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1College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an,
Anhui, China, 2Xingtai Agriculture and Rural Bureau, Xingtai, Hebei, China, 3Hubei Hongshan
Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan,
Hubei, China, 4Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural
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Improving barley grain quality is a major goal in barley breeding. In this study, a

total of 35 papers focusing on quantitative trait loci (QTLs) mapping for barley

quality traits published since 2000 were collected. Among the 454 QTLs

identified in these studies, 349 of them were mapped onto high-density

consensus maps, which were used for QTL meta-analysis. Through QTL meta-

analysis, the initial QTLs were integrated into 41 meta-QTLs (MQTLs) with an

average confidence interval (CI) of 1. 66 cM, which is 88.9% narrower than that of

the initial QTLs. Among the 41 identified MQTLs, 25 were subsequently validated

in publications using genome-wide association study (GWAS). From these 25

validated MQTLs, ten breeder’s MQTLs were selected. Synteny analysis

comparing barley and wheat MQTLs revealed orthologous relationships

between eight breeder’s MQTLs and 45 wheat MQTLs. Additionally, 17 barley

homologs associated with rice quality traits were identified within the regions of

the breeder’s MQTLs through comparative analysis. The findings of this study

provide valuable insights for molecular marker-assisted breeding and the

identification of candidate genes related to quality traits in barley.
KEYWORDS
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Introduction

With the global population growing and living standard improving, the demand for

food is constantly increasing. Barley, as an important cereal crop, is widely cultivated

worldwide (Baik and Ullrich, 2008). Apart from being consumed directly as a ration, barley

is also ultilized for brewing beer and making various food products such as pasta, pastries,

and cookies (Kochevenko et al., 2018). Alongside efforts to increase barley yield, the
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improvement of quality traits has gained increasing attention.

Nevertheless, enhancing quality traits in barley remains

challenging due to the fact that they are controlled by multiple

genes and are susceptible to environmental factors (Hayter and

Riggs, 1973; Coles et al., 1991; Fox et al., 2003).

Barley quality is characterized by a range of crucial traits,

including protein content, amylose content, starch pasting

characteristics, and malt quality traits such as malt extract, wort

viscosity, kolbach index, free a-amino nitrogen, and diastatic power

(Burger and Laberge, 1985; Brennan et al., 1996; Baik and Ullrich,

2008). Understanding the genetic basis of these traits is pivotal for

enhancing barley varieties. A comprehensive knowledge of the

genetic mechanisms underlying these traits is indispensable for

breeding high-quality barley varieties. To date, numerous

researchers have conducted QTL mapping studies on barley

quality traits (Marquez-Cedillo et al., 2000; Gao et al., 2004; Von

Korff et al., 2008; Wang et al., 2015; Kochevenko et al., 2018; Huang

et al., 2021). However, differences in mapping populations,

molecular markers, and experimental environments across these

studies contribute to variations in QTL results (Zhang et al., 2017).

Therefore, accurately pinpointing QTL locations and identifying

candidate genes for barley quality traits remains challenging.

Meta-analysis is a powerful tool to synthesize the findings of

multiple independent studies (Egger et al., 1997). QTL meta-

analysis integrates initial QTLs from diverse studies into a

consensus map, which helps to narrow down the confidence

intervals of MQTLs and enhance the detection accuracy and

prediction precision of MQTLs (Goffinet and Gerber, 2000).

Nowadays, QTL meta-analysis has been widely utilized to study

salt tolerance and yield -related traits in rice (Khahani et al., 2020;

Mansuri et al., 2020), abiotic stress tolerance, yield, quality, and flag

leaf morphology in wheat (Du et al., 2022; Gudi et al., 2022; Saini

et al., 2022; Tanin et al., 2022), yield and popping traits in maize

(Wang et al., 2020; Kumar et al., 2021), and agronomic traits,

disease resistance, and seed quality traits in pigeonpea (Halladakeri

et al., 2023).

