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architecture for accurate
detection of leaf diseases
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less amount of images
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Leaf diseases are a global threat to crop production and food preservation.

Detecting these diseases is crucial for effective management. We introduce

LeafDoc-Net, a robust, lightweight transfer-learning architecture for accurately

detecting leaf diseases across multiple plant species, even with limited image

data. Our approach concatenates two pre-trained image classification deep

learning-based models, DenseNet121 and MobileNetV2. We enhance

DenseNet121 with an attention-based transition mechanism and global

average pooling layers, while MobileNetV2 benefits from adding an attention

module and global average pooling layers. We deepen the architecture with

extra-dense layers featuring swish activation and batch normalization layers,

resulting in a more robust and accurate model for diagnosing leaf-related plant

diseases. LeafDoc-Net is evaluated on two distinct datasets, focused on cassava

and wheat leaf diseases, demonstrating superior performance compared to

existing models in accuracy, precision, recall, and AUC metrics. To gain deeper

insights into the model’s performance, we utilize Grad-CAM++.
KEYWORDS

multi-leaf disease, plant leaf disease, multi-plant leaf disease, attentive-transition,
attention module, lightweight architecture, robust architecture, swish activation
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1321877/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1321877/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1321877/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1321877/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1321877/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1321877/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1321877&domain=pdf&date_stamp=2024-01-11
mailto:sultanf@ksu.edu.sa
https://doi.org/10.3389/fpls.2023.1321877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1321877
https://www.frontiersin.org/journals/plant-science


Mazumder et al. 10.3389/fpls.2023.1321877
1 Introduction

The increasing global population and the subsequent rise in the

demand for agricultural products have posed growing challenges to

the role of agriculture in advancing sustainable development (Wang

et al., 2022) and guaranteeing global food security. As a substantial

driver of the global economy, agriculture is a fundamental provider

of food, income, and employment opportunities (Eunice et al.,

2022). Given the limited scope for expanding cultivable land, the

sole means of augmenting agricultural production is enhancing

land productivity (Gebbers and Adamchuk, 2010). Cassava and

wheat are essential crops that play significant roles in global

agriculture and food security. Cassava, a botanical species, has

leaves that exhibit a notable quantity of protein and vitamins

(Sambasivam and Opiyo, 2021). Cassava stands as a prominent

staple crop in Africa. Cultivation of cassava is prevalent in three

continents, namely Africa, Asia, and Latin America, which

collectively serve as key contributors to the global production of

cassava. Cassava has a comparative advantage over yam and other

African grains, roots, and tubers because it can flourish in various

soil conditions and adapt to multiple climatic circumstances. This

adaptability facilitates the successful production of cassava across

numerous geographical regions. Along with the nutritional content

of rice, it provides numerous health advantages. However, cassava

production has experienced a decline as a result of various diseases

that affect the crop, including mosaic disease, brown streak disease,

and bacterial blight (Zhong et al., 2022). Moving on to wheat is a

prominent global crop and a significant staple in the human diet. It

is cultivated in the largest planting area globally, and the yield of

this crop plays a crucial role in ensuring food security for most

countries worldwide. Wheat has considerable nutritional value,

encompassing a wide range of carbohydrates, fats, proteins, and

other vital substances necessary for human sustenance. Diseases

have a significant impact on both the yield and quality of wheat. The

decrease in wheat productivity results in financial implications and

threatens human well-being. Wheat powdery mildew, wheat leaf

blight, and wheat rust are commonly observed and highly

detrimental diseases affecting wheat crops (Kloppe et al., 2022).

According to projections, the world population is anticipated to

surpass 9 billion by the year 2050. Consequently, there will be a

corresponding doubling of food consumption, necessitating a

minimum increase of 70% in production to meet the heightened

demand (Gebbers and Adamchuk, 2010). The issue of food security

(Wang et al., 2022), both at the local and global level (Eunice et al.,

2022), is a significant and fundamental challenge that must be

addressed to achieve sustainable human development (Mustak Un

Nobi et al., 2023). Therefore, it is imperative to prioritize a sustainable

environment, the absence of diseases, and the attainment of high

quality and high yield (Wang et al., 2022) as essential for enhancing

food production to meet future demands (Eunice et al., 2022). Several

contemporary approaches rely on computer vision methods in plant

science, facilitating the surveillance of various agricultural sectors,

including banana, wheat, black gram, tomato, maize, grape, citrus,

potato, rice, cassava, etc. Researchers worldwide actively employ

machine learning and computer vision techniques to detect plant leaf

diseases effectively (Gebbers and Adamchuk, 2010). In agriculture,
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monitoring the health of plants is very important to achieve the desired

crop yield. Plant disease significantly threatens food security and the

annual revenue growth of the agricultural industry (Eunice et al., 2022).

