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1 Introduction

With the rapid advancement of Next-Generation Sequencing (NGS) technologies,

researchers have gained access to an ever-increasing amount of biological genome data,

including many ultra-large genomes (>10 Gb). These ultra-large genomes are typically

found in species of gymnosperms, excluding the gnetophytes (Wan et al., 2022). Examples

of such species include Cycas (10.5 Gb) (Liu et al., 2022), Ginkgo (10.6 Gb) (Liu et al., 2021),

Norway spruce (12.3 Gb) (Nystedt et al., 2013), Chinese pine (25.4 Gb) (Niu et al., 2022),

and coast redwood (26.5 Gb) (Scott et al., 2016). However, due to the inherently large

genomes of gymnosperms, conducting whole-genome studies has become exceedingly

challenging (Wang and Ingvarsson, 2023). Handling these vast genomic datasets typically

demands substantial computational resources. Ultra-large genomes in gymnosperms are

characterized by an abundance of repetitive sequences, chimeric genes, and intricate

structural variations (Nystedt et al., 2013; Wan et al., 2022), rendering existing alignment

tools often ineffective in efficiently mapping sequencing reads to these extensive genomes.

Given the complexity of ultra-large genomes, the memory requirements for generating

alignment indices far exceed the capabilities of many research laboratories and researchers.

This has posed formidable obstacles for investigators attempting to address biological

questions within the context of these ultra-large genomes.

Coniferous trees hold considerable ecological and economic value, prompting extensive

researches into their entire genomes (Neale et al., 2022). Gymnosperms possess distinct

genes with unique functions (Ausin et al., 2016), indicating their high potential for

functional genomics studies. In order to study gene function in gymnosperms,

identifying differentially expressed genes is a primary avenue for exploring functional

genes (Costa-Silva et al., 2017), with RNA-seq serving as an indispensable tool for

analyzing differential gene expression at the transcriptome level (Stark et al., 2019).

Moreover, software tools such as STAR (Dobin et al., 2013) and HISAT2 (Kim et al.,

2019) have demonstrated high accuracy and sensitivity in detecting specific transcripts and

certain genes when mapping RNA-seq reads to the genome (Sahraeian et al., 2017).

However, prior to mapping, the process of indexing genome often consumes a substantial

amount of physical memory. For instance, HISAT2 constructs a reference genome index
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for the 3GB human genome with structure annotation file, it can

peak at a memory consumption of up to 200GB (Kim et al., 2019).

As genome sizes increase, the memory requirements escalate

accordingly. Notably, Paris japonica with a genome size of 145

Gb (Pellicer et al., 2010), represents the largest genomes among

eukaryotes, presenting a formidable challenge when it comes to

handling large genome alignment tasks that demand significant

physical memory.

In light of this, we suggest that when publishing the genomes of

gymnosperms, researchers should also provide a version of the

genome where repeat regions have been masked or at least provide

an annotation file for repeat regions to facilitate their use by

other researchers.
2 Alignment strategies for sequencing
reads in gymnosperms

In order to effectively map sequencing data to the reference

genome for gene function studies in gymnosperms, we have explored

some strategies to address the challenges. The most straightforward

approach involves increasing physical memory space, but this often

entails expensive hardware upgrades. Alternatively, in some special

cases, such as when aligning RNA-seq sequencing data, we can

employ a reference-free method to handle the sequencing data.

However, due to the absence of a reference genome for validation,

reference-free analysis may lead to a higher incidence of false

positives, where genes or transcripts are erroneously identified as

present when they do not actually exist (Lee et al., 2021). Therefore,

the optimal scenario is to align the sequencing reads to the index

established by the hard-masked genome, reducing memory usage

without altering the sequence and positional information of the

genes. To assess the effect of using a hard-masked genome in build

indices, we employed the STAR (v2.7.8, parameters: –runThreadN 20

–runMode genomeGenerate) to build index for the longest

chromosomes of four gymnosperm species. Our findings reveal a

notable reduction in maximum resident set size (i.e., the peak

memory usage) when building indices using a hard-masked

genome (Table 1). Apart from the repeat regions, all other regions

are considered as effective areas for index building. Consequently,

species with a higher proportion of repeat sequences might exhibit a

more pronounced reduction in maximum resident set size during

index building. However, this observation is not an absolute rule, as

the memory utilization during index creation is also influenced by the

complexity of gene structure annotation.

