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and Few-Shot Learning
Punam Bedi1, Pushkar Gole1* and Sudeep Marwaha2

1Department of Computer Science, University of Delhi, New Delhi, India, 2ICAR-Indian
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Plant disease diagnosis with estimation of disease severity at early stages

still remains a significant research challenge in agriculture. It is helpful in

diagnosing plant diseases at the earliest so that timely action can be taken

for curing the disease. Existing studies often rely on labor-intensive

manually annotated large datasets for disease severity estimation. In

order to conquer this problem, a lightweight framework named “PDSE-

Lite” based on Convolutional Autoencoder (CAE) and Few-Shot Learning

(FSL) is proposed in this manuscript for plant disease severity estimation

with few training instances. The PDSE-Lite framework is designed and

developed in two stages. In first stage, a lightweight CAE model is built and

trained to reconstruct leaf images from original leaf images with minimal

reconstruction loss. In subsequent stage, pretrained layers of the CAE

model built in the first stage are utilized to develop the image classification

and segmentation models, which are then trained using FSL. By leveraging

FSL, the proposed framework requires only a few annotated instances for

training, which significantly reduces the human efforts required for data

annotation. Disease severity is then calculated by determining the

percentage of diseased leaf pixels obtained through segmentation out

of the total leaf pixels. The PDSE-Lite framework’s performance is

evaluated on Apple-Tree-Leaf-Disease-Segmentation (ATLDS) dataset.

However, the proposed framework can identify any plant disease and

quantify the severity of identified diseases. Experimental results reveal that

the PDSE-Lite framework can accurately detect healthy and four types of

apple tree diseases as well as precisely segment the diseased area from

leaf images by using only two training samples from each class of the

ATLDS dataset. Furthermore, the PDSE-Lite framework’s performance is

compared with existing state-of-the-art techniques, and it is found that

this framework outperformed these approaches. The proposed

framework’s applicability is further verified by statistical hypothesis

testing using Student t-test. The results obtained from this test confirm

that the proposed framework can precisely estimate the plant disease
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severity with a confidence interval of 99%. Hence, by reducing the reliance

on large-scale manual data annotation, the proposed framework offers a

promising solution for early-stage plant disease diagnosis and

severity estimation.
KEYWORDS

Convolutional Autoencoder, few-shot learning, deep learning, automatic plant
disease severity estimation, AI in agriculture
1 Introduction

The agricultural sector can potentially impact the economies of

various agrarian countries. In India, the agriculture sector

contributes around 18.3% of the country’s Gross Domestic

Product, and more than 50% workforce is engaged in agriculture

or al l ied fields (Ministry of Statist ics & Programme

Implementation, 2023). Furthermore, the agricultural sector’s

growth is also essential to fulfill the world’s food demand, which

has been increasing exponentially in the past few decades. The

growth of the agricultural sector is hindered by many hurdles, and

as a result, a sustainable food grain production system is continually

being developed by agrarian scientists. Early-stage plant disease

detection with its severity estimation is a major challenge in front of

agrarian researchers as it hampers both food grain quality and

quantity. Moreover, plant disease severity estimation is also

necessary for tracking plant diseases and treatment planning.

Conventionally, farmers and agricultural scientists do the manual

examination of plant leaves to detect the probable disease and then

estimate disease severity with their expertise. As a result of technical

developments in the computer vision domain, nowadays, plant

disease detection and severity estimation, is being done by using

computational intelligence techniques and digital leaf images. In

computer vision, the problem of detecting plant diseases can be

viewed as an image classification task, wherein a Machine Learning

(ML) or Deep Learning (DL) model is trained to categorize leaf

images as either healthy or diseased based on their visual

characteristics. The process of plant disease severity estimation

via digital leaf images can be conceptualized in two ways. In the

first scenario, plant leaf images can be categorized in various

severity scales with the help of plant pathologists. Then, these

images can be classified by designing any image classification

model based on ML or DL. In the second case, this problem is

solved in two steps; initially, the diseased regions are identified by

segmenting the corresponding pixels in the leaf image via image

segmentation. Subsequently, the disease severity is computed via

calculating percentage of diseased pixels out of total leaf pixels.

Nowadays, DL-based models are widely used by researchers for

automatic plant disease recognition and severity estimation.

However, limited research works are available in the literature on

plant disease severity estimation compared to plant disease
02
detection. The existing research works focused on plant disease

severity estimation are divided into four broad groups. First group

of research works applied various Digital Image Processing (DIP)

techniques like image thresholding, Otsu segmentation, etc., to

segment out the diseased area from leaf images (Bock et al., 2010;

Patil and Bodhe, 2011; Barbedo, 2014; Dhingra et al., 2018).

Although these DIP methods can segment the diseased areas

from leaf images, but their performance significantly decreases

when applied to leaf images captured from the real field with

complex backgrounds. Second category of research works done

for segmenting diseased areas from plant leaf images is based onML

techniques like Fuzzy C-Means clustering, K-Means clustering, etc.,

(Biswas et al., 2014; Mwebaze and Owomugisha, 2016; Sethy et al.,

2018). Though the results achieved via ML techniques are much

better than the DIP techniques, but they suffer from some major

drawbacks. K-means clustering is sensitive to hyperparameter

initialization, leading to variable segmentation outcomes.

Furthermore, Fuzzy C-Means clustering faces high computational

complexity and dependence on the fuzziness parameter, requiring

careful parameter selection for accurate results. The third category

of research works has used DL techniques for plant disease severity

identification by classifying the leaf image into one of the severity

level classes (Wang et al., 2017; Haque et al., 2022a). Though these

works can identify various severity levels of plant disease, but they

are unable to quantify the severity of plant disease in percentage.

Moreover, classifying leaf images into predefined severity level

classes instead of evaluating the severity percentage has various

drawbacks, such as limited granularity, subjective interpretation,

loss of information, and the inability to track disease changes over

time. Assessing the severity percentage provides more detailed

information for informed decision-making in plant health

management. The fourth type of research works has leveraged

various DL segmentation techniques for segmenting the diseased

area from leaf images for quantifying plant disease severity in

percentage (Chen et al., 2021; Wang et al., 2021a; Pal and Kumar,

2023). However, training these models requires a large amount of

annotated leaf images for precise segmentation of disease areas from

leaf images, and in the real world, creating such datasets is a very

laborious task. Furthermore, training any DL model with a limited

amount of annotated leaf images would result in model overfitting.

Various researchers have primarily used two types of data
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https://doi.org/10.3389/fpls.2023.1319894
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bedi et al. 10.3389/fpls.2023.1319894
augmentation techniques, namely, Digital Image Processing-based

techniques (Chohan et al., 2020; Haque et al., 2022b) and

Generative Adversarial Networks (Abbas et al., 2021; Zhang et al.,

2022) to conquer this problem of limited annotated data. Though

these data augmentation techniques can generate an adequate

amount of leaf images along with their annotations, but the

performance of any model trained on these images drastically

decreases when deployed in the real world. Therefore, the

advantages of Few Shot Learning, which uses few instances for

training, can be leveraged to develop a Machine Intelligence model

for plant disease severity estimation.