The task of classifying plant leaf diseases presents significant challenges

due to the presence of high inter-class similarities and complicated

pattern variations. The application of deep learning approaches

(Mustak Un Nobi et al., 2023) to identify plant diseases has emerged

as a pivotal component in the observation and evaluation of the

production of distinct plant species. The rapid advancement in high-

performance computing and image processing components has

enabled the effective utilization of deep learning techniques in diverse

domains (Fan and Guan, 2023). These methods (Bajpai et al., 2023)

have proven highly proficient in uncovering complex structures within

high-dimensional data, making them applicable to a wide array of

fields, including science, engineering, industry, bioinformatics, and

agriculture (Pal and Kumar, 2023). Deep learning methods

demonstrate superior performance compared to traditional

classification networks in the real-time detection of plant leaf

diseases (Shah et al., 2022). The conventional machine learning

approach (Wang and Su, 2022) exhibits a limited generalization

capacity and requires the manual extraction of disease-related

features. The emergence of deep learning provides an additional

approach to establishing disease detection (Eunice et al., 2022). The

Convolutional Neural Network (CNN) is widely recognized as one of

the most prominent techniques in the field of deep learning (Wu et al.,

2022a). CNN can extract distinctive characteristics from images that

exhibit diverse scales autonomously (Eunice et al., 2022). CNN extracts

intricate, low-level features from images (Wang and Su, 2022).

Therefore, CNN is favored over conventional approaches in the

automated identification of plant diseases due to their superior

performance(Eunice et al., 2022). CNN demonstrates significant

capabilities in effectively segmenting image components with high

accuracy. In recent years, agriculture has utilized it extensively (Li et al.,

2021b). This research presents a state-of-the-art deep learning

architecture based on transfer learning for detecting multi-leaf

diseases, shortly the LeafDoc-Net. Transfer learning is a highly

effective approach in deep learning that offers several advantages

over training models from scratch for new tasks. The method has

gained substantial attention and acknowledgment owing to its

accelerated training process, lower data requirement, robustness,

adaptability, efficient feature extraction, and enhanced generalization

capability. The proposed framework defines how plant leaf images are

classified as healthy and diseased, followed by their utilization in

identifying various diseases. The overall contribution of this work:
• Presents a novel architecture, “LeafDoc-Net”, which is a

faster, robust, lightweight, precise, accurate, efficient multi-

leaf disease detection framework based on DenseNet121

and MobileNetV2 integrating effective data augmentation,

preprocessing, concatenation, attention-based transition,

batch normalization, global average pooling, and more

dense layers with swish activation

• Suggests a range of optimization techniques to effectively

tackle the challenges of underfitting and overfitting in

complex and less amount of image datasets to achieve the

highest possible performance
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• Includes the comparison result between the proposed

architecture and the experimented state-of-the-art models

in terms of every performance metric, including accuracy,

precision, recall, and AUC, for the cassava and wheat Leaf

disease dataset

• Describes model interpretability through the Grad-CAM+

+, incorporated into the proposed architecture
The rest of the paper is organized as the related works in section

2, the material and methods in section 3, the result analysis in

section 4, the discussion in section 5, and the conclusion and the

future work in section 6 followed by the references.
2 Related works

Different approaches, including K-means clustering, SVM

(Islam et al., 2017), KNN (Singh and Kaur, 2019), and ANN

classifier (Dhakate and Ingole, 2015), have been deployed to

identify plant diseases and classification. Nevertheless, there is a

need to enhance the practical outcomes of these algorithms and

other algorithms used in image processing. These approaches also

consume significant time when applied to disease classification

(Narayanan et al., 2022). Certain plant diseases lack well-defined

boundaries and can instead blend with healthy leaf tissue, posing a

challenge for their identification using current techniques.

