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Introduction: Wheat is a food crop with a large global cultivation area, and the

content and quality of wheat glutenin accumulation are important indicators of

the quality of wheat flour.

Methods: To elucidate the gene expression regulation and metabolic

characteristics related to the gluten content during wheat grain formation,

transcriptomic and metabolomic analyses were performed for the high gluten

content of the Xinchun 26 cultivar and the low proteins content of the Xinchun

34 cultivar at three periods (7 d, 14 d and 21 d) after flowering.

Results: Transcriptomic analysis revealed that 5573 unique differentially expressed

genes (DEGs) were divided into two categories according to their expression

patterns during the three periods. The metabolites detected were mainly divided

into 12 classes. Lipid and lipid-like molecule levels and phenylpropanoid and

polyketide levels were the highest, and the difference analysis revealed a total of

10 differentially regulated metabolites (DRMs) over the three periods. Joint analysis

revealed that the DEGs and DRMs were significantly enriched in starch and sucrose

metabolism; the citrate cycle; carbon fixation in photosynthetic organisms; and

alanine, aspartate and glutamate metabolism pathways. The genes and contents of

the sucrose and gluten synthesis pathways were analysed, and the correlation

between gluten content and its related genes was calculated. Based on weighted

correlation network analysis (WGCNA), by constructing a coexpression network, a

total of 5 specificmodules and 8 candidate genes that were strongly correlated with

the three developmental stages of wheat grain were identified.

Discussion: This study provides new insights into the role of glutenin content in

wheat grain formation and reveals potential regulatory pathways and candidate

genes involved in this developmental process.
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1 Introduction

Wheat (Triticum aestivum L.) is the largest crop in the world,

providing approximately 20% of the food available for humankind

and one of the most important food crops (Chawade et al., 2018).

With the improvements in living standards, the quality of wheat has

received increasing attention (Chawade et al., 2018). Wheat grain

protein is divided into albumin, globulin, gliadin and gluten

according to solubility; gliadin and gluten are the main storage

proteins and are the main components of gluten (Zheng et al., 2018;

Hackenberg et al., 2019). Because of the presence of gliadin and

gluten components, wheat flour can be kneaded with water to form

a dough, which can be fermented, steamed or baked to obtain a

variety of foods (Zheng et al., 2018; Hackenberg et al., 2019). The

content and quality of gluten are important indicators for

determining the quality of wheat flour, determining the process

performance of dough and determining the quality of steamed and

baked goods (Zheng et al., 2018; Hackenberg et al., 2019). Gluten

imparts characteristics of water retention, cohesion, viscoelasticity,

etc., that play a decisive role in the rheological properties and baking

quality of dough (Zheng et al., 2018; Hackenberg et al., 2019).

Therefore, exploring candidate genes for the study of wheat gluten

content, analysing the underlying molecular mechanism, and

improving the quality of wheat cultivars through breeding

pathways are important tasks for modern wheat breeding.

Transcriptomics is a discipline that studies gene expression and

transcriptional regulation in cells as a whole, and transcriptome

analysis is necessary for exploring genome function and differential

expression and plays an important role in studying plant growth

and development (Chen et al., 2014; Pankievicz et al., 2016;

Stelpflug et al., 2016; Hsu and Tung, 2017; Ji et al., 2022).

Metabolomics refers to the inheritance and development of

genomics, transcriptomics and proteomics and can directly reflect

the biochemical pathways and potential molecular mechanisms in

organisms by elucidating the metabolites downstream of the

genome as a whole and subsequently revealing the relevant

metabolic pathways and metabolic networks (Li et al., 2022;

Prakash et al., 2023). In recent years, transcriptomic and

metabolomic-based techniques have provided powerful tools and

methods for revealing molecular characteristics and identifying

candidate genes related to plant growth and development and

fruit quality (Jiang et al., 2022; Wan et al., 2022; Zhang and

Fernie, 2023). Coexpression network analysis is a systems biology

method in which gene coexpression networks are constructed by

analysing the correlation of gene expression to discover functionally

relevant gene modules (Ma et al., 2021). Transcriptome and

metabolome techniques have been used to detect differences in

fruit flavour and carotenoid content in the early ripening (MG) and

postripening (TR) stages of mango fruits (Peng et al., 2022).

Transcriptome and metabolome data were used to study the

accumulation of metabolites and transcriptional changes in the

late-maturing cultivar Kate Mango at different stages of fruit

development, and a regulatory network related to mango fruit

ripening was constructed (Wu et al., 2022). By analysing clusters

of metabolites and genes with the same tendencies to change in
Frontiers in Plant Science 02
expression in cashews, 17 genes involved in phosphatidylinositol

(PI) synthesis were found, and the transcription factor WRKY11,

which can potentially regulate PI synthesis, was also identified

(Zhao et al., 2022). Through poplar transcriptomics and

metabolomics, the effects of miR156 on other microRNAs and

their targets associated with anthocyanin biosynthesis were revealed

(Wang et al., 2020).

The gluten content during the process of wheat grain formation

is an important index for quality evaluation, and studying the gluten

content is highly important for improving the quality of wheat

(Zheng et al., 2018; Hackenberg et al., 2019). However, the gluten

content during wheat grain formation involves complex polygenetic

mechanisms, multisignalling pathways and metabolic processes.