Until now, no QTLmeta-analysis studies on barley quality traits

have been reported. The objective of this study was to use QTL

meta-analysis to integrate and comprehensively analyze all the QTL

for barley quality traits published since 2000, and to validate the

precision of the MQTL using GWAS results to identify key genomic

regions and candidate genes that influence barley quality traits. The

results of this study will enhance our understanding of the genetic

mechanism underlying barley quality traits, providing an important

foundation for improving barley quality and facilitating molecular

marker-assisted selection.
Materials and methods

Data collection for QTL meta-analysis

A comprehensive collection and screening of QTL studies

related to quality traits in barley from 2000 to the present

identified 35 publications that provided the initial QTL

information suitable for QTL meta-analysis. The basic
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information on population parents, type, size, traits involved, and

molecular marker types for each study were listed in Supplementary

Table S1. Each initial QTL was collected for related traits, flanking

or closely linked markers, confidence intervals (CI, 95%), LOD

values, and phenotypic variance explained (PVE) or R2 values

(Supplementary Table S2). For initial QTL with missing LOD

values in individual studies, a LOD value of 3 was assumed, and

initial QTL with missing R2 values was ignored. Additionally,

depending on the mapping population, the CI of the initial QTL

was required to be recalculated according to the following

equations: (1) double-haploid (DH) population, CI = 287/

(population size × PVE); (2) recombinant inbred line (RIL)

population, CI = 163/(population size × PVE); (3) F2 and

backcross (BC) population, CI = 530/(population size × PVE)

(Darvasi and Soller, 1997; Guo et al., 2006). The initial QTL

mainly affected barley quality traits, including malt quality traits,

flour pasting properties, and other quality traits. The detailed

quality trait types and abbreviations were listed in Supplementary

Table S3.
Construction of consensus map

Construction of a consensus map was carried out by integrating

and assembling reference genetic maps using the R package

LPmerge (Endelman and Plomion, 2014). Six genetic linkage

maps, namely “Barley, Consensus 2006, Marcel” (Marcel et al.,

2006), “Barley, Consensus 2006, DArT” (Wenzl et al., 2006),

“Barley, Consensus 2007, SSR” (Varshney et al., 2007) and

“Barley, OPA 2009, Consensus” (Close et al., 2009) downloaded

from the GrainGenes website (http://wheat.pw.usda.gov), along

with InDel markers integrated with SSR, DArT and SNP markers

for barley genetic map (Zhou et al., 2015) and “Barley 50k iSelect

SNP Array” (Bayer et al., 2017), were utilized. The detailed scripts

are provided in Supplementary Data 1. Furthermore, ten genetic

maps were selected from 35 studies and integrated into the

reference map using the iterative maps compilation tool of

BioMercator v4.2.2 software to construct the final consensus map

(Sosnowski et al., 2012) (Supplementary Table S4).
QTL projection and QTL meta-analysis

Initial QTL was projected onto the consensus map using the

QTLProj tool of the BioMercator V4.2 software. The input file

formats for the initial QTL and the consensus map were listed in

Supplementary Tables S5, S6. Then, QTL meta-analysis was

performed on individual chromosomes using the two-step meta-

analysis method of Veyrieras et al. (Veyrieras et al., 2007). The first

step, QTLClust, clusters the initial QTL using five models: Akaike

information criterion (AIC), AIC correction (AICc), AIC 3

candidate models (AIC3), Bayesian information criterion (BIC)

and average weight of evidence (AWE), with the most frequent

value calculated by the five models considered to be the optimal

number of meta-QTLs on each chromosome. The second step,

MQTLView, based on the number of MQTL determined in the last
frontiersin.org
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step, the peak and confidence interval of each MQTL on the

consensus map were calculated. The LOD scores and PVE values

of each MQTL were calculated from the corresponding mean values

of all the initial QTLs it contained. BLASTN of the flanking marker

sequences of the MQTL with the barley reference genome sequence

(MorexV3) (Mascher et al., 2021) to obtain the physical location of

the MQTL. Primer sequence information for AFLP, RFLP and SSR

marke r s wer e ob ta ined f rom gra in genes (h t tp s : / /

wheat.pw.usda.gov/GG3), sequence information for DArT

markers was obtained from https://www.diversityarrays.com, SNP

marker sequences were obtained from the studies of Close et al.