Conventional ML and DL techniques necessitate a huge

annotated dataset for better generalization. However, in the real

world, acquiring abundant labeled data requires a lot of human

effort. Therefore, FSL techniques are utilized in this research work

to conquer this drawback of ML or DL models by using limited

labeled data for training. The FSL techniques are based on Meta-

Learning or Learning to Learn approaches. These techniques draw

inspiration from human developmental theory, which emphasizes

the acquisition of priors from past experiences to enhance the

effectiveness of learning new tasks. For example, a traditional ML or

DL model only tackles individual classification tasks, whereas a

Meta-learning-based ML or DL model comprehends the process of

acquiring skills for solving classification tasks through exposure to

numerous analogous tasks. Hence, when the Meta-learning-based

ML or DL model tries to work on a similar but new task, then it can

solve the new task quickly and better than a traditional ML or DL

model, which has no prior experience in solving this task (Yang

et al., 2020). This motivated different researchers to solve many real-

world problems by utilizing FSL approaches which require a limited

amount of data for training (Wang et al., 2021b; Kumar andMishra,

2023). Various researchers have also leveraged FSL in the

agricultural sector for plant disease recognition with severity

estimation (Argüeso et al., 2020; Liang, 2021; Tassis and

Krohling, 2022). However, most of these works are either focused

only on plant disease detection or identifying plant disease severity

by classifying the leaf image into one of the several predefined

severity level classes. To the best of our information, none of the

existing research works quantify the severity level of plant diseases

between 0% to 100% by utilizing few training instances. Hence, in

order to bridge this research gap, a lightweight framework named

“PDSE-Lite” based on CAE and FSL is proposed in this manuscript

for plant disease detection and severity quantification. The major

contributions of this paper have been listed below:
Fron
• A few-shot and lightweight framework named “PDSE-Lite”

based on CAE and FSL is designed and developed to detect

disease presence within leaf images accurately and then

precisely segment the diseased pixels for quantifying the

plant disease severity in the range of 0% to 100% by using

only a few annotated leaf images for training.

• The PDSE-Lite framework has been trained and tested on an

in-field Apple leaf disease dataset (Feng and Chao, 2022) to

showcase its pertinence in real-world scenarios.

Additionally, the comparison of the proposed framework
tiers in Plant Science 03
is done with the existing state-of-the-art models for plant

disease recognition and segmentation of diseased areas

from leaf images.
The remainder of the paper comprises six sections. Section 2

delves into the pertinent literature related to this research work.

Section 3 describes the PDSE-Lite framework, while Section 4

describes the experimentation done in this research. Section 5

provides the results obtained from experimentation, which are

further analyzed and discussed in Section 6. Lastly, in Section 7,

the conclusion and future perspectives of this research work have

been given.
2 Related work

Numerous research works have been done in recent years for

automatically diagnosing plant diseases via Machine Intelligence

and digital images of plant leaves. The plant disease diagnosis

process typically involves two steps: disease detection and severity

identification. While there are ample research works available on

disease detection, the literature addressing the quantification of

plant disease severity is relatively limited. In this section, firstly, the

research works focused on plant disease detection are given in

subsection 2.1. Subsequently, the research efforts undertaken for

plant disease severity estimation are discussed in subsection 2.2.
2.1 Research work focused on plant
disease detection

The research pertaining to plant disease recognition is

categorized into two groups based on the number of diseases they

can identify. First group of research works is based on binary

classification, i.e., only identifying whether the leaf image is healthy

or diseased. For example, Bedi and Gole (2021a) utilized a

combination of CNN and CAE for diagnosing bacterial spot

disease in peach plants. In their research work, they achieved

98.38% using only 9914 trainable weight parameters. Another

study conducted by Chowdhury et al. (2021) employed

EfficientNetB7 model for recognizing diseases in tomato plants.

According to their findings, this CNN architecture achieved a

testing accuracy of 99.95 ± 0.03 with 95% confidence interval for

identifying diseased tomato plant leaves. Kukreja et al. (2021) built a

custom CNN model to diagnose disease in potato plants. Their

proposed CNN model achieved a testing accuracy of 90.77% in

detecting diseased potato plant leaves. In another work, Bedi and

Gole (2021b) proposed a novel PlantGhostNet model encompassing

Squeeze-and-Excitation and Ghost modules for diagnosing

bacterial spot disease of peach plants. Their PlantGhostNet model

detected the peach plant’s bacterial sport disease with 99.51%

testing accuracy. Classifying plant leaf images to either diseased

or healthy class without identifying the specific disease hampers

appropriate treatment selection, targeted control measures,

understanding disease dynamics, and precise monitoring and
frontiersin.org

https://doi.org/10.3389/fpls.2023.1319894
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bedi et al. 10.3389/fpls.2023.1319894
tracking. Therefore, researchers are actively developing machine

intelligence models that not only identify the presence of disease but

also focus on accurately identifying diseases affecting plants. Nigam

et al. (2023) evaluated the performances of eight variants of

EfficientNet model to diagnose diseases in wheat plants. The

authors of this paper concluded that the EfficientNet-B4 variant

achieved highest accuracy among other variants, i.e., 99.35%. The

research work done by Shewale and Daruwala (2023) proposed a

novel custom CNN architecture for identifying nine diseases of

tomato plants. As reported by the authors, their model achieved

higher accuracy than other predefined CNN architectures with

99.81% accuracy. Gole et al. (2023) proposed a modified

lightweight Vision Transformer (ViT) model named “TrIncNet”

to identify plant diseases. They evaluated the TrIncNet model’s

performance on Maize dataset (comprising in-field healthy and

diseased leaf images of Maize plants) and PlantVillage dataset. As

per their paper, the TrIncNet model achieved 96.93% and 99.93%

testing accuracy on Maize and PlantVillage datasets, respectively.

Furthermore, the research works present in the literature are

majorly divided into two categories based on the technology used to

build Machine Intelligence models for plant disease detection. First

type of research works are based on ML models like K-Nearest

Neighbor (KNN), Decision Tree, etc. Ramesh et al. (2018)

employed the Histogram of an Oriented Gradient algorithm to

extract various important features from leaf images. Then, they

trained various ML algorithms like Naïve Bayes classifier, Logistic

Regression, etc., with these extracted features to identify plant

diseases accurately. According to their paper, the Random Forest

classifier outperformed others with 70.14% accuracy. In another

research work, Tulshan and Raul (2019) designed and developed an

ML-based framework for automatically recognizing plant diseases.

Their proposed framework first extracts essential features by

computing Gray-Level-Cooccurrence Matrix (GLCM) from leaf

images. Thereafter, they applied the KNN classifier for identifying

plant diseases. Sujatha et al. (2021) analyzed the potential of various

traditional ML techniques and CNN models in detecting plant

disease by their leaf images. As per their paper, the VGG-19 CNN

model outperformed other ML methods with a testing accuracy of

89.5%. This outperforming nature of CNN models over traditional

ML models can be argued on the fact that the ML techniques have

two major shortcomings. Firstly, they cannot extract different

spatial features automatically from leaf images, and secondly, they

are not developed in a way that they can use Graphic Processing

Units (GPUs) for faster training. These drawbacks of ML

techniques are conquered through DL techniques. Therefore,

various researchers tried to use DL techniques, particularly CNN,

for automatically detecting plant diseases via their digital leaf

images. For example, Bedi et al. (2021) experimented with five

popular predefined CNN architectures (AlexNet, LeNet5,

GoogLeNet, VGG16, and ResNet50) to evaluate their

performance in identification of bacterial spot disease of peach

plants. As per their paper, the AlexNet CNN model outperformed

other models with 98.5% testing accuracy. In another work, Atila

et al. (2021) trained an EfficientNet model on the PlantVillage

dataset to detect plant diseases, and it achieved 99.91% testing

accuracy. Zhao et al. (2023) presented a novel self-supervised
Frontiers in Plant Science 04
contrastive learning-based plant disease detection framework with

the advantage of domain adaption. Their proposed method

addresses the challenges faced in plant leaf disease identification

by using self-supervised learning with large-scale unannotated

dataset for pre-training, followed by fine-tuning with domain

adaptation. It achieved improved performance by aligning labeled

and unlabeled data, resulting in more general visual representations

and achieving a high accuracy of 90.52%.