Therefore, in this study, the high-gluten-content Xinchun 26

cultivar and the low-gluten-content Xinchun 34 cultivar were

selected for application of transcriptomic and metabolomic

methods to conduct a cluster analysis of differentially expressed

genes (DEGs) and differentially regulated metabolites (DRMs),

KEGG enrichment analysis, and transcription factor (TF)

expression analysis and to determine the key genes related to

gluten content in wheat grain formation through coexpression

analysis and qRT−PCR. This study provides new insights into the

gluten content during wheat grain formation and reveals potential

regulatory pathways and candidate genes involved in this

developmental process.
2 Materials and methods

2.1 Plant material

The high gluten spring wheat cultivar Xinchun 26 and the low

gluten spring wheat cultivar Xinchun 34 were chosen for the study.

The above two cultivars were sown according to the designated

community area of 4.8 m2 in the military household experimental

base of Changji city, Xinjiang, and the management method was the

same as that used for conventional fields. Fertilization and watering

were applied at the same time to ensure that the growth

environment of the two cultivars was the same. Mid-spike grains

exhibiting consistent growth were collected at 7 d, 14 d, and 21 d

after flowering, and 14 replicates were collected for each variety (3

for RNA-seq sequencing, 5 for metabolome sequencing, 3 for

physiological index determination, and 3 for qRT−PCR).

Immediately after collection, the samples were flash frozen with

liquid nitrogen, brought back to the laboratory and stored in a -80°

C freezer.
2.2 RNA-seq sequencing and analysis

After DNase I (Illumina, USA) digestion of the sample total

RNA, the mRNA was purified from 1 mg of total RNA using oligo

(dT) magnetic beads, followed by mRNA fragmentation in

ABclonal First Strand Synthesis Reaction Buffer. Subsequently,

the first strand of cDNA was synthesized with random primers
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and reverse transcriptase (RNase H) using fragmented mRNA as a

template, and the second strand of cDNA was subsequently

synthesized with dNTPs, RNAseH, DNA polymerase I and

buffer and ligated to perform PCR amplification. The PCR

products were purified, and the library quality was evaluated

using an Agilent Bioanalyzer 4150 (Kusser et al., 2006). The

constructed library was sequenced on the Illumina HiSeq 2500

sequencing platform. Sequencing was performed by Nanjing Jisi

Huiyuan Biotechnology Co., Ltd. (Nanjing, China). After the

original sequence was obtained, Fastp software (version 0.23.4)

was used to remove the barcode sequence and filter out the N

sequences with low masses and ratios greater than 5%, etc., to

obtain clean reads that could be used for subsequent analysis

(Chen et al., 2018). HISAT2 was used to align the clean reads with

the wheat reference genome (https://urgi.versailles.inra.fr/

download/iwgsc/IWGSC_RefSeq_Assemblies/v2.1/, version

iwgsc_refseqv2.1) (Pertea et al., 2016). The number of

transcripts per thousand bases per million mapped fragments

(FPKM) was used for the characterization of expression. The read

counts (raw counts) of the genes were calculated, and the p values

and fold changes were calculated with DESeq2 software. A P value

≤ 0.05 and |log2fold change|>1 were used as the screening criteria

for identifying DEGs (Liu et al., 2021). The DEGs were annotated

based on the KEGG database (http://www.genome.jp/kegg/)

(Kanehisa and Goto, 2000).
2.3 Metabolite extraction

One hundred milligrams of the sample was measured, and 800

mL of the extraction solution (methanol–acetonitrile–water volume

ratio = 2:2:1, internal standard concentration = 20 mg/L) was added

to the internal standard and added to each sample. Two small steel

balls were added, and the samples were placed into a tissue grinder

for grinding (at 50 Hz for 5 min; special samples that are difficult to

break can be appropriately extended). After ultrasonication in a 4°C

water bath for 10 min, the samples were allowed to rest at -20°C for

1 h. The samples were subsequently centrifuged at 4°C at 25,000

rpm for 15 min. After centrifugation, 600 mL of the supernatant was
added to a 96-well plate. Using a 96-well filter plate for filtration,

200 µl of 70% methanol was first added to rinse the filter plate, and

then 500 µl of supernatant was added for filtration. The filtered

samples were collected, and each sample was transferred to a 96-

well plate with 100 mL of supernatant. The plates were divided into

positive and negative ions and were spared for a total of 3 plates

(Jones and Kinghorn, 2012).
2.4 UPLC−MS analysis

In this experiment, a Waters UPLC I-Class Plus (Waters, USA)

tandem Q Autonomous high-resolution mass spectrometer

(Thermo Fisher Scientific, USA) was used for the separation and

detection of metabolites. The column used was a Hypersil GOLD

aQ Dim column (1.9 mm 2.1*100 mm, Thermo Fisher Scientific,
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USA). The mobile phases were 0.1% formic acid in water (liquid A)