(Close et al., 2009) and Bayer et al. (Bayer et al., 2017). The flanking

markers of the MQTL were mapped to the barley MorexV3 genome

by Barleymap (https://barleymap.eead.csic.es) (Cantalapiedra

et al., 2015).
Validation of MQTL with MTAs identified
in GWAS

To verify the accuracy of the MQTL regions in this study, we

collected important marker-trait associations (MTAs) information
Frontiers in Plant Science 03
from nine GWAS studies on quality-related traits in barley

published from 2015 to the present Details of the relevant traits,

population type and size, and number of MTAs involved in these

GWAS studies were listed in Table 1. We obtained the physical

location of these MTAs in GWAS by comparing their sequence

information with the barley MorexV3 genome using Barleymap

(Cantalapiedra et al., 2015). MQTLs that co-located with at least

one MTA were considered GWAS-validated MQTLs based on the

comparison of their physical locations with those of the MTAs.
Orthologous MQTL analysis

To access the most stable MQTLs for barley quality traits, we

conducted an analysis using MQTLs previously detected for quality

traits in wheat (Gudi et al., 2022) to explore orthologous regions for

barley and wheat quality traits. The analysis followed these steps: (1)

gene models detected within the breeder’s MQTL region with

physical intervals of less than 20 Mb were BLASTed against the

wheat reference genome to identify wheat orthologs; (2) the

physical locations of wheat orthologs were compared to wheat

MQTL regions (Gudi et al., 2022); and (3) wheat MQTLs with at
TABLE 1 GWAS information on barley quality traits for validation of MQTLs.

No Source
of genotype

Population
size

Traita Marker
type/
number

Number
of MTAb

Environment Reference

1 spring barley
breeding lines

4976 ME, GPC, WP,
ST, DP,
AA, BG

SNP/3072 215 USDA at Aberdeen, University of Minnesota,
North Dakota State University, Oregon State
University, Montana State University,
Washington State University

(Mohammadi
et al., 2015)

2 landraces, ICARDA
lines, Ethiopian lines,
NDSU lines,
Kenyan cultivars

236 AA, DP, ME,
FAN, KI, SP,
BG, VIS

SNP/54515 106 Bekoji, Ethiopia (Daba
et al., 2018)

3 cultivated
barley accessions

343 AA SNP/1536 22 Okayama University, Kurashiki, Japan (Sato
et al., 2018)

4 spring and
winter barley

407, 352 FRI, DP, AA,
ME, PSY,
FERM, MTN,
SNC, VIS, BG,

SNP/
22748;
SNP/25575

15 UK (Looseley
et al., 2020)

5 International Barley
Core
Selected Collection

100 BG SNP/
279515

14 Changxing, China; Cixi, China (Geng
et al., 2021)

6 Two-rowed and six-
rowed spring
barley cultivars

660 BG, GPC,
GSC, EX

SNP/2344 20 Kazakh Research Institute of Rice-growing,
Kyzylorda, Kazakhstan

(Genievskaya
et al., 2021)

7 Two-rowed and six-
rowed spring
barley cultivars

658 GPC, GSC, EX SNP/1920 41 Karabalyk; Karaganda; Kyzylorda, Kazakhstan (Genievskaya
et al., 2022)

8 two-rowed spring
barley accessions

406 GCC, GLC,
GPC, GSC

SNP/1648 71 Kazakh Research Institute of Agriculture and
Plant Growing, Kazakhstan

(Genievskaya
et al., 2023)

9 NSGC Barley
Core Panel

169 BG, DP, GPC,
SP, ST, ME

SNP/5716 61 Bozeman Post Farm, State of Montana, USA (Jensen
et al., 2023)
aAA, a-amylase activity; BG, b-glucan; DP, diastatic power; EX, grain extractivity; FAN, free amino nitrogen; FERM, fermentability; FRI, friability; GCC, grain cellulose content; GLC, grain lipid
content; GPC, grain protein concentration; GSC, grain starch content; KI, kolbach Index; ME, malt extract; MTN, malt total nitrogen content; PSY, predicted spirit yield; SNC, soluble nitrogen
content; SP, soluble protein; ST, soluble/total protein; VIS, viscosity; WP, wort protein.
bMarker-trait association number (MTA) detected in previous GWAS studies.
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least four corresponding genes were considered as orthologous

MQTL (OrMQTL).
Homology-based candidate gene
identification within breeder’s
MQTLs region

To identify candidate gene (CGs) within the breeder’s MQTLs,

specific criteria proposed by Löffler et al. (2009) were applied.