Although the abovementioned research works can accurately

detect plant diseases, but all these ML or DL models necessitate

huge amount of labeled data to get high accuracy. Nevertheless, in

the real world, creating such dataset is very laborious task.

Moreover, training these models with limited annotated data can

lead to model overfitting problem. In order to address this issue,

researchers have predominantly employed two types of data

augmentation techniques, namely, image processing-based

techniques and GANs. Although these techniques can produce a

sufficient number of annotated leaf images, but models trained on

such data exhibit significant performance degradation when

deployed in the real world. Therefore, various researchers

leveraged the advantages of FSL and developed different DL

models for plant disease recognition with limited training data.

For example, Argüeso et al. (2020) developed an FSL framework

based on transfer learning to recognize plant diseases. In order to

train their proposed FSL framework, they used the PlantVillage

dataset comprising of digital plant leaf images distributed in 38

classes. They divided the PlantVillage dataset into source and target

domain, which encompasses of 32 and 6 classes, respectively. They

first trained an InceptionV3 CNN model on the source domain and

transferred this trained knowledge to learn the features of leaf

images present in the target domain. Their proposed model

achieved 94% and 91% testing accuracy in target and source

domains, respectively. A similar kind of work was also done by

Garg and Singh (2023). They trained the MobileNetV2 model and

achieved 75.3% accuracy when it was trained with only one image

per class in the target domain. Whereas the maximum accuracy

claimed in the paper, i.e., 98.17%, is achieved when the model is

trained on 100 images per class in the target domain. In the

subsequent section, the research works focused on plant disease

severity estimation are discussed.
2.2 Research work focused on plant
disease severity identification

In the literature, researchers have done the plant disease severity

estimation using two approaches. In first approach, plant leaf

images are classified into predefined severity levels by training

any image classification model based on ML or DL techniques.

The severity levels are defined with the assistance of plant

pathologists. Most of the research works present in the literature

based on the first approach have leveraged various predefined CNN

models to classify leaf images into various severity levels. For

example, Liang et al. (2019) built a PD2SE-Net CNN model by

combining ShuffleNetV2 and ResNet units for plant disease

detection and severity estimation. They trained their proposed
frontiersin.org
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model on a manually annotated PlantVillage dataset (plant

pathologists manually divided diseased leaf images into general

and serious severity classes) and achieved 90.81% accuracy.

Similarly, Zhao et al. (2021) also trained their proposed models

named SEV-Net on manually annotated PlantVillage dataset for

plant disease recognition with severity estimation. The SEV-Net

model was built via adding Spatial and Channel Attention blocks in

the existing ResNet-50 CNN architecture, and it achieved 95.37%

testing accuracy. Some researchers like Haque et al. (2022a), Shu

et al. (2023), and Dhiman et al. (2022) trained various state-of-the-

art CNN models for classifying plant leaf images into one of the

predefined disease severity levels on their own collected in-field leaf

images. Verma et al. (2023) established a disease severity estimation

framework named for early and late blight diseases in tomato

plants. They first captured digital photographs of several infected

and healthy tomato plants. Thereafter, these captured leaf images

are manually categorized into three severity levels (Early, Middle,

Late) with the assistance of agricultural scientists. The MobileNetV2

CNN model was utilized in this research work, and it achieved

94.47% accuracy.

Estimating plant disease severity via first approach, i.e.,

classifying plant leaf images into predefined severity levels, has

various drawbacks, such as limited granularity, subjective

interpretation, loss of information, and the inability to track

disease changes over time. Thus, in order to conquer these

drawbacks, researchers tried to estimate plant disease severity

using another approach where plant disease severity is estimated

in two steps. In this approach, first, the diseased regions are detected

by segmenting the corresponding pixels in the leaf image using

image segmentation methods. After that, the disease severity is

estimated between 0% and 100% by computing the percentage of

diseased pixels out of total leaf pixels. In literature, this approach

was followed in several research works like (Wspanialy and Moussa,

2020; Wang et al., 2021a; Ji and Wu, 2022; Divyanth et al., 2023).

These research works utilized U-Net and DeepLab-based image

segmentation models for segmenting disease pixels from leaf images

to further compute disease severity as the percentage of diseased

pixels present out of total leaf pixels. In another research work (Pal

and Kumar, 2023) built a novel AgriDet model by using the

Inception-VGG Network model along with the Kohonen

Learning layer for plant disease detection, and it achieved 96%

validation accuracy, as claimed in the paper. Furthermore, the

Multi-Variate-Grabcut algorithm was also utilized for segmenting

the diseased lesions from leaf images. Thereafter, the percentage of

diseased pixels out of total leaf pixels was calculated to measure

plant disease severity.

Despite of high performance exhibited by aforementioned

research works in segmenting diseased areas from leaf images,

their training process requires a huge amount of labeled leaf

images to precisely segment the disease areas from leaf images.

However, in real-world scenarios, creating such datasets is a very

challenging and laborious task. Additionally, when training an ML

or DL model using limited labeled leaf images, there is a high risk of

model overfitting. To address this issue, researchers have

predominantly employed two types of data augmentation
Frontiers in Plant Science 05
techniques in their work: image processing-based techniques and

Generative Adversarial Networks. These techniques alleviate the

problem by artificially generating leaf images with their

corresponding segmentation masks. However, the performance of

models trained on these artificially generated images significantly

decreases when deployed in real-world scenarios. Therefore, various

researchers have leveraged the advantages of FSL to develop and

train a DL model for plant disease severity quantification only with

a few instances for training. For example, (Pan et al., 2022)

proposed a two-stage severity estimation framework for leaf

scorch disease of strawberry plants using FSL. In the first phase,

they utilized the faster RCNN segmentation model to segment

strawberry leaves from the captured image, encompassing other

objects like mud, plant stems, etc. Afterward, they applied the

Siamese Network to classify the leaf images into either healthy,

serious scorch, or general scorch severity levels. In order to test their

proposed framework on unseen data, they evaluated the model’s

performance on 60 new strawberry plant leaf images and claimed

that their framework achieved 88.33% accuracy on these images.

(Tassis and Krohling, 2022) presented a case study on two FSL

techniques, i.e., triplet networks and prototypical networks, which

were applied to estimate severity in coffee plant leaves. Moreover,

they reported that these FSL techniques achieved 93.25% accuracy

in classifying coffee plant leaf images into one of the five severity

levels: Very High, High, Low, Very Low, Healthy. Although, (Pan

et al., 2022; Tassis and Krohling, 2022) developed a state-of-the-art

framework via FSL for estimating the severity of plant diseases, but

these research works suffer from a major drawback that they cannot

measure the exact amount of disease severity between 0% to 100%.

Furthermore, there is still a scope for performance improvement in

the aforementioned frameworks, as they have achieved 88.33% and

93.25%, respectively.

Conclusively, it can be observed from the above discussion and

Table 1 that most of the aforementioned research works are either

focused on only detecting plant diseases or they estimated plant

disease severity via classifying diseased leaf images into one of the

several predefined severity levels. Though few works also focus on

plant disease severity estimation via computing the percentage of

diseased pixels out of total leaf pixels present in any leaf image, but

they necessitate a huge amount of labeled leaf images for model

training so that it could generalize well on new leaf images.