and acetonitrile (liquid B) containing 0.1% formic acid. The flow

rate was 0.3 mL/min, the column temperature was 40°C, and the

injection volume was 5 mL. A Q Autonomous mass spectrometer

(Thermo Fisher Scientific, USA) was used for primary and

secondary mass spectrometry data acquisition. The mass

spectrometry scanning mass-core ratio range was 125~1500

positive ions, 100~1500 negative ions, 70,000 first-order

resolution, 1e6 AGC, and 100 ms injection time (IT, injection

time). The MS data were imported into Compound Discoverer

3.2 (Thermo Fisher Scientific, USA) software, combined with the

mzCloud database and the ChemSpider online database for MS data

analysis, and a data matrix containing the metabolite peak area and

identification results was obtained (Jones and Kinghorn, 2012; Wen

et al., 2017; Huang et al., 2019; Yu et al., 2021).
2.5 Metabolomic analysis

Based on the metabolite content data matrix, principal

component analysis (PCA) was performed on each sample using

R. The first principal component was first modelled and analysed by

OPLS-DA, and the quality of the model was tested by 7-fold cross-

validation. The validity of the model was judged by the R2Y

(interpretability of the model to the categorical variable Y) and

Q2 (predictability of the model) obtained by cross-validation.

Finally, by permutation test, the order of the categorical variable

Y was randomly adjusted several times to obtain different random

Q2 values, and further tests of the effectiveness of the model were

performed. Using the Human Metabolome Database (HMDB) and

KEGG database, the classification of metabolites and the functional

annotation of the pathway were carried out, and the main

biochemical metabolic pathways and signal transduction

pathways associated with the metabolites were determined

(Kanehisa and Goto, 2000). Partial least squares regression was

used to establish a model of the relationship between metabolite

expression and sample class to model and predict sample class

(Barker and Rayens, 2003; Westerhuis et al., 2008). The fold change

in the expression of each metabolite in each comparison group was

calculated. Student’s t test was used to test the significance of the

expression of each metabolite in each comparison group, and a fold

change ≥1.2 or ≤0.83 and a q value < 0.05 were used as the standards

for screening for differentially abundant metabolites (Dunn

et al., 2011).
2.6 WGCNA

To ensure the distribution of scale-free networks, the weighting

coefficient b should meet the correlation coefficient close to 0.8 and

have a certain degree of gene connectivity. In this study, b=7 was

selected as the weighting coefficient. The automatic network

building function of blockwise modules was used to construct the

network, and multiple valid modules were obtained. The number of

genes contained in each module was different. MinModuleSize = 30
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and Merge Cut Height = 0.25 were used as the standards, and

modules with a combined similarity of 0.75 were obtained. The

correlation coefficients between the module’s characteristic vector

ME (module eigengene) and different durations of hormone

content and treatment were calculated. R>0.80 and P<0.05 were

used as criteria for screening the specificity modules. Cytoscape

(version 3.10.0) software was used for visualization of coexpression

networks (Shannon et al., 2003).
2.7 qRT−PCR

Total RNA was extracted using an EZNA. Plant RNA Kit

(Omega Bio-Tek, Doraville, GA, USA). The concentration of each

RNA sample was determined using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA), followed by the use of 1 mg of isolated RNA to obtain first-

strand cDNA via a PrimeScript reverse transcription RT kit with

gDNA™ erasure (Takara Bio, Inc., Shiga, Japan). qRT−PCR

analysis was performed using Roche LC480 equipment (Roche

Diagnostics GmbH, Mannheim, Germany) and SYBR Green

(Takara Bio, Inc.). Using a two-step PCR amplification procedure,

predenaturation was carried out at 95°C for 30 sec, followed by 40

cycles of denaturation at 95°C for 5 sec and annealing at 60°C for 34

sec. The relative expression levels of the target genes were calculated

using geNorm software, with the reference gene Actin and three

biological replicates for each gene. All primers used in this study are

shown in Supplementary Table S1.
3 Results

3.1 Determination of Xinchun 26 and
Xinchun 34 protein content

The content and quality of gluten are important indicators for

determining the quality of wheat flour and determine the process

performance of the dough and the quality of steamed and baked

goods (Zheng et al., 2018; Hackenberg et al., 2019). To do this, we

first determined the levels of four proteins (albumin, globulin,

gliadin and glutenin) in Xinchun 26 and Xinchun 34 seeds 7 d,

14 d and 21 d after flowering (Figure 1). Compared with those at 7 d

after flowering, the expression of the four proteins at 14 d and 21 d

increased significantly in both materials. The serum ALB

concentration significantly differed among the three treatment

groups, and the globulin concentration significantly differed

between the two treatment groups at 21 d. Gliadin and glutamine

levels were significantly greater in Xinchun 26 than in Xinchun 34

at 7 d, 14 d and 21 d. These results showed that the gluten content in

Xinchun 26 was significantly greater than that in Xinchun 34. To

further explore key genes and key metabolites related to gluten

content during wheat grain formation, RNA-seq and metabolome

sequencing were performed on Xinchun 26 and Xinchun 34 grains

at 7 d, 14 d and 21 d after flowering.
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3.2 RNA-seq analysis

A total of 18 RNA-seq samples from 2 materials and 3 periods

produced a total of 130.37 Gb of data, and the amount of clean data

from each sample reached 5.45 Gb or more. The Q30 percentage

was 89.52%, the percentage of sequences that were shared with the

reference genome was between 86.08% and 94.31%, and the average

alignment rate was 89.62% (Supplementary Table S2). The

correlation between the same biological replicates was good, the

correlation coefficient range was 0.84~1.00, the PCA and

correlation analysis results were consistent, and the replicates

were clustered together (Supplementary Figure S1). Ten genes

were randomly selected for 3 independent replicates of qRT−PCR

analysis, and the transcriptome data were significantly correlated

with the qRT−PCR data (R2 = 0.9207; Supplementary Figure S2).