Breeder’s MQTLs were selected based on the following criteria:

genetic distance < 2 cM, initial QTL number of at least four from

different studies, and MQTLs with PVE > 10%. The Barleymap

database was used to find gene information within each breeder’s

MQTL region (Cantalapiedra et al., 2015). Considering the

international leadership in rice genomics research, a comparative

genomics approach was employed to identify homologs that

potentially influence rice quality traits within the breeder’s MQTL

region of barley. Genes controlling quality-related traits in rice were

searched at the China Rice Data Center (https://www.ricedata.cn/).
Results

Characteristics of QTL studies for quality
traits in barley

A comprehensive analysis was conducted on 35 QTL studies

focusing on quality traits in barley from the year 2000 onwards. The
Frontiers in Plant Science 04
details can be found in Supplementary Table S1. A total of 454

QTLs for quality traits in barley were collected from 39 mapping

populations in 35 studies (Supplementary Table S2). These quality

traits encompassed 42 different types, mainly focusing on malting

quality traits, with a few additional traits such as flour pasting

properties traits (Supplementary Table S3). The number of QTL

varied for different barley quality traits. Higher numbers of QTL

were identified for grain protein concentration (GPC), malt extract

(ME), b-glucan (BG) diastatic power (DP), and viscosity (VIS),

accounting for 14.2%, 11.4%, 8.6%, 8.2%, and 8.2% of the total QTL

number, respectively. The remaining quality traits accounted for a

lower percentage (Figure 1A). The distribution of these initial QTLs

was uneven across all chromosomes. Chromosome 6H had the

lowest number of QTLs, accounting for 6.8% (31/454), while the

remaining chromosomes ranged from 52 to 83 QTLs (Figure 1B).

Individual QTL exhibited LOD scores ranging from 2 to 64.55, with

the majority falling within the range of 2 to 4 (Figure 1C). The PVE

of single QTL ranged from 1.1% to 77.5%, with the majority of QTL

ranging from 0-5% (17%), 5-10% (21.2%), and 10-15%

(31.5%) (Figure 1D).
Construction of a consensus genetic map
in barley

A reference genetic map for barley was constructed by

integrating six widely available barley genetic maps using the R

package LPmerge. Subsequently, ten individual genetic maps were

mapped to the reference genetic map by BioMercator v4.2 software,
A

B D

C

FIGURE 1

The QTL information for barley quality traits in previous QTL studies. (A) Percentage of QTL for different quality traits. (B) Distribution of QTL on
seven chromosomes. (C) Frequency distribution of QTL with different LOD scores. (D) Frequency distribution of QTL for different PVE.
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resulting in a high-density consensus genetic map for barley. This

consensus map consisted of 28,382 markers, with a total length of

1146.53 cM and an average chromosome length of 163.79 cM

(Supplementary Table S4; Supplementary Table S7; Supplementary

Table S8). The distribution of markers on each chromosome was

not uniform, with chromosome 4H having the lowest number of

markers (2970) and 2H having the highest number of markers

(5115). The marker density varied across chromosome, with

chromosome 2H having the highest marker density (29.57/cM)

and chromosome 4H having the lowest density (20.07/cM). On

average, the genetic distance between markers was found to be 0.04

cM (Supplementary Table S8; Supplementary Figure 1).
Meta-QTL identification for quality traits

A total of 349 QTLs were projected onto the consensus map

after excluding initial QTL with LOD value less than three and PVE

missing from the 454 initial QTLs collected from 35 previous

studies. Among these, 344 QTLs were integrated into 41 MQTLs

through meta-analysis, while five QTLs did not overlap with any of

the MQTLs mentioned above (Supplementary Table S9). Each

MQTL contained a varying number of initial QTL, ranging from

2 to 38. Notably, 37 (90.2%) of the MQTLs consisted of three or

more QTLs, with 12 MQTLs contained at least ten initial QTLs

(Figure 2A). The distribution of these MQTLs was uneven across

chromosomes, with the number ranging from four (1H and 6H) to

seven (2H, 4H, 5H, and 7H) (Figure 2B). The average CI of MQTL

on chromosomes ranged from 0. 72 (5H) to 2.99 (3H), whereas the
Frontiers in Plant Science 05
CI of the initial QTL ranged from 11.19 (2H) to 18.6 (3H). The

average CI of MQTL shrank by 9.04-fold compared with that of the

initial QTL. The degree of reduction in the average CI of the MQTL

varied across different chromosomes, with the smallest decrease

(5.68-fold) observed on chromosome 7H and the largest decrease

(23.79-fold) on chromosome 5H (Figure 2C).
Validation of MQTL using previous
GWAS studies