However, annotating huge number of leaf images is a very

challenging and laborious task. Thus, the objective of this

research work is to design and develop an effective and efficient

framework for automatically estimating the severity of plant disease

between 0% and 100% using few training samples. Hence, a novel

few-shot and lightweight framework named “PDSE-Lite” based on

CAE and FSL has been proposed in this research work for

diagnosing plant diseases automatically and estimating the

severity of identified disease between 0% and 100%. As the

proposed framework leveraged the advantages of FSL, and thus, it

utilizes only a few training samples for training. Hence, in this way,

the proposed framework significantly reduces the human efforts

required for annotating leaf images. The next section of this

manuscript describes the proposed PDSE-Lite framework.
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3 Proposed PDSE-Lite framework

This paper proposes a few-shot and lightweight framework

named “PDSE-Lite” based on CAE and FSL for automatic plant

disease detection and severity quantification. The PDSE-Lite
Frontiers in Plant Science 06
framework’s flow diagram has been given in Figure 1. The

motivation to build such type of framework comes from the

hypothesis that if a DL model (i.e., CAE) can reconstruct leaf

images from original leaf images with minimal information loss,

then leveraging its learned knowledge will enable the development
TABLE 1 Summary of some of the existing research works done for automatic plant disease severity estimation.

Research
Work

Technique used Crop
Performance on
test subset of
the dataset

Few-
Shot
(✔/✘)

Disease
Detection
(✔/✘)

Severity
Estimation
(✔/✘)

Number of
trainable
parameters
used

Chao
et al. (2020)

Xception DenseNet (XDNet)
Apple 98.82% accuracy ✘ ✔ ✘ 10.16 million

Yang
et al. (2022)

EfficientNet-MG CNN architecture
Apple 99.11% accuracy ✘ ✔ ✘ 8.42 million

(Ji and
Wu, 2022)

DeepLabV3+ based on ResNet50
Grape 93.16% MeanIoU ✘ ✔ ✔ 11.85 million

Firdous
et al. (2023)

DenseNet-121 Apple 98.15% accuracy ✘ ✔ ✘
8.1 million

(Li
et al., 2023)

Vision Transformer along with
Convolutional Block Attention
Module (CBAM) block

Wheat
Coffee
Rice

94.9% accuracy
87.6% accuracy
92.0% accuracy

✘ ✔ ✘ 5.06 million

(Xing
et al., 2023)

PCA-Logistic regression analysis
with Mask R-CNN

Apple 90.12% accuracy ✘ ✔ ✔ 63.64 million
FIGURE 1

Flow diagram of proposed PDSE-Lite framework’s training and testing phase.
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of DL models for detecting plant diseases and segmenting disease

areas from leaf images using limited training data. Thus, in order to

design the PDSE-Lite framework, first, a lightweight CAEmodel has

been designed and trained to reconstruct the leaf images from

original leaf images with minimum reconstruction loss. Thereafter,

in second stage, a few-shot image classification and segmentation

models are built by utilizing the pre-trained layers of the CAE

model to detect plant diseases and segment diseased areas from leaf

images, respectively. The details of these models have been provided

in subsections 3.1, 3.2, and 3.3. After training the few-shot image

classification and segmentation models, these models are further

utilized in the testing or inference stage to detect plant diseases and

estimate the severity of identified diseases by computing the

percentage of diseased pixels out of total leaf pixels.
3.1 Lightweight Convolutional
Autoencoder (CAE)

The first stage of proposed PDSE-Lite framework focuses on

learning to reconstruct the leaf images from original leaf images

with minimum reconstruction loss, and this learning has been done

via training a lightweight CAE model. The Convolutional

Autoencoder (CAE) is a type of Autoencoder which effectively

and efficiently deals with image data as compared to other types of

Autoencoders. Like other Autoencoders, CAE also encompasses of

one encoder block, bottleneck layer, and decoder block. The

encoder block of CAE captures different spatial features of leaf

images with the help of multiple convolutional and downsampling

(max-pooling) layers and encodes them to a compressed domain

representation. This compressed domain representation is stored in

the bottleneck layer of CAE, and it comprises of all essential features

which are further used by the decoder block of CAE to reconstruct

leaf images with minimum reconstruction loss. The decoder block

of CAE comprises of same number of layers as of encoder block but

in reverse order and upsampling layers are utilized instead of

downsampling (max-pooling) layers (Bedi and Gole, 2021a). The
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CAE model’s encoder block used in this research work comprises of

three convolutional layers, each succeeded by a max-pooling layer

that decreases the feature map’s spatial dimensionality via factor of

two. Similarly, the decoder block of the CAE model also

encompasses of three convolutional layers, each preceded by an

UpSample layer, which increases the feature map’s spatial

dimensionality via factor of two (Bedi and Gole, 2021a). The

architectural diagram of CAE model utilized in the PDSE-Lite

framework’s first stage has been shown in Figure 2, and its

implementation details are given in Supplementary Table 1. This

model has been trained via the Backpropagation algorithm to

minimize the Normalized Root Mean Squared Error (NRMSE)

reconstruction loss (Feng et al., 2015). The mathematical formula to

compute the NRMSE loss (denoted by LossNRMSE) between kth input

leaf image Ik and reconstructed leaf image Rk has been given in

Equation 1, where N represents total number of leaf images, Maxp
and Minp represent maximum and minimum values of any pixel

present in leaf images (i.e., 255 and 0), respectively.

LossNRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NoN

k=1(I
k − Rk)2

q

Maxp −Minp
(1)
3.2 Few-shot image classification model
for detecting diseases from leaf images

During second stage of the PDSE-Lite framework, a few-shot

image classification model is designed and developed to identify

diseases in plants by using their leaf images. This model

encompasses of pretrained encoder block and bottleneck layer of

CAE model discussed in subsection 3.1. Furthermore, a

classification block is appended ahead of the CAE’s pretrained

bottleneck layer in order to fine-tune this model for plant disease

recognition. The classification block comprises of two convolutional

layers, one max-pooling, global-average-pooling, and dense layers.

The architectural design of this model has been shown in Figure 3,
FIGURE 2

Architectural diagram of the CAE model.
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and its implementation details are given in Supplementary Table 2.

The training of this model has been done on few training instances

using the Backpropagation algorithm, which minimizes the

categorical crossentropy loss (denoted by   LossCCE) between

predicted labels Ypred and actual labels Ytrue of leaf images. The

mathematical formula of categorical crossentropy loss, i.e., LossCCE
is shown in Equation 2, where N represents number of instances

taken into account, Yi
pred denotes the predicted label of ith instance,

and Yi
true represents the actual label of i

th instance.

LossCCE = −
1
No

N

i=1

Yi
true log (Y

i
pred) (2)
3.3 Few-shot image segmentation model
for segmenting disease areas from
diseased leaf images

In order to estimate the severity of detected plant disease via the

few-shot image classification model described in section 3.2, a few-

shot image segmentation model has been designed and

implemented for segmenting disease areas from leaf images. This

model encompasses of pretrained CAE (described in subsection 3.1)

and segmentation block. In the segmentation block, first, the output

features maps of pretrained bottleneck, Conv2D #5, and Conv2D #6

layers are upsampled by a factor of 8, 4, and 2, respectively.

Thereafter, these up-sampled feature maps have been

concatenated channel-wise. By this concatenation, all features

extracted by different convolutional layers of the CAE model’s

decoder block are merged to form a combined feature map.