The results showed that the test sampling was reasonable and that

the RNA-seq data quality was reliable.
3.3 RNA-seq differential analysis

Differential analysis was performed over 3 developmental

periods for Xinchun 26, which revealed 32,315 DEGs between 7 d

and 14 d, 34,399 DEGs between 7 d and 21 d, and 10,313 DEGs

between 14 d and 21 d, for a total of 2,697 DEGs over three periods

(Figure 2A). In Xinchun 34, there were 10,077 DEGs between 7 d

and 14 d, 22,123 DEGs between 7 d and 21 d, and 13,933 DEGs

between 14 d and 21 d, for a total of 1,872 DEGs (Figure 2B) over

the three periods. Among the two materials, 7 d had 33036 DEGs,

14 d had 15249 DEGs, 21 d had 14925 DEGs, and 5573 DEGs were

detected over the three periods (Figure 2C). A total of 5573 DEGs in

the three periods were divided into two categories according to their

expression patterns; the expression of Cluster 1 in Xinchun 26 was

greater than that in Xinchun 34, and the expression gradually

decreased with the development of grains (Figures 2D, E).

Similarly, the expression of Cluster2 in Xinchun 34 was greater

than that in Xinchun 26, but the expression did not change with

grain development (Figures 2D, E).
3.4 Metabolomic analysis

UPLC−MS identified a total of 863 metabolites, and PCA

revealed that the first principal component could explain 71.23%

of the total variance, the second principal component could explain

8.51% of the total variance, and the first principal component could

distinguish different materials and periods (Figure 3A). To

understand the classification and functional characteristics of the

different metabolites, we classified and annotated the identified

metabolites, which were divided into 12 main categories. The

contents of lipids and lipid-like molecules accounted for 22.72%,

the contents of phenylpropanoids and polyketides accounted for

18.25%, the contents of organoheterocyclic compounds accounted

for 16.39%, and the contents of organic acids and derivatives
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accounted for 14.89%. Benzenoids accounted for 11.55%; organic

oxygen compounds, 6.15%; nucleosides, nucleotides, and analogues,

4.66%; alkaloids and derivatives, 1.86%; and organic nitrogen

compounds, 1.31%. The percentages of organooxygen

compounds, lignans, neolignans, related compounds and organic

compounds were 0.74% (Figure 3B).
3.5 Metabolomic difference analysis

Differences were observed over 3 developmental periods in

Xinchun 26, with 147 DRMs occurring between the 7 d mark and

14 d mark, 205 DRMs occurring between the 7 d mark and 21 d

mark, 138 DRMs occurring between the 14 d mark and 21 d mark,

and a total of 35 DRMs occurring over the three periods

(Figure 4A). In Xinchun 34, there were 166 DRMs between 7 d

and 14 d, 115 DRMs between 7 d and 21 d, 48 DRMs between 14 d

and 21 d, and 17 DRMs in the three periods (Figure 4B). Among the

two materials, 7 d had 137 DRMs, 14 d had 138 DRMs, 21 d had 34

DRMs, and 10 DRMs occurred during the three periods

(Figure 4C). The four DRMs (3-methyl-L-histidine, L-arginine, L-

citrulline, L-citrulline and L-asparagine) had the highest 7d content

in Xinchun26, which decreased with development (Figure 4D). The

six DRMs (L-alanine, beta-alanine, 4-aminobutyric acid,

xanthosine, N1-methyl-2-pyridone-5-carboxamide and N1-
Frontiers in Plant Science 05
methyl-4-pyridone-3-carboxamide) had the highest 14d content

in Xinchun 26 (Figure 4D).
3.6 RNA-seq and metabolome
combined analysis

KEGG enrichment analysis was performed on the DRMs and

DEGs, and the DEGs were enriched mainly in starch and sucrose

metabolism; photosynthesis-antenna proteins; glycolysis/

gluconeogenesis; carbon fixation in photosynthetic organisms;

pyruvate metabolism; fructose and mannose metabolism; the

pentose phosphate pathway; alanine, aspartate and glutamate

metabolism; glyoxylate and dicarboxylate metabolism; fatty acid

degradation; and the citrate cycle (Figure 5A). The DRMs were

mainly enriched in aminobenzoate degradation; starch and sucrose

metabolism; ABC transporters; protein digestion and absorption;

biosynthesis of amino acids; biosynthesis of various secondary

metabolites; the citrate cycle; carbon fixation in photosynthetic

organisms; alanine, aspartate and glutamate metabolism; mineral

absorption; and flavone and flavonol biosynthesis (Figure 5B). The

common enrichment pathways for DRMs and DEGs were involved

in starch and sucrose metabolism; the citrate cycle; carbon fixation

in photosynthetic organisms; and alanine, aspartate and glutamate

metabolism (Figures 5A, B). The sucrose synthesis pathway genes
FIGURE 1

Albumin, globulin, gliadin and glutenin contents of Xinchun 26 and Xinchun 34 seeds 7 d, 14 d and 21 d after flowering. The results are presented as
the means ± SDs (n = 3, **P < 0.01).
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and sucrose content were analysed, and the sucrose synthesis