In this study, 36 MQTLs mapped to the barley reference

genome, with 27 of them localized in physical regions less than

20 Mb. To verify the accuracy of these MQTLs, we compared the

physical locations of these MQTLs with the GWAS-MTAs for

barley quality traits in recent years. Out of the 27 MQTLs, 25

were found to co-localized with MTAs in at least one GWAS study,

and 12 MQTLs were validated in at least two studies. Notably,

MQTL3H-1, MQTL4H-1, MQTL4H- 7, MQTL5H-3 and

MQTL7H-6 were detected no less than three times in nine

GWAS studies (Supplementary Table S10). In addition, several

MQTLs, such as MQTL5H-6, MQTL5H-7, MQTL6H-2, MQTL6H-

3, and MQTL6H-4 were clustered in the barley reference genome

(Figure 3). Base on the criteria developed by Löffler et al. (2009), ten

breeder’s MQTLs were screened from the 25 MQTLs validated by

GWAS (Supplementary Table S9). These breeder’s MQTLs were

predominantly located in the sub-telomeric regions of

chromosomes and exhibited better co-linearity between the

physical and genetic maps. Most of the breeder’s MQTLs affected
A B

C

FIGURE 2

The basic information of MQTL was obtained by QTL meta-analysis. (A) Distribution of the number of MQTL containing different initial QTL numbers.
(B) Distribution of MQTL on seven chromosomes. (C) Comparison of confidence intervals between initial QTL (green bars) and MQTL (blue bars).
The red dotted line represents the narrowed fold of the QTL confidence intervals.
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multiple malt quality traits simultaneously. For example,

MQTL2H-5, MQTL3H-2, and MQTL5H-6 were associated with

different malt quality traits, while MQTL1H- 2 was related to both

malt quality and flour pasting properties traits.
Identification of orthologous MQTL
in wheat

To identify OrMQTL in wheat, ten breeder’s MQTLs with

physical intervals less than 20 Mb were selected. Among these

MQTLs, two had no corresponding OrMQTL in wheat, while the

remaining eight breeder’s MQTL had 45 orthologous wheat MQTLs

(Supplementary Table S11). For example, MQTL1H-2 was isogenic

to three wheat MQTLs (MQTL1A.5, MQTL1B.4, and MQTL1B.6),

MQTL7H-3 was isogenic to four wheat MQTLs located on

chromosomes 7B and 7D (MQTL7B.5, MQTL7B.6, MQTL7D.3,

and MQTL7D.5), and MQTL7H-6 shared similarity with up to 25

wheat MQTLs. The number of conserved genes between barley and

wheat MQTLs ranged from 4 (MQTL4A.1) to 313 (MQTL7B.3)

(Supplementary Table S11).
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Candidate gene prediction within
breeder’s MQTLs

Ten breeder’s MQTLs were screened for candidate gene (CGs)

prediction based on the criteria for breeder’s MQTLs selection,

combined with MQTL physical distances of less than 20 Mb

(Supplementary Table S7). These breeder’s MQTLs were found to

impact multiple barley quality traits simultaneously, suggesting the

presence of significant candidate genes that regulate these traits within

these regions. We searched for candidate genes within each breeder’s

MQTL using the locate by position tool from Barleymap database

(Cantalapiedra et al., 2015). Among the 800 gene models identified

within the breeder’s MQTLs regions, MQTL7H- 6 had the highest

number of 348 gene models, while other MQTLs ranged from 2

(MQTL2H-4) to 248 (MQTL3H-2) (Supplementary Table S12).

Additionally, we identified 17 barley homologs of rice quality trait-

related genes within the breeder’s MQTL regions by comparing

homologous relationships with rice. These genes encode various

products, mainly including aldehyde oxidase, protein kinase, cell-

cycle protein, hexokinase, and shikimate kinase. They play roles in

regulating traits such as anther dehiscence, pollen germination,
FIGURE 3

Distribution of MQTL on seven chromosomes verified by GWAS-MTAs in recent years. The inner to outer circles indicate the genetic map, the PVE
of the initial QTL, the MTA’s position on the physical map, and the distribution of high-confidence genes, respectively. The red MQTLs indicate the
breeder’s MQTLs.
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anthocyanin biosynthesis, seed germination, and sucrose accumulation

in rice (Supplementary Table S13).
Discussion

MQTL characterization for quality traits
in barley

Barley, one of the important grain crops, possesses quality traits

that impact food processing and beer brewing (Kochevenko et al.,

2018). Recent years have witnessed numerous QTL mapping studies

on quality traits, revealing the genetic mechanisms regulating barley

quality (Supplementary Table S1). This study represents the first

meta-analysis of QTLs for quality traits in barley, incorporating 454

QTLs collected from 35 independent studies, with more than 76%

of the individual QTLs utilized for detecting MQTLs. Furthermore,

this study constructed a consensus map containing a higher number

and type of molecular markers than those developed in previous

studies (Zhang et al., 2017; Khahani et al., 2019; Akbari et al., 2022).