Subsequently, this combined feature map is passed to three

stacked convolutional layers having 12, 6, and 3 filters,

respectively. The last convolutional layer, which has three filters,

acts as an output layer that generates the segmentation mask for a

given leaf image. Each pixel of this segmentation mask can have

either of three values, i.e., 0 is for the background, 1 is for leaf pixels,
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and 2 is for diseased pixels. Furthermore, the architectural design of

few-shot image segmentation model is depicted in Figure 4, and its

implementation details have been given in Supplementary Table 3.

This few-shot model for segmenting disease areas from leaf

images has been trained on few leaf images from diseased classes of

the ATLDS dataset, as its output is only needed when the leaf

images are classified into any diseased class. This model is also

trained using the Backpropagation algorithm, which minimizes the

sum of categorical cross-entropy loss (SegLossCCE) and jaccard loss

(SegLossjaccard) between predicted and ground truth segmentation

masks. The mathematical formulas for SegLossCCE and SegLossjaccard
are given in Equations 3, 4 correspondingly. In these equations,

Yi
pmask and Yi

gmask represents predicted and ground truth

segmentation masks for ith leaf image, respectively. Furthermore,

N denotes the number of instances taken into consideration.

SegLossCCE = −
1
No

N

i=1

Yi
gmask log (Y

i
pmask) (3)

SegLossjaccard = 1 −
1
No

N

i=1

Yi
gmask ∩

  Yi
pmask

���
���

Yi
gmask ∪

  Yi
pmask

���
���

(4)

The flow of plant disease diagnosis and severity quantification

through the proposed framework is given in the testing or inference

stage of Figure 1. It can be observed from this figure that, in order to

diagnose disease in a symptomatic leaf image, first, it is passed

through the trained few-shot image classification model, which

classifies the given leaf image into either healthy or one of diseased

classes. If the given leaf image is classified as diseased, then only it is

passed to the few-shot image segmentation model, which generates

its segmentation mask. This segmentation mask encompasses of

three values, i.e., 0 is for background, 1 is for leaf pixels, and 2 is for

diseased pixels. After getting the segmentation mask from the few-

shot image segmentation model, the disease severity is calculated via

computing the percentage of diseased pixels present in the given leaf

image out of the total leaf pixels. The formula to compute the
FIGURE 3

Architectural design of few-shot image classification model used for detecting diseases from leaf images.
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disease severity with the help of predicted segmentation mask has

been given in Equation 5. In next section, the experimentations

performed in this research work have been discussed.

Disease   Severity   (in   % ) =
Total   number   of   diseased   pixels
Total   number   of   leaf   pixels  

� 100 (5)
4 Experimental study

The Apple-Tree-Leaf-Disease-Segmentation (ATLDS) dataset

is utilized in this research work to test the applicability of PDSE-Lite

framework. The description of ATLDS dataset has been given in

subsection 4.1, and in subsection 4.2, details of experimentations

done in this research work have been provided.
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4.1 Dataset description

In this manuscript, the ATLDS dataset (Feng and Chao, 2022)

has been employed to test the effectiveness of PDSE-Lite framework

in detecting plant diseases with severity estimation. This dataset

comprises of healthy and four types of diseased apple tree leaf

images, i.e., Alternaria Leaf Spot, Brown Spot, Gray Spot, and Rust.

The leaf images of ATLDS dataset were captured under varying

degrees of disease, with approximately 51.9% acquired in controlled

laboratory settings and 48.1% collected from real cultivation fields.

These images were gathered across varied weather conditions and

different times of the day. Furthermore, this dataset comprises of

annotated segmentation masks corresponding to each leaf image of

this dataset. Few leaf images from each class of the ATLDS dataset,
FIGURE 4

Architectural design of few-shot image segmentation model used to segment diseased areas from leaf images.
FIGURE 5

Leaf images representing each class within ATLDS dataset, along with their annotated segmentation masks. The black, green, and red colors in
segmentation masks represent the background, leaf, and diseased pixels, respectively.
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along with their annotated segmentation masks, are given in

Figure 5, and their class-wise distribution is presented in Table 2.
4.2 Experimental setup

This research work involves utilizing the Nvidia DGX Server,

which has been equipped with an Intel Xeon CPU, 528 Gigabytes of

RAM, and NVidia Tesla V100-SXM2 32 Gigabyte GPU, to conduct

experiments. The scripts for the experimentation are written in the

Python programming language, although other programming

languages can also be used for experimentation. Furthermore, the

models of proposed framework are implemented using the Keras

library, which is embedded in Tensorflow 2.6.0. The proposed

framework has been designed and implemented in two stages. In

first stage, a lightweight CAE model has been built to reconstruct

leaf images from the original leaf images with minimum

reconstruction loss, and subsection 4.2.1 provides the details of

the experimentation done to train and test this model. Moreover, in

the second stage, a few-shot image classification and segmentation

models are developed to identify plant diseases and segment

diseased areas from symptomatic leaf images. The details of

experimentation done to train and test these models are given in

subsections 4.2.2 and 4.2.3.

4.2.1 Experiment 1: training CAE model of the
PDSE-Lite framework

In first stage of the PDSE-Lite framework, a lightweight CAE

model is designed and developed to reconstruct leaf images from

original leaf images with minimal reconstruction loss. In order to

train this model, the ATLDS dataset’s leaf images are randomly

arranged into training, validation, and testing subsets with 70:15:15

ratio of sizes. The details of leaf images present in training,

validation, and testing subsets are given in Supplementary Table 4.

This model is trained via Adam optimizer to minimize the NRMSE

reconstruction loss (defined in Equation 1). During training of the

CAE model, the batch size has been kept as 32, and number of

epochs are 500. Furthermore, the Rectified Linear Units (ReLU)

activation function is applied on every convolutional layer of the

CAE model. In order to prevent this model from overfitting, the

Earlystopping callback of Keras has been utilized with patience value

of 20. The values of these hyperparameters have been obtained

through extensive experimentation.

4.2.2 Experiment 2: training few-shot image
classification model of the PDSE-Lite framework
for plant disease detection

In second stage of the PDSE-Lite framework, a few-shot image

classification model has been developed to detect plant diseases
TABLE 2 Class-wise distribution of ATLDS dataset.

Class/Type of
Leaf image

Alternaria Leaf Spot Brown Spo

Number of Instances 278 215
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through their digital leaf image. To assess this model’s ability

toward identifying plant disease with limited training data, it has

been trained on k-training-samples per class of ATLDS dataset,

where k ∈ 1, 2,…,   5f g. Furthermore, Nc−k
2 and Nc−k

2 leaf images

from different classes of dataset have been utilized for validating and

testing the few-shot image classification model, where Nc is the

number of leaf images present in cth class. This model is trained for

100 epochs with a batch size of k to minimize categorical

crossentropy loss (defined in Equation 2) using the Adam

optimizer, and the ReLU activation function is utilized in every

convolutional layer of the model. Additionally, Early stopping

callback of Keras with patience value 10 is applied during model

training to prevent it from overfitting. Extensive experimentation

has been conducted to determine the values of the aforementioned

hyperparameters. This model’s performance is compared with eight

different state-of-the-art CNN architectures, i.e., MobileNetV2

(Sandler et al., 2018), InceptionV3 (Szegedy et al., 2016),

GoogLeNet (Szegedy et al., 2015), Xception (Chollet, 2017),

ResNet-50 (He et al., 2016), NASNetMobile (Zoph et al., 2018),

EfficientNetV2B0 (Tan and Le, 2021), and ConvNeXtTiny (Liu

et al., 2022).
4.2.3 Experiment 3: training few-shot image
segmentation model of the PDSE-Lite framework
to segment diseased areas from diseased
leaf images

In order to quantify the severity of detected plant disease

between 0% to 100%, a few-shot image segmentation model has

also been implemented in second stage of the PDSE-Lite

framework. This model has been trained on k ∈ 1, 2,…, 5f g, leaf
images from the dataset’s diseased classes, as its output is only

needed when a leaf image is classified into one of the diseased class

by the few-shot image classification model described in section 3.2.