pathway genes were sucrose phosphate synthase (SPS), sucrose-

phosphate phosphatase (SPP), sucrose synthase (SUS) and 1,4-

alpha-glucan branching enzyme (GEB) (Figure 5C, Supplementary

Table S3). The sucrose content in Xinchun 34 was significantly

greater than that in Xinchun 26, and the sucrose content in both

materials at 14 d and 21 d was significantly greater than that in the

seeds of rose flowers at 7 d (Figure 5D).
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3.7 Gluten-related gene expression analysis

Among the wheat storage proteins, gluten plays a key role in the

processing quality of wheat. For this purpose, glutenin-related genes

were analysed among the DEGs, and a total of 59 genes were

identified. The expression patterns of glutenin-related genes were

visualized using a heatmap, which was divided into 7 main clusters

(Figure 6A, Supplementary Table S3). Cluster 1 included 4 genes; the
BA

FIGURE 3

(A) Metabolome PCA. (B) Metabolome classification pie chart.
B C

D E

A

FIGURE 2

(A) There were Xinchun (26) DEGs at 7 d, 14 d and 21 d after flowering, (B) There were Xinchun (34) DEGs and corresponding quantities at 7 d, 14 d
and 21 d after flowering, (C) The Venn diagrams and quantities of DEGs in Xinchun (26) and Xinchun (34) flowers after 7, 14 and 21 d, (D) shows an
expression heatmap of DEGs between 7 d, 14 d and 21 d after Xinchun 26 and Xinchun 34 treatment, (E) Line chart of the expression trends of DEGs
among the 7 d, 14 d and 21 d periods after Xinchun 26 and Xinchun 34 flowered.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1309678
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2023.1309678
expression of 4 genes in Xinchun 34 was greater than that in Xinchun

26, and the expression level gradually increased with the development

of grains. Cluster 2 included 8 genes, the expression level of Cluster 2

gradually increased with the development of grains in Xinchun 26,

and the expression trend in Xinchun 34 remained basically

unchanged. Cluster 3 included 11 genes whose expression levels

increased with grain development, and the expression patterns of the

two materials were basically the same. Cluster 4 included 6 genes, and

with increasing grain development, the expression patterns of the two

materials were basically the same, while the expression levels at 14 d

and 21 d were basically unchanged. Cluster 5 included 14 genes, the

expression level of Cluster 5 gradually decreased with the

development of grains, and the expression level in Xinchun 26 was

greater than that in Xinchun 34. Cluster 6 included 5 genes, whose

expression gradually decreased with grain development, and the

expression level in Xinchun 34 was greater than that in Xinchun

26. Cluster 7 included 12 genes, and the expression levels of Cluster 7

gradually decreased with the development of grains on Lunar New

Year 34; the expression levels were basically the same at 7 d and 14 d
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in New Spring 26, and the lowest expression was observed at 21 d. To

further explore the relationship between these genes and gluten

content, we calculated the correlation between gene expression and

wheat glutenin and screened for absolute correlation coefficients

greater than 0.5 for visualization (Figure 6B, Supplementary Table

S3). A total of 25 genes were positively correlated with glutenin, with

correlation coefficients ranging from 0.53 to 0.95, and 20 genes were

negatively correlated with glutenin content, with correlation

coefficients ranging from 0.50 to 0.95.
3.8 TF expression analysis

We analysed all the DEGs, which included B3 (4.43%), C2H2

(4.43%), AP2/ERF (6.33%), HSF (4.43%), NAC (6.96%), MYB

(10.13%) and FAR1 (20.25%) (Figure 7A). The expression patterns

of the differentially expressed TF genes are shown using a heatmap

(Figures 7B-D). B3 exhibited completely opposite modes of expression

in both materials (Figure 7B). C2H2 expression was downregulated in
B

C D

A

FIGURE 4

(A) Xinchun 26, 7, 14 and 21 d after flowering, a Venn diagram and quantity of DRMs were generated, (B) Xinchun 34, 7, 14 and 21 d after flowering, a
Venn diagram and number of DRMs were generated, (C) The Venn diagrams and quantities of the Xinchun 26 and Xinchun 34 flowers after 7, 14 and
21 d of treatment, (D). Heatmap of DRM levels 7, 14 and 21 d after Xinchun 26 and Xinchun 34 flowering.
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Xinchun 26 and upregulated or unchanged in Xinchun 34 (Figure 6B,

