarding wheat grain yield prediction, both

Stochastic Gradient Boosting (SGB) and RF models outperformed

other algorithms, achieving impressive R2 adj values of 0.89 and

0.88, respectively. The study underscored the significance of urease

(Ur) and alkaline phosphatase in predicting wheat grain yield and

elucidating its spatial variability.

The emphasis on soil biological properties suggests that

indicators of soil health, such as microbial biomass, enzymatic

activity, and microbial diversity, are integral to understanding and

predicting winter WY. Healthy soil biology can contribute to

nutrient availability, organic matter decomposition, and other

processes that impact crop growth (de Faria et al., 2021). Soil

microorganisms play vital roles in nutrient cycling, disease

suppression, and overall plant health. The finding suggests that

the activity and diversity of these microorganisms, as reflected in

soil biological properties, are important factors influencing WY

(Philippot et al., 2013).

The effectiveness of the RF model implies that the relationships

between soil biological properties and winter WY are likely complex

and nonlinear. Traditional linear models may struggle to capture

these intricate relationships, and ensemble methods like RF are well

suited for handling such complexities (Breiman, 2001). It is crucial

to assess the model’s performance across different datasets or

geographic locations to validate its generalizability. This would

help determine whether the observed effectiveness of the RF

model holds true under various conditions.The average wheat
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production in the country has values of around 3000 (kg ha−1)

(Jahandideh Mahjenabadi et al., 2022). In contrast with country

records, Khosravi et al. (2023) in the vicinity of the study area,

observed an average yield of 6750 (kg ha−1) for winter wheat. It can

be inferred that the spatial prediction of actual WY is highly

dependent on a combination of various factors in the

surrounding environment, such as soil and vegetation. Similarly,

these results correspond to what Monaco et al. (2008) indicated in

this context.

The contrast between the average wheat production values

reported is indicative of significant spatial variability in wheat

production. This discrepancy underscores the influence of local

factors on crop yield and the importance of considering the specific

conditions of a region when assessing agricultural productivity. This

spatial variability can be attributed to diverse environmental

conditions, including variations in soil properties, climate, and

land management practices (Lobell et al., 2009). The inference

that spatial prediction of actual WY is highly dependent on a

combination of various factors in the surrounding environment

aligns with the understanding that local conditions play a crucial

role in determining crop outcomes. Factors such as soil quality,

water availability, temperature, and topography can vary

significantly from one location to another, contributing to

differences in crop performance (Lobell et al., 2009). Tailoring

agricultural practices to the specific characteristics of each

location can optimize productivity and resource use efficiency.

Precision agriculture, where technologies such as remote sensing,

GPS, and data analytics are employed to customize farming

practices at a finer spatial scale allows farmers to adapt their

strategies based on the specific conditions of different field areas

(Tao et al., 2021).

Ren et al. (2021) confirmed in their crop modeling study that

winter WY can be accurately estimated before harvesting dates,

provided that adequate NDVI data are available. This capability has

also been demonstrated by Boori et al. (2023) for rice. The NDVI is

known for its ability to indicate green biomass or nitrogen content,

particularly in the plant canopy. In the case of wheat, studies have

found a strong correlation between the peak of NDVI and yield,

which was closely related to the crop reproductive stage (Skakun

et al., 2017). Similarly, a study conducted by Panek and Gozdowski

(2020) investigated the relationship between NDVI and cereal grain

yield, finding a strong correlation between NDVI and grain yield,

specifically during the period from March to May (similar to our

research). Even a slight increase in NDVI (e.g., 0.1) during the

spring season resulted in a substantial rise in grain yield, ranging

from approximately 1.1 to 2.6 tons per ha. Topography attributes

also impact crop production by affecting microclimate and related

soil factors such as temperature, which in turn influence

germination, tiller production, and overall crop growth (Godwin

and Miller, 2003). Topographical data in combination with soil

information are useful for explaining yield variability on an

agricultural field scale (Kravchenko and Bullock, 2000).

Moreover, terrain attributes such as elevation, plan, and profile

curvatures, and relative slope position influence soil properties and

classification (Beaudette et al., 2013). The spatial variability of

texture and other soil properties at the field scale concerning
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terrain attributes links the nature of the variability with water

movement and nutrient dynamics within the soil (Bobryk et al.,

2016; Kokulan et al., 2018).

Land managers and farmers may need to pay closer attention to

the factors that are contributing to the low WY values and high

uncertainty levels, such as soil type, land use, and management

practices. Baltensweiler et al. (2021) believed that the effect of the

number of observations on model uncertainty was significant.

Therefore, additional field observations/records and monitoring

systems are necessary to reduce uncertainty levels in large-scale

areas. Our findings are supported by Mueller et al. (2012) and

Sinclair and Rufty (2012), who concluded that nutrient and water

management, are crucial in closing the yield gap. Therefore, fertilizer

use, irrigation, and climate significantly affect yield variability, and

crop yield increases are more closely associated with nitrogen and

water management than plant genetics. Actual yield is sensitive to

growth-reducing factors such as disease, pests, and weeds in humid

areas (Grassini et al., 2015). Furthermore, Shimoda et al. (2022)

demonstrated that the yield gap is caused by humidity damage and

can be reduced through breeding improvement.
5 Conclusion

The study was conducted with the global aim of preparing a

spatial prediction maps of the actual WY and yield gap and

identifying the most important factors in the study area.

The study emphasizes the significance of considering multiple

covariates when predicting WY. The findings suggest that SOC, TN,

NDVI, and CHN are the most important predictors for actual WY

and can be used to enhance the precision of spatial predictions. In

terms of RI, the quantitative results showed that topographic

attributes had the greatest potential in actual WY prediction,

followed by soil variables and vegetation indices.

The performance of MLA showed that the ANNs algorithm

outperformed the RF algorithmwith higher R2, CCC, and RPD values

and lower RMSE values, although both considered algorithms had

acceptable accuracy in digital mapping of actual WY. The results of

the uncertainty analysis also confirmed the high potential of the

applied methodology for mapping crop production in other parts of

the country and areas with similar environmental conditions.

The prediction map of actual WY revealed that more than 60%

of the study area, mostly located in the northern, western,

southwest, and part of the central regions, had the highest actual

wheat production in the range of 5000 to 7000 (kg ha−1), which is

higher than the average wheat production in the country and

vicinity of the region with values around 3000 and 6750 kg ha−1,

respectively. We showed that there is a high yield gap between the

potential yield production and the actual WY, particularly in areas

with low actual yield.

It is recommended that management focus their efforts on these

areas to decrease the yield gap and increase farmer income. By

mitigating the underlying factors that lead to diminished crop yields,

including but not limited to soil composition, irrigation techniques,

pest control measures, and the careful selection of cultivars that are

tolerant to high salinity and drought conditions, there exists a potential
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path for enhancing the overall efficiency of wheat cultivation and

augmenting the economic returns reaped by farmers. However, this

research has provided valuable insights into predictingWY using a ML

and DSM framework. The results can be utilized by stakeholders and

land managers to plan and increase the productivity of WY in areas

with low actual WY and a high production gap.
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