On the other hand, remaining Nc−k
2 and Nc−k

2 leaf images from

different diseased classes of the ATLDS dataset divided into

validation and testing subsets, respectively. Furthermore, this few-

shot image segmentation model has also been trained with a batch

size of k for 100 epochs to minimize the sum of SegLossCCE and

SegLossjaccard (defined in Equations 3, 4) via Adam optimizer. Early

stopping callback with patience value 10 is applied during model

training to stop the model from overfitting. The performance of this

few-shot image segmentation model has been compared with U-

Net3+ (Huang et al., 2020) and DeepLabV3+ (Chen et al., 2018)

image segmentation models using MeanIoU and Dice-Score

metrics. The mathematical formulas of MeanIoU and Dice-Score

metrics have been given in Equations 6, 7, respectively. In these

equations, Yi
pmask, and Yi

gmask represents predicted and ground truth

segmentation masks for ith leaf image, respectively. Additionally, N

denotes the number of instances taken into consideration. In this
t Gray Spot Healthy Rust Total

395 409 344 1641
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section, the experimental details of the research work are discussed,

and in the next section, the experimental results obtained from the

experimentation are presented.

MeanIoU =
1
No

N

i=1

Yi
gmask ∩

  Yi
pmask

���
���

Yi
gmask ∪

  Yi
pmask

���
���

(6)

Dice� Score =
1
No

N

i=1

2� Yi
gmask ∩

  Yi
pmask

���
���

        Yi
gmask

���
��� + Yi

pmask

���
���

(7)
5 Experimental results

In this research work, a few-shot and lightweight framework

named “PDSE-Lite” has been designed and developed for detecting

plant diseases and estimating the severity of identified disease by

utilizing digital plant leaf images. During the first stage of the

proposed framework’s development, a lightweight CAE model is

built, which aims to learn reconstructing leaf images from original

leaf images without losing much information. This CAE model’s

training, validation, and testing results have been given in

subsection 5.1. In the second stage of proposed framework’s

development, a few-shot image classification and segmentation

models are implemented. The results obtained from the training,

validation, and testing phases of these models have been provided in

subsections 5.2 and 5.3, respectively. In subsection 5.4, an ablation

study to test the significance of pre-trained CAE model has been

presented. Moreover, subsection 5.5 provides the statistical analysis

of the proposed PDSE-Lite framework.
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5.1 Results obtained from experiment 1

During the first phase of proposed framework’s development, a

lightweight CAE model is trained to reconstruct the leaf images

from the original leaf images without losing much information. In

order to ensure this, the CAE model has been trained to minimize

the NRMSE loss (defined in Equation 1) between original and

reconstructed leaf images. The trend of CAE model’s training and

validation NRMSE loss w.r.t. the number of epochs is shown in

Figure 6. It can be seen from this figure that both training and

validation NRMSE loss of the CAE model have been reduced to

0.002746 and 0.002851 till the end of 500th epoch. Whereas the

value of NRMSE loss obtained on the test subset of ATLDS dataset

is 0.003. Furthermore, few leaf images and their reconstructed

images from each class of the ATLDS dataset using the CAE

model have been given in Figure 7.
5.2 Results obtained from experiment 2

In the second stage of proposed framework’s development, a

few-shot image classification model is implemented to diagnose

plant diseases through their leaf images. This model’s performance

has been evaluated on the ALTDS dataset’s test subset via accuracy,

precision, recall, and f1-measure. The comparison of these metrics

for different values of k ∈ 1, 2, 3,…, 5f g are given in Figure 8. It can

be seen by this figure that the 2-shot image classification model has

attained 98.35% accuracy and 98.30% f1-measure on the dataset’s

test subset. Moreover, the performances of the 3-Shot, 4-Shot, and

5-Shot models are comparable to the 2-Shot model. Therefore, the

2-Shot image classification model has been employed in the PDSE-
FIGURE 6

Trend of CAE model’s training and validation NRMSE loss.
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Lite framework to detect plant diseases, as it requires a minimum

number of leaf images for training.

The performance of PDSE-Lite framework’s 2-Shot image

classification model on the validation subset of the ATLDS

dataset has been compared with eight CNN architectures via

validation accuracy and loss. The variation of validation accuracy

and loss w.r.t. number of epochs for these models has been depicted

in Figure 9), respectively. It can be observed from these figures that

the 2-Shot image classification model has achieved maximum

accuracy and minimum loss, i.e., 98.49% and 0.03, respectively.

Furthermore, ResNet-50 achieved minimum accuracy and

maximum loss, i.e., 71.40% and 0.91, correspondingly, among

other models.
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In order to examine the 2-Shot model of PDSE-Lite framework

more thoroughly, its performance on the ATLDS dataset’s test

subset is compared with eight CNN architectures via accuracy,

precision, recall, and f1-measure. The scores of these metrics for the

2-Shot image classification model of PDSE-Lite framework and

eight CNN architectures are given in Figure 10. It can be perceived

from this figure that the 2-Shot image classification model of PDSE-

Lite framework outperformed other CNN architectures with

98.35% testing accuracy and 98.30% f1-measure. In addition,

GoogLeNe t , In c ep t i onV3 , Xcep t i on , Mob i l eNe tV2 ,

NASNetMobile, and EfficientNetV2B0 achieved comparable

performance. On the other hand, ResNet-50 and ConvNeXtTiny

attained minimum values for the aforementioned metrics.
FIGURE 7

Few leaf images and their reconstructed images from each class of ATLDS dataset using the CAE model of PDSE-Lite framework.
FIGURE 8

Accuracy, precision, recall, and f1-measure of various few-shot image classification models used to detect plant diseases by visualizing their digital
leaf images.
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In order to examine the lightweight nature of the 2-Shot image

classification model, the number of trainable weight parameters

employed in this model and eight other state-of-the-art CNN

architectures have been compared in Table 3. It can be perceived

from Table 3 that the 2-Shot image classification model requires the

least trainable weight parameters, i.e., 8749, among other CNN

architectures. Furthermore, ResNet-50 and ConvNeXtTiny

architectures utilized comparable trainable weight parameters.

The predictions obtained from the 2-Shot image classification

model for some sample leaf images representing each class within

the ATLDS dataset, along with their ground truth labels, have been

given in Figure 11. It can be perceived from this figure that 2-Shot

image classification model correctly identifies the healthy and

diseased classes by visualizing the given leaf images.
5.3 Results obtained from experiment 3

The model described in section 3.2 only identifies the disease

occurrence in a given leaf image. However, it does not quantify the

severity of identified disease between 0% to 100%. Thus, a few-shot
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image segmentation model has also been implemented in second

stage of the PDSE-Lite framework’s development. The evaluation of

this model has been done on the test subset of the dataset with the

help of two widely used evaluationmetrics: MeanIoU and Dice-Score,

shown in Equations 6, 7. The score of these metrics for different k

values is given in Figure 12. It can be perceived from this figure that

the results obtained for k = 2,   3,   4,   and   5 are comparable. Thus

k = 2, i.e., the 2-Shot image segmentation model has been further

used in the proposed framework to segment the diseased from leaf

images, as it uses minimum leaf images per class in model training.