Supplementary Table S3). The expression of most of the AP2/ERF

genes gradually decreased with development (Figure 6B,

Supplementary Table S3). The expression of all the genes in the

HSF family except TraesCS4B03G0978300 was downregulated

(Figure 6C, Supplementary Table S3). The expression pattern of

NAC is complex, with expression downregulated in Xinchun 26,

upregulated or unchanged in Xinchun 34, and upregulated in 26

(Figure 6C). MYB was expressed mainly in Yanghua plants after 14

and 21 d (Figure 6C). FAR1 was expressed mainly on Xinchun

34 (Figure 6C).
3.9 WGCNA

Based on the FPKM values of the genes, according to the soft

threshold calculation results, b=7 was selected for network

construction; a total of 12 coexpression modules were identified

by combining and expressing similar modules via the dynamic
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shearing tree method, and each module is represented by a

different colour (Figure 7A). Five of the 12 modules were

strongly correlated with 7 d, 14 d and 21 d (Figure 7B), and

four candidate genes were identified (TraesCS7B03G1102000

(ATPase), TraesCS1A03G0797600 (SpoU), TraesCS2B0

3G0927000 (G6PD4) and TraesCS4D03G0099800 (ADA1E))

(Figure 7C). Overall, 2 candidate genes were identified

(TraesCS5B03G1060800 (PUP4) and TraesCS1B03G1120700

(PHO2)) (Figure 7D). Brown identified four candidate genes

(TraesCS1B03G0703000 (ERF), TraesCS3D03G0849200

(PICALM4A), TraesCS5B03G0681600 (O-glycosyl hydrolases)

and TraesCS3B03G0727200 (xanthine/uracil permease))

(F igure 7E) . Four cand ida t e gene s were id en t ified

(TraesCS6D03G0025600 (SWEET12), TraesCS7B03G0941900

( D I R 1 - l i k e ) , T r a e s C S 1A 0 3G 0 5 7 7 3 0 0 ( CHX ) a n d

TraesCS1A03G1007800 (DALL)) (Figure 7F). Four candidate

genes were identified (TraesCS1A03G0201700 (PIF3) ,

TraesCS2A03G1077700 (PPR), TraesCS5B03G0905200 (COG)

and TraesCS3D03G0349800 (GRF)) (Figure 7G).
B

C D

A

FIGURE 5

(A) Bubble map of DEG KEGG enrichment between materials. (B) Bubble map of the DRM KEGG enrichment between materials. (C) Gene expression
calorimetry of the sucrose synthesis pathway, (D) The results are presented as the means ± SDs (n = 3, **P < 0.01).
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3.10 qRT−PCR of candidate genes

Based on the 18 candidate genes associated with the gluten

content of wheat grains mined by WGCNA, we performed qRT

−PCR on Xinchun 26 and Xinchun 34, and 8 genes

(TraesCS7B03G1102000 (ATPase), TraesCS1A03G0797600 (SpoU),

TraesCS2B03G0927000 (G6PD4), TraesCS5B03G1060800 (PUP4),

TraesCS1B03G0703000 (ERF), TraesCS6D03G0025600 (SWEET12),

TraesCS1A03G0201700 (PIF3) and TraesCS1B03G1120700 (PHO2))

were significantly differentially expressed between the two materials

(Figure 8, Supplementary Figure S3). The expression of

TraesCS7B03G1102000 (ATPase) and TraesCS1B03G0703000 (ERF)

decreased in both materials, and the expression in Xinchun 26 was

significantly greater than that in Xinchun 34. Similarly, the expression

of TraesCS1A03G0797600 (SpoU) decreased in Xinchun 26

but did not change significantly in Xinchun 34. In Xinchun

26, TraesCS2B03G0927000 (G6PD4) expression decreased on

14 d and was 3 fold change than on 7 d. In Xinchun 34,

TraesCS2B03G0927000 expression increased on 14d and was 4 fold

change than that on 7d. In Xinchun 34, TraesCS5B03G1060800

(PUP4) expression increased on 21d and was 1.5 fold change than

that on 7d. In Xinchun 26, TraesCS5B03G1060800 expression

decreased on 14d and was 2 fold change than that on 7d. In both

m a t e r i a l s , T r a e s C S 6 D 0 3 G 0 0 2 5 6 0 0 ( SW E E T 1 2 ) ,

TraesCS1A03G0201700 (PIF3) and TraesCS1B03G1120700 (PHO2)

increased significantly (Figure 8).
Frontiers in Plant Science 09
4 Discussion

Wheat is an important food crop that provides energy and a

variety of nutrients, such as protein and dietary fibre, for humans

(Chawade et al., 2018). In China, wheat is the main food for

northerners, and more than 85% of wheat is used to make bread,

biscuits, noodles and other flour products (Chawade et al., 2018;

Zheng et al., 2018; Hackenberg et al., 2019)[1-3]. High-gluten wheat

is suitable for making bread, medium-gluten wheat is suitable for

making steamed buns and noodles, and low-gluten wheat is suitable

for making biscuits (Chawade et al., 2018)[1]. As people pursue a

higher quality of life, the demand for better quality specialty wheat

is continually increasing (Zheng et al., 2018; Hackenberg et al.,

2019). Therefore, an in-depth study of the quality formation

mechanism of different types of wheat is highly important for the

selection and breeding of wheat cultivars with high gluten levels.