However, due to the limited number of AFLP and RFLP markers in

the consensus map, there were still a few QTLs that could not be

mapped to the consensus map.

Previous studies have accumulated a substantial number of

QTLs for barley quality traits, but many of them exhibit low effects

and wide confidence intervals, limiting their applicability for

molecular marker-assisted selection. Moreover, the genetic

location and effects of QTLs identified in different populations

vary, hindering their utilization in genetic improvement. However,

our study shows that the confidence intervals of MQTL were

narrowed by 9.04-fold compared to the initial QTL (Figure 2C).

The effectiveness of MQTLs in reducing confidence intervals was

also confirmed in meta-analysis of quality traits in wheat and rice

(Peng et al., 2021; Gudi et al., 2022). The reliability of MQTLs was

significantly correlated with the number of initial QTLs included

(Quraishi et al., 2017). In this study, we identified a total of 41

MQTLs, with over 90.2% (37/41) of th em containing more than

three initial QTLs. Among these, 21 MQTLs comprised no less than

seven QTLs (Supplementary Table S9).

Regarding the collected quality trait categories, the most

commonly identified MQTLs were those related to grain protein

concentration (GPC), malt extract (ME), b-glucan (BG), and

viscosity (VIS). These traits are regulated by multiple genes in

diverse conditions (Igartua et al., 2002; Fang et al., 2019).

The distribution of QTL is mainly influenced by gene density,

polymorphism rate of functional loci, and recombination rate

(Martinez et al., 2016). The sub-telomeric region of chromosomes

in the barley genome contained the highest number of genes and

exhibits a higher recombination rate (Mascher et al., 2017; Mascher

et al., 2021). Coincidentally, most of the MQTL in this study were

found in the sub-telomeric region of chromosomes (Supplementary

Table S9). Similar findings have been reported in previous studies

on MQTL for yield-related traits in barley (Khahani et al., 2019).
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Validation of MQTLs with GWAS

In addition to the traditional QTL linkage analysis, GWAS plays a

significant role in identifying QTL for quantitative traits. Multiple

studies on QTL meta-analysis have been conducted to validate MQTL

results using GWAS data (Selamat and Nadarajah, 2021; Yang et al.,

2021; Karnatam et al., 2023). In this study, 25 MQTLs were validated

through GWAS studies on barley quality traits in recent years. Among

these, 12MQTLs co-localized withMTAs in no fewer than two GWAS

studies, while five MQTLs (MQTL3H-1, MQTL4H-1, MQTL4H-7,

MQTL5H-3 and MQTL7H-6) were validated in at least three GWAS

studies (Supplementary Table S10), suggesting that these MQTLs may

be important genomic regions involved in the regulation of barley

quality traits. In addition, ten breeder’s MQTLs were screened out of

the GWAS-validated MQTLs. Most of these breeder’s MQTLs were

associated with multiple quality traits, such as MQTL1H-2, MQTL2H-

4, MQTL3H-2, and MQTL5H-6, which affected no less than nine

quality traits simultaneously. Identifying these breeder MQTLs

provided useful information for accurately identifying candidate

genes related to barley quality.
OrMQTLs for wheat

The analysis of OrMQTLs has not been studied in barley, but in

recent years, several studies have been reported for heat tolerance

(Kumar et al., 2020), yield-related traits (Saini et al., 2022), grain zinc

and iron contents (Shariatipour et al., 2021), and quality traits (Gudi

et al., 2022) in wheat. In this study, we identified 45 conserved MQTLs

in the breeder’s MQTL region that were associated with quality traits

between barley and wheat (Supplementary Table S11). A few conserved

genes in OrMQTL have been identified with certain quality traits in

wheat. For example, barley MQTL3H-2 has a homolog TaNAC019-3D

(HORVU.MOREX.r3.3HG0231360) in the syntenic region MQTL3D.3

in wheat, encoding a NAC domain-containing protein, which regulates

gluten and starch accumulation and improves wheat grain quality (Gao

et al., 2021). In addition, the gene HORVU.MOREX.r3.7HG0740600 in

the MQTL7H-6 region of barley has a homolog in the isogenic region

of wheat (MQTL7B.3, MQTL7B.4, and MQTL7B.6) called TaCol-B5.