The performance of the 2-Shot image segmentation model of

PDSE-Lite framework has also been evaluated on the validation subset

of dataset with the help of validation MeanIoU and validation loss.

Furthermore, this model’s performance has been compared with

DeepLabV3+ and U-Net3+ image segmentation models. The plot

of validationMeanIoU and loss w.r.t. number of epochs for the 2-Shot

image segmentation model along with the U-Net3+ andDeepLabV3+

models is given in Figure 13, respectively. It can be perceived from

these figures that the 2-Shot image segmentation model of PDSE-Lite

framework outperformed U-Net3+ and DeepLabV3+ models by

achieving the highest validation MeanIoU score, i.e., 94.87% and
FIGURE 9

Trend of validation accuracy and validation loss for the 2-Shot image classification model of PDSE-Lite framework and the eight different
CNN architectures.
FIGURE 10

Accuracy, precision, recall, and f1-measure of 2-Shot image classification model of PDSE-Lite framework and eight CNN models on ATLDS dataset’s
test subset.
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TABLE 3 Number of trainable weight parameters employed in 2-Shot
image classification of PDSE-Lite framework and eight
CNN architectures.

Models
Number of trainable weight
parameters (approximately)

GoogLeNet 10.32 million

ResNet-50 27.82 million

InceptionV3 21.81 million

Xception 20.87 million

MobileNetV2 2.26 million

NASNetMobile 4.28 million

EfficientNetV2B0 5.93 million

ConvNeXtTiny 27.83 million

2-Shot image classification
model of PDSE-Lite framework

8749
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least validation loss, i.e., 0.09. On the other hand, U-Net3+ and

DeepLabV3+ models achieved comparable performances.

The performance of the 2-Shot image segmentation model has also

been compared with the U-Net3+ and DeepLabV3+ model on the test

subset of ATLDS dataset using MeanIoU and Dice-Score. This

comparison is shown via a bar graph in Figure 14. It can be

perceived from Figure 14 that the 2-Shot image segmentation model

outperformed the DeepLabV3+ and UNet3+ models on the test subset

also by attaining 94.54% and 97.59% MeanIoU score and Dice-Score,

respectively. In order tomeasure the lightweight nature of 2-Shot image

segmentation model, its number of trainable weight parameters is

compared in Table 4 with the trainable weight parameters used by U-

Net3+ and DeepLabV3+ models. It can be observed from Table 4 that
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the 2-Shot image segmentation model uses significantly fewer trainable

weight parameters, i.e., 7223. The predicted segmentation masks for

some sample leaf images from each diseased class of dataset and

ground truth segmentation masks have been given in Figure 15.

Furthermore, the severity percentages obtained from predicted and

ground truth segmentation masks have been computed and written

above the segmentation masks. It can be seen from Figure 15 that

predicted and ground truth masks are looking very similar to each

other. In addition, the severity percentages computed for these

segmentation masks are also comparable, which confirms the

effectiveness of the proposed framework in identifying and

quantifying plant diseases in the real world.
5.4 Ablation study to test the significance
of pretrained CAE model

In order to test the significance of pretrained CAE model in the

2-Shot image classification and 2-Shot image segmentation models

of PDSE-Lite framework, these models are also trained without

utilizing the pre-trained CAE model. The results obtained from this

experiment on test subset of ATLDS dataset have been tabulated in

Table 5 along with the results of 2-Shot image classification and 2-

Shot image segmentation models of PDSE-Lite framework in which

the pre-trained CAE model is employed.
5.5 Statistical analysis of PDSE-
Lite framework

The applicability of PDSE-Lite framework in estimating plant

disease severity has also been tested using statistical hypothesis
FIGURE 11

Predictions obtained from the 2-Shot image classification model of PDSE-Lite framework for some sample leaf images from each class of ATLDS
dataset, along with their ground truth labels.
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testing via the Student t-test on the severity values obtained for

ground truth and predicted segmentation masks. The t-test has

been utilized to test the null hypothesis, which states that the

severity values calculated by the PDSE-Lite framework are very

similar to the severity values obtained by ground truth

segmentation masks. The paired t-test with two samples for

means assuming unequal variance is employed in this research

work to test the null and alternate hypothesis given in Equations 8,

9, respectively.

H0≔mgt − mpred ≠ 0 (8)

H1≔mgt − mpred = 0 (9)

where, mgt :   mean of disease severity values obtained from

ground truth segmentation masks mpred : mean of disease severity

values obtained from predicted segmentation masks.

During experimentation, the probability p value is computed for

the t-test at a = 0:01, i.e., if the obtained p value is lesser than 0.01,

then the null hypothesis (H0) is rejected, and the alternate

hypothesis is accepted with 99% confidence. After analyzing the

experimental results of the t-test, p value for the t-test is obtained as

0.008, which is lesser than 0.01. Thereby, the null hypothesis is

rejected, and the alternate hypothesis is accepted with 99%

confidence. Hence, this showcases the applicability of PDSE-Lite
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framework in precisely estimating plant disease severity. The next

section of the paper discusses the results presented in this section.
6 Discussion

Plant disease detection with severity estimation is still a

prominent challenge in agricultural research. The majority of

research works present in the literature utilized large amount of

manually annotated plant leaf images to train an ML or DL model

for plant disease severity estimation (Wspanialy and Moussa, 2020;

Wang et al., 2021a; Ji and Wu, 2022). However, annotating large

amount of leaf images is laborious and time-consuming. Therefore,

in this research work, a few-shot and lightweight framework named

“PDSE-Lite” based on CAE and FSL has been proposed to reduce the

reliance on large-scale manually labeled datasets and offer a

promising solution for early-stage plant disease detection with

severity estimation. The proposed framework is designed and

developed in two stages. In the first stage of proposed framework’s

development, a lightweight CAE model (Bedi and Gole, 2021a) is

built and trained to efficiently reconstruct leaf images from original

leaf images with minimal reconstruction loss. The layers of

pretrained CAE model are then utilized to build a few-shot image

classification and segmentation models. These models are
FIGURE 12

MeanIoU and Dice-Score of various few-shot image segmentation models used to segment plant diseases areas from leaf images.
FIGURE 13

Plot of validation MeanIoU and validation loss for the 2-Shot image segmentation model of PDSE-Lite framework along with U-Net3+ and
DeepLabV3+ models.
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subsequently trained with a limited number of leaf images to

accurately detect plant diseases and precisely segment the diseased

regions from leaf images for severity estimation. Thereafter, the

disease severity is calculated by computing the percentage of diseased

leaf pixels obtained through segmentation out of the total leaf pixels.

To assess the PDSE-Lite framework’s applicability, it is trained

and tested on ATLDS dataset comprising of diseased and healthy

leaf images of apple trees along with their segmentation masks.

Experimental results revealed that the CAE model used in the first

phase of proposed framework’s development can reconstruct the

given leaf images from original leaf images without losing much

information, as very low value of NRMSE loss, i.e., 0.003, is

obtained during experimentation (discussed in section 5.1). In

this research work, five variants of the few-shot image

classification and segmentation models have been implemented

and trained on k ∈ 1, 2, 3,…, 5f g leaf images representing each

class within ATLDS dataset. Further, these variants are referred as

1-Shot, 2-Shot, 3-Shot, 4-Shot, and 5-Shot image classification and

segmentation models, respectively. It can be observed from

Figures 8, 12 that 2-Shot, 3-Shot, 4-Shot, and 5-Shot variants of

few-shot image classification and segmentation models have

achieved comparable performances. Thus, out of these variants,

the 2-Shot variant of image classification and segmentation models

is exploited in the proposed PDSE-Lite framework to identify plant
TABLE 4 Number of trainable weight parameters used by 2-Shot image
segmentation model, U-Net3+, and DeepLabV3+ models.