Wheat grain protein can be divided into nongluten protein

(approximately 15%~20%) and gluten protein (approximately

80%~85%) (Zheng et al., 2018). The solubility of different

reagents can be divided into four categories (i.e., albumin,

globulin, gliadin and gluten) (Delcour et al., 2012; Zheng et al.,

2018). Among these proteins, albumin and globulin are metabolic

proteins that play a role in plant growth and seed development;

moreover, both are structural proteins, the former giving rise to

dough ductility and stickiness, and the latter giving rise to dough

elasticity and strength (Delcour et al., 2012). Compared with those
BA

FIGURE 6

(A) A heatmap of the expression patterns of gluten-related genes in wheat was constructed, and the box plot represents the overall expression trend
of genes in each cluster. (B) For the correlation between gluten-related gene expression and gluten content, red represents a positive correlation,
blue represents a negative correlation, and colour depth represents the size of the image relationship number.
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in the 7-d seed period after flowering, the expression of the four

proteins at 14 d and 21 d increased significantly in both materials.

The serum ALB concentration significantly differed among the

three treatment groups, and the globulin concentration

significantly differed between the two treatment groups at 21 d.

The levels of gliadin and gluten were significantly greater in

Xinchun 26 than in Xinchun 34 (Figure 1). These results showed

that the gluten content of Xinchun 26 was significantly greater than

that of Xinchun 34, and the contents of these four proteins also

increased significantly with grain development.

To investigate the potential link between DEGs and metabolites

during grain formation and gluten protein components in wheat,

transcriptome and metabolome analyses were performed. PCA of the

transcriptome and metabolome revealed that the differences between

the periods were greater than the differences betweenmaterials, and the

first principal component could distinguish between different materials

and periods (Supplementary Figure S1, Figure 3A). There were 2697

DEGs in Xinchun 26 for the three periods, 1872 DEGs in Xinchun 34

for the three periods, and 5573 DEGs in the two materials for the three
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periods (Figure 2). According to the metabolomic differential analysis,

4 DRMs (3-methyl-L-histidine, L-arginine, L-citrulline, L-citrulline and

L-asparagine) had the highest 7d content in Xinchun 26, which

decreased with development (Figure 4D). The six DRMs (L-alanine,

beta-alanine, 4-aminobutyric acid, xanthosine, N1-methyl-2-pyridone-

5-carboxamide and N1-methyl-4-pyridone-3-carboxamide) had the

highest 14d content in Xinchun 26 (Figure 4D). These genes and

metabolites can provide a reference for the elucidation of gene and

molecular mechanisms related to the content of gluten in wheat.

The accumulation of protein in wheat grains mainly depends on

nitrogen metabolism and amino acid synthesis (Gao et al., 2021). In

wheat, gluten is the main storage protein that determines gluten content

(Yu et al., 2018). Gluten is first synthesized by the mRNA of the gluten

gene family in the rough endoplasmic reticulum to form a 57 kDa

precursor and then transported to the protein reservoir vacuole by Golgi

modification, and the hydrolytic endonuclease in the vacuole results in

the formation of an acidic subunit of 37-39 kDa and a basic subunit of

22-23 kDa (Yu et al., 2018; Gao et al., 2021). To this end, we identified 59

differentially expressed gluten synthesis-related genes, including 24
B

C

D

A

FIGURE 7

(A) The Xinchun 26 and Xinchun 34 difference TF pie charts are shown in Figure 5B. Figure 5C shows the expression heatmaps of B3, C2H2 and
AP2/ERF between Xinchun 26 and Xinchun 34. Heatmap of HSF, NAC and MYB expression between Xinchun 26 and Xinchun 34, Figure 5D. FAR1
expression calorimetry between Xinchun 26 and Xinchun 34.
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glutamine synthetases (GS), in wheat. Correlation analysis revealed that a

total of 25 genes were positively correlated with glutenin, with correlation

coefficients ranging from 0.53 to 0.95, and that 20 genes were negatively

correlated with glutenin content, with correlation coefficients ranging

from 0.50 to 0.95. GS is closely related to the high grain protein content

and nitrogen efficiency of wheat, and its activity significantly affects

protein and amino acid contents (Yin et al., 2022). The nitrogen

absorbed by wheat is catalysed by GS to produce glutamine (Gln) by

the ATP-dependent condensation reaction of ammonium with glutamic

acid (Glu), which then provides the N group directly throughGlu for the

biosynthesis of proteins, amino acids, and other nitrogen-containing

compounds (Nigro et al., 2016). We found that these DEGs related to

gluten synthesis, especially GS, can be used as important candidate genes

for improving wheat quality in the future.

Sugars are not only the energy source of plants but also important

structural material components. Many kinds of sugars can also bind

proteins to complex compounds (such as glycoproteins) and participate
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in cell recognition, intercellular material transport and other life

activities, regulating plant growth and development (Kanwar and Jha,

2019; Nägele et al., 2022). The common enrichment pathways for

DRMs and DEGs were starch and sucrose metabolism; the citrate cycle;

carbon fixation in photosynthetic organisms; and alanine, aspartate and

glutamate metabolism (Figures 5A, B). The sucrose content in Xinchun

34 was significantly greater than that in Xinchun 26, and the sucrose

content in both materials at 14 d and 21 d was significantly greater than

that in the seeds of Yanghua 7 d (Figure 5D). This means that the higher

the sugar content of the wheat kernel is, the lower the gluten content.