This gene encodes a CONSTANS-like protein that affects the spikelet

structure of wheat and improves wheat grain yield (Zhang et al., 2022).

The analysis of OrMQTLs using gene homology between cereals

revealed conserved regions between barley and wheat. These regions

contain many uncharacterized or characterized genes that may be

associated with quality traits in barley.
Barley homologs of known rice genes
within breeder’s MQTLs region

Barley has a significantly large genome compared to other grass

crops, making it ideal for comparative genomics strategies in

identifying candidate genes for important traits. Rice, as a well-
frontiersin.org
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studied model plant in the grass family, has advanced genomics

research and gene cloning, making the analysis of homologous

barley and rice genes valuable in identifying candidate genes for

important traits in barley (Gaut, 2002). For example, the rice gene

OsRSR1, a member of the AP2/EREBP family transcription factor,

affects grain starch synthesis (Fu and Xue, 2010), and its barley

ortholog HvAP2-18 is involved in regulating grain starch synthesis

(Ding et al., 2021). In addition, several important genes in barley

demonstrated function similarly to their rice orthologs, such as

HvCKX6, HvGA20ox2, Ppd-H1, and so on (Turner et al., 2005; Han

et al., 2016; Xu et al., 2017).

In this study, 800 gene models were detected in the region of ten

breeder’s MQTLs (Supplementary Table S12). From these models, a

total of 17 barley homologs associated with rice quality traits were

identified, suggesting their potential as candidate genes affecting barley

quality (Supplementary Table S13). One such candidate gene is

HORVU.MOREX.r3.1HG0059550, the barley ortholog of the rice

gene OsHXK10, which was located in the MQTL1H- 2 region and

encoded phosphotransferase. The gene OsHXK10 encoding

hexokinase was important in pollen germination and grain filling in

rice (Xu et al., 2008). Thus, HORVU.MOREX.r3.1HG0059550 is a

reliable candidate gene for influencing quality traits in barley. Another

example is OsLOGL5, a rice gene encoding uncharacterized protein

PA4923, which was involved in seed development and grain filling

processes (Wang et a l . , 2019) . The bar ley ortholog

HORVU.MOREX.r3.5HG0536910, located in the MQTL5H-6 region,

encodes cytokinin riboside 5’-monophosphate phosphoribohydrolase,

which may be a candidate gene affecting quality traits in barley. The

rice gene OsAO3 encodes aldehyde oxidase, which is expressed in

relatively high amounts in germinating seeds, roots, and leaves, and

regulates plant growth and seed yield by participating in ABA

biosynthesis (Shi et al . , 2021). The barley homeolog

HORVU.MOREX.r3.7HG0743390, HORVU.MOREX.r3.7HG0743420

and HORVU.MOREX.r3.7HG0743430, located in the MQTL7H-6

region, encode aldehyde oxidase and may be candidate genes

involved in the regulation of quality traits in barley. The remaining

10 rice genes mainly encode mangiferyl kinase, protein kinase, glycosyl

hydrolase, NAC transcription factor, etc., which are involved in the

regulation of plant height, grain size, pollen germination, seed

development, sucrose accumulation, and other traits. The 12 barley

orthologs of these rice genes may also be candidate genes for quality

traits in barley (Supplementary Table S13).
Conclusions

In conclusion, we mapped previous QTLs for barley quality traits

onto a high-density consensus map. Through QTL meta-analysis, we

identified MQTLs, breeder’s MQTLs, and candidate genes, which

deepens the understanding of the genetic mechanism underlying

barley quality traits. In this study, we identified a total of 41 MQTLs,

and compared with the initial QTL, the average CI of theseMQTLs was

reduced by 9.04-fold. Furthermore, 25 MQTLs were validated through

GWAS-MTA. From the validated MQTLs, ten breeder’s MQTLs that

can be utilized for molecular marker-assisted selection of barley quality

traits were screened out. The identification of OrMQTLs in this study
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could be useful in understanding the conserved regions of between

barley and wheat quality traits. Moreover, 17 barley homologs affecting

quality traits were identified within the breeder’s MQTLs region based

on comparing the homology of conserved genes in rice and barley. The

se findings provide valuable information for the genetic improvement

of quality traits and identification of candidate genes in barley.
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