Models
Number of trainable weight
parameters (approximately)

U-Net3+ 26.99 million

DeepLabV3+ 11.85 million

2-Shot image segmentation
model of PDSE-Lite framework

7223
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diseases from leaf images and segment diseased areas from leaf

images, as it uses the minimum leaf images for training. The

performance of the 2-Shot image classification model of PDSE-

Lite framework is compared with eight CNN architectures, and it is

found that the 2-Shot image classification model outperformed

other CNN architectures by achieving 98.35% testing accuracy.

Additionally, the performance of 2-Shot image segmentation model

of PDSE-Lite framework has been compared with DeepLabV3+ and

UNet3+ image segmentation models. After comparison, it is found

that the 2-Shot image segmentation model achieved 97.59% Dice-

Score and 94.54% MeanIoU. The proposed framework’s

applicability has also been verified with the help of statistical

hypothesis testing via applying the Student t-test on the severity

values obtained from predicted and ground truth segmentation

masks. After analyzing the Student t-test results, it is found that the

PDSE-Lite framework can accurately estimate the severity of plant

diseases with 99% confidence interval.

The proposed PDSE-Lite framework is compared in Table 6

with existing state-of-the-art research works available in the

literature. It can be seen from this table that despite of using

minimum trainable weight parameters and limited number of

training samples, the proposed PDSE-Lite framework has

achieved state-of-the-art performance in plant disease detection

with severity estimation. Hence, it can be concluded that the

proposed PDSE-Lite framework has several advantages over

existing state-of-the-art research works present in the literature.

First advantage of the PDSE-Lite framework lies in its ability to

significantly reduce the reliance on large-scale manually

annotated datasets, thereby minimizing the human efforts

required to create such datasets. Moreover, the lightweight

nature of the PDSE-Lite framework makes it suitable to be

deployed on low-powered edge devices for on-site plant disease

monitoring and timely intervention, aiding farmers in decision-

making and crop management. In this research work, the

applicability of proposed framework has been evaluated only on
FIGURE 14

MeanIoU and Dice-Score of 2-Shot image segmentation model of PDSE-Lite framework, U-Net3+, and DeepLabV3+ models.
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TABLE 6 Comparison of proposed PDSE-Lite framework with state-of-the-art research works present in the literature.

Research
Work

Technique
used

Crop
Performance on test subset
of the dataset

Few-
Shot
(✔/✘)

Disease
Detection
(✔/✘)

Severity
Estimation
(✔/✘)

Number
of trainable
parameters used

Chao
et al. (2020)

Xception
DenseNet
(XDNet)

Apple 98.82% accuracy ✘ ✔ ✘ 10.16 million

PDSE-
Lite
framework

CAE and FSL Apple

98.35% accuracy in plant
disease detection

✔ ✔ ✔

8749 for few-shot image
classification model

97.59% Dice-Score and 94.54% MeanIoU
in segmenting diseased areas from
leaf images

7223 for few-shot image
segmentation model

Bedi et al. 10.3389/fpls.2023.1319894
the ATLDS dataset. Nevertheless, future research works would

involve training on other plant disease detection and severity

estimation datasets having broader range of leaf images of various

plants suffering from different diseases. Additionally, in the future,

the proposed framework can also be deployed on various IoT

devices like Unmanned Aerial Vehicles (UAVs) to facilitate real-

time plant disease monitoring in agricultural fields.
Frontiers in Plant Science 17
7 Conclusion

Plant disease identification with severity estimation is still a

prominent research challenge in front of agricultural scientists, as it

has the potential to maximize the crop yield, which further increases

the farmer’s profit. In the literature, the majority of research works

focused only on plant disease detection. However, a limited number of
TABLE 5 Results obtained with and without utilizing the pre-trained CAE model in the 2-Shot image classification and 2-Shot image segmentation
models of PDSE-Lite framework.

Models of PDSE-Lite framework Without pre-trained CAE model With pre-trained CAE model

2-Shot image classification model Accuracy (%) 72.58 Accuracy (%) 98.35

Precision (%) 74.64 Precision (%) 98.39

Recall (%) 71.76 Recall (%) 98.21

F1-Measure (%) 73.17 F1-Measure (%) 98.30

2-Shot image segmentation model MeanIoU (%) 68.99 MeanIoU (%) 94.54

Dice-Score (%) 72.54 Dice-Score (%) 97.59
FIGURE 15

Predicted segmentation masks for some sample leaf images from each diseased class of dataset along with ground truth segmentation masks.
The severity percentage obtained from predicted and ground truth segmentation masks have been written above the segmentation masks.
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studies are available on plant disease severity estimation, and all of these

research works have used large amount of manually annotated plant

leaf images to train their models. Furthermore, creating such dataset is

quite a cumbersome and time-consuming task. Hence, in this research

work, a few-shot and lightweight framework named “PDSE-Lite” was

proposed to recognize plant diseases and estimate the severity of

identified disease between 0% to 100%. The PDSE-Lite framework

was designed and developed in two stages with the help of CAE and

FSL. In the first stage, a lightweight CAEmodel was used to reconstruct

the leaf images from the original leaf images with minimum loss of

information. In the second phase of proposed framework’s

implementation, a few-shot image classification and segmentation

models were developed to accurately identify plant diseases and

precisely segment the diseased areas from given leaf images,

respectively. The applicability of proposed PDSE-Lite framework was

verified on a publicly available ATLDS dataset comprising apple tree

leaf images and their annotated segmentation masks. The proposed

framework outperformed various state-of-the-art techniques present in

the literature by identifying and segmenting diseased areas from apple

leaf images with 98.35% accuracy and 97.59% Dice-Score, respectively.

Furthermore, the PDSE-Lite framework requires only two images per

class of the ATLDS dataset for training, thus significantly reducing the

human efforts required to annotate leaf images. To showcase the

lightweight nature of the PDSE-Lite framework, the trainable weight

parameters utilized by few-shot image classification and segmentation

models of the proposed framework were compared with existing state-

of-the-art techniques. After analyzing the results of trainable parameter

comparison, it was found that the models of the proposed framework

require minimum trainable weight parameters, i.e., 8749 and 7223 for

image classification and segmentation models, respectively. The

applicability of the proposed framework was further verified through

statistical hypothesis testing, which employs the Student t-test on

severity values extracted from predicted and ground truth

segmentation masks. Upon analyzing the results of the Student t-test,

it was determined that the PDSE-Lite framework accurately estimated

the severity of plant diseases with a 99% confidence interval. In

conclusion, the proposed framework effectively addressed the

challenge of early-stage plant disease diagnosis and severity

estimation without extensive manual data annotation.

In this study, the proposed framework’s effectiveness was only

evaluated on the ATLDS dataset. However, in forthcoming research

works, it can be trained on different plant disease detection and

severity estimation datasets, which comprise of a wider range of leaf

images of various plants suffering from different diseases.

Furthermore, the future work of this research also includes the

deployment of the PDSE-Lite framework on different IoT devices,

such as Unmanned Aerial Vehicles (UAVs), to enable real-time

monitoring of plant diseases in agricultural fields.
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