The large sizes of gymnosperm genomes are primarily

at tr ibuted to the his tor ica l and ongoing act iv i ty of

retrotransposons or transposable elements (TEs), including long

terminal repeat (LTR) retrotransposons (Feschotte et al., 2002; Lim

et al., 2007). Additionally, in gymnosperms, species with larger

genomes tend to have a higher proportion of intact LTRs and a

lower proportion of solo LTRs compared to species with smaller

genomes (Moffat, 2000; Nystedt et al., 2013; Wan et al., 2018; Xiong
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et al., 2021; Niu et al., 2022). Therefore, by masking repeat regions

in the genome, we can reduce the physical memory usage during the

index building process.
3 Impact on masked gymnosperm
genome alignment

Compared to angiosperms, gymnosperms, particularly those

with large genomes, are more prone to annotation issues due to a

higher proportion of repetitive sequences (Zhang et al., 2023). The

presence of repeats can lead to misinterpretation of gene

boundaries, affecting the accuracy of gene annotations (Nystedt

et al., 2013; Wang and Ingvarsson, 2023). Furthermore, in

automated annotation pipelines, tools like BRAKER (Hoff et al.,

2019) and MAKER (Campbell et al., 2014) are frequently employed

to utilize repeat-masked genome for annotation. This practice aims

to avoid noise and reduce computational burden (Pham et al., 2020;

Mei et al., 2021; Yang et al., 2022). It’s worth noting that in some

specific studies, only a small part of the genome is focused on. For

example, in RNA-seq read mapping, researchers primarily focus on

transcript regions (Conesa et al., 2016). Therefore, when researchers

aim for regions that have been annotated in the genome, mapping

sequencing reads to the masked genome may not have a significant

impact on the results or outcomes of the specific studies.

Gymnosperms are characterized by the presence of

exceptionally long genes (Nystedt et al., 2013; Guan et al., 2016;

Niu et al., 2022), often distinguished by their very long introns

(Wan et al., 2021). These introns sometimes incorporate LTRs and

TEs (Stival Sena et al., 2014). In Chinese pine, it appears that long

introns do not significantly affect transcription accuracy (Niu et al.,

2022). However, long genes in Picea glauca and Picea tabuliformis

tend to exhibit higher expression levels (Ren et al., 2006; Stival Sena

et al., 2014). Conversely, some studies in other organisms have

suggested that compact genes often display higher expression levels

(Castillo-Davis et al., 2002; Stenøien, 2007). The confusion

regarding the correlation between gene length and expression

level may be attributed to the overrepresented reads from long

transcripts, leading to statistical biases in RNA sequencing data

(Project et al., 2013; Wan et al., 2022). Therefore, genome-wide

masking of repeats has the potential to reduce intron length to some

extent while preserving gene structure, thus effectively minimizing

alignment errors.
4 Convenient workflow for obtaining
masked genomes

To assist researchers in more easily obtaining a masked genome

of ultra-large genome species for genome alignment, we have

organized a workflow. It provides researchers with instructions on

creating a masked genome either through sequence-based masking

or via the annotation of repeat regions within the sequence.
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Here are the main steps of this workflow: In the scenario where

only the genome sequence file is available, there is a need to perform

repeat sequence prediction and masking operations. Firstly, employ

Red (Girgis, 2015) to predict repetitive sequences within the

genome. Subsequently, transform the genome that has been

software-masked into a hard-masked genome. In the situation

where both the genome sequence file and repeat annotation are

provided, the provided repeat annotation file can be converted into

a bed file. Then, utilize the BEDTools (Quinlan and Hall, 2010) to

mask repeat regions based on the information within the bed file.