The sugar content of wheat not only reduces the yield of gluten but also

may affect the composition and quality of gluten. Changes in light and

dark times can significantly affect the synthesis of plant sugars because

changes in light time can cause changes in the efficiency of plant cells to

use light energy, which in turn affects cell division (Julius et al., 2017;

Yoon et al., 2022). In addition, the photocycle can not only change the

synthesis ability of photosynthetic pigments in plant cells but also affect
B

C D E

F G

A

FIGURE 8

(A) A hierarchical clustering tree of genes was constructed based on the coexpression network analysis, (B) A heatmap of the correlations and
significance between different developmental time points and materials, (C) The gene coexpression networks within the black modules, (D) The
gene coexpression networks are shown within blue modules, (E) Gene coexpression networks within brown modules. (F) The gene coexpression
networks within the green−yellow modules, (G) Gene coexpression networks within the green−yellow module.
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the absorption and utilization of nutrients and other substances by cells

and ultimately affect the synthesis and metabolism of the main active

substances in cells (Ahmad, 2016; Hart et al., 2019). Our joint analysis

also revealed that carbon fixation in photosynthetic organisms is an

important pathway affecting the gluten content of wheat grains. The

citrate cycle is a commonmetabolic pathway for the complete oxidation

of the three main types of organic matter in the body: sugar, fat and

protein (Fernie et al., 2004). The citrate cycle is a catabolic pathway that

provides precursor molecules for the biosynthesis of several substances

(Zhang and Fernie, 2018). For example, sugar and glycerol are

metabolized in the body to produce a-ketoglutaric acid, oxaloacetic

acid and other intermediate products of the tricarboxylic acid cycle;

oxaloacetic acid is a precursor for the synthesis of aspartic acid; and a-
ketoglutaric acid is a precursor for the synthesis of glutamic acid (Zhang

and Fernie, 2023). Some amino acids can also produce sugars through

different pathways through gluconeogenesis (Zhang and Fernie, 2023).

These findings suggested that changes in the sugar and gluten contents

of wheat grains may have been transformed by this process.

The method of combining transcriptome data with the WGCNA

algorithm to study core genes related to plant growth and development

and resistance has been widely used in the study of morphological
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formation and developmental regulatory mechanisms of plants, flowers,

leaves and fruits, as well as the prediction of unknown gene functions

(Dai et al., 2021; Wang et al., 2022; Yao et al., 2023). In this study, RNA-

seq data from 18 Xinchun 26 and Xinchun 34 samples were used to

screen 8 candidate genes related to the gluten content of wheat grains by

combining wheat grains with the WGCNA algorithm combined with

qRT−PCR. Among them, the expression of TraesCS2B03G0927000 and

TraesCS5B03G1060800 in the low-gluten-content Xinchun 34 variety

increased with grain development, while the expression in the high-

gluten-content Xinchun 26 gradually decreased. These two genes may

be the most important candidates for wheat gluten content. Based on

the annotation of homologous Arabidopsis genes, we found that

TraesCS2B03G0927000 encodes a BTB/POZ domain-containing

protein that mediates nutrient uptake and growth and development

in Arabidopsis (Mao et al., 2017). TraesCS5B03G1060800 encodes a

purine permease that is involved in ATP-dependent cytokinin

translocations and controls the spatiotemporal pattern of cytokinin

signalling (Qi and Xiong, 2013). The depletion of ligands in the ectoplast

leads to the inhibition of the cytokinin response (Qi and Xiong, 2013).

Cytokinins can stimulate plant growth and flowering, control growth

and differentiation, and delay ageing and are related to increased yield
FIGURE 9

qRT−PCR of the wheat grain gluten content hub genes. The results are presented as the means ± SDs (n = 3, **P < 0.01, *P < 0.05).
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(Gupta and Rashotte, 2012). These two genes may regulate wheat grain

gluten content through different mechanisms; however, the biological

function of these genes (specifically, TraesCS2B03G0927000 and

TraesCS5B03G1060800) in regulating wheat grain gluten content

requires further study. In conclusion, these findings provide new

insights and ideas for the study of wheat grain gluten content and lay

a foundation for in-depth analysis of themolecular mechanism of wheat

grain gluten content.
5 Conclusion

In this study, the RNA-seq and metabolome of Xinchun 26 plants

with high gluten content and low gluten content Xinchun 34 were

analysed at 7, 14 and 21 d after flowering. Transcriptomic analysis

revealed 5573 DEGs between the materials in the three periods, which

were divided into two categories according to their expression patterns.

Metabolomic analysis revealed that lipids, lipid-like molecules,

phenylpropanoids and polyketides were the two most abundant

metabolites, and the difference analysis revealed a total of 10 DRMs

over the three periods. Combined RNA-seq and metabolome analysis

revealed that starch and sucrose metabolism; the citrate cycle; carbon

fixation in photosynthetic organisms; and alanine, aspartate and glutamate

metabolism pathways were more important for determining the gluten

content of wheat grains. By constructing a coexpression network, five

specific modules that were strongly correlated with wheat grain

development were identified, and eight candidate genes were screened

via qRT−PCR. These findings provide new insights into the gluten content

during wheat grain formation and reveal potential regulatory pathways

and candidate genes involved in this developmental process.
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