This method provides researchers with a more flexible solution.

The code and resources related to this workflow can be found in the

GitHub repository (https://github.com/pk-zhu/APMG), for use and

further improvement by the scientific community.
5 Discussion

Using a repeat-masked genome for alignment, particularly in

gymnosperms where genome expansion has been driven by an

increase in the proportion of repeats (Wan et al., 2022), can lead to

reduced memory usage during the indexing of a genome for

downstream analysis. However, this approach may present some

potential drawbacks in accurately representing genomic complexity.

Firstly, since more sequences are masked in gymnosperms, alignment

inaccuracies may occur during whole-genome alignment. These

inaccuracies might manifest when using a masked genome for read

mapping due to the absence of certain information. For example, some

reads might align to both ends of the masked region due to the absence

of nucleotides in the sequence, resulting in discrepancies in downstream

analyses reliant on alignment, such as estimating transcript abundance.

However, this possibility can be mitigated by setting a stringent

mismatch tolerance. Furthermore, due to the masking of certain

sequences, some genuinely multi-mapped reads may be considered as

uniquely mapped reads. However, since the prediction of repeats is

based on sequence similarity, only a limited number of reads might

experience this situation, and this inaccuracy will be diminished with

updates in repeat sequence prediction algorithms. Additionally, for
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variant calling analysis based on alignment results, masking repeat

regions can effectively eliminate false duplicates of a set of related genes,

thereby enhancing the accuracy of variant detection (Catreux et al.,

2021; Wagner et al., 2022). Given the substantial presence of repeats in

gymnosperm genomes, using a masked genome might therefore yield

more accurate results.

However, reads generated from whole-genome sequencing

techniques such as ATAC-seq (Buenrostro et al., 2013), BS-seq

(Krueger et al., 2012), and RAD-seq (Davey and Blaxter, 2011) are

not recommended to be used with a masked genome in analysis.

These techniques are commonly employed for sequencing across the

entire genome, aiming to comprehend the structure, functionality, and

variations within the genome. Therefore, these kinds of data might be

required for alignment across the whole genome or for computing

abundance signals of reads aligned to repeat regions. Additionally,

DNA methylation levels are positively correlated with genome size

(Novák et al., 2020), and some repeat sequences contribute to the

formation of highly methylated heterochromatin (Islam-Faridi et al.,

2007; Fedoroff, 2012), which is one of the critical factors for the proper

expression of long genes in gymnosperms (Fuchs et al., 2008; Niu

et al., 2022). Therefore, data capable of detecting methylation should

also not be mapped to the repeat-masked genome.

In conclusion, when adopting the masked genome for analysis,

researchers need to carefully balance the reduction in

computational resource consumption with the potential loss of

genetic information. It’s essential to consider this balance in the

context of their research objectives and specific subjects under

study. Masked genome offers a flexible and efficient solution for

studying gymnosperms but should be used judiciously considering

its limitations in specific research scenarios.
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TABLE 1 Comparison of peak memory usage in unmasked and repeat-masked sequences in the longest chromosomes of four gymnosperm species.

Species
Longest Chromo-

some Size
Repeats

Proportion

Maximum Resident Set
Size (kbytes) Repeat-Masked

Memory Proportion

Unmasked
Repeat-
masked

Welwitschia
mirabilis 551,969,684 44.40% 13,327,256 8,150,212 61.15%

Cycas
panzhihuaensis 692,804,514 54.56% 17,606,716 8,851,680 50.27%

Ginkgo biloba 1,185,857,400 45.52% 15,289,608 9,292,320 60.78%

Pinus
tabuliformis 1,275,696,759 57.82% 26,254,340 15,499,500 59.04%
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