Therefore, developing a comprehensive classification system is

imperative to overcome these limitations effectively. In order to

tackle these challenges, the agricultural sector has employed

advanced DL algorithms. A recent research effort has

demonstrated that DenseNet-121 and other contemporary pre-

trained models, including VGG-16, ResNet-50, and Inception-V4,

successfully detected and classified plant diseases. The model

demonstrated a remarkable classification accuracy of 99.81%

when evaluated on the Plant Village dataset, outperforming other

models in performance (Eunice et al., 2022).

Transfer Learning is currently considered the most advanced

technique for improving the performance of CNN-based classifiers in

plant leaf disease detection. Transfer learning strategies utilize the

knowledge and skills obtained from prior tasks to tackle the current

problem effectively. It has become very popular in deep learning due

to its notable performance in scenarios lacking data. Krishnamoorthy

et al. (2021) conducted a study in which they demonstrated the

application of a pre-trained DCNN InceptionResNetV2 with a

transfer learning approach. They incorporated different fine-tuning

hyperparameters and achieved a final accuracy of 95.67%. In a

separate investigation conducted by Latif et al. (2022), the primary

objective was to develop a robust methodology for precisely

identifying and diagnosing healthy leaves and five distinct diseases.

This was achieved by employing a transfer learning algorithm based

on the VGG19 architecture. The modified technique demonstrated

the highest average accuracy of 96.08%. The model’s accuracy yielded

precision, recall, specificity, and F1-score values of 0.9620, 0.9617,

0.9921, and 0.9616, respectively. Simhadri and Kondaveeti (2023)

utilized the transfer learning technique to diagnose and efficiently

manage rice plant diseases. This involved utilizing a collection of 15
tiers in Plant Science 03
pre-trained CNN models. The results indicated that the InceptionV3

model performed better than others, attaining a notable average

accuracy rate of 99.64%. The Precision, Recall, F1-Score, and

Specificity values for InceptionV3 were documented as 98.23%,

98.21%, 98.20%, and 99.80%, respectively. In contrast to the other

models investigated in the study, the AlexNet model demonstrated

relatively lower performance, achieving an average accuracy of

97.35%. In an attempt to significantly enhance the accuracy of

maize leaf disease detection, Rajeena PP et al. (2023) suggested an

architecture that involves adjusting the variables of EfficientNet. The

authors asserted that their suggested approach achieved recognition

accuracy of 98.85%, notably superior to other state-of-the-art

techniques. In their study, Mukti and Biswas (2019) introduced a

plant disease detection model that utilizes transfer learning, focusing

on employing the ResNet50 CNN architecture. Their study mainly

emphasized utilizing the ResNet50 network as the pre-trained model

in the transfer learning technique. Wu et al. (2022b) presented an

enhanced model utilizing ResNet101 to identify diseases in woody

fruit plant leaves. This study utilized a dataset of six distinct types of

fruits affected by a leaf disease. The dataset was classified into 25

categories according to species, disease type, and severity level. To

address the overfitting issue, the authors implemented several

techniques, such as global average pooling, layer normalization,

dropout, and L2 regularization. Furthermore, the researchers

integrated the Squeeze-and-Excitation Network (SENet) attention

mechanism into the model to augment its feature extraction

capabilities. The outcomes from the research indicate that the

suggested architecture exhibited an overall accuracy rate of 85.90%

in effectively classifying leaf diseases in woody fruit plants. Ferentinos

(2018) proposed a CNN architecture for disease detection and

classification across a diverse range of 25 plant species. Among the

CNN models that were evaluated, it was found that the VGG

architecture exhibited the highest level of performance, achieving

an accuracy rate of 99.48% on the given dataset. Similarly, Mohanty

et al. (2016) introduced a method based on deep learning, which

involved training a dataset comprising 54,000 images. This dataset

encompassed 14 distinct crop species and 26 classes representing

disease and healthy conditions. Among the various models that were

tested, GoogleNet with transfer learning exhibited the highest level of

accuracy, reaching 99.34%.

The popularity of advanced deep learning algorithms,

particularly transfer learning, has extended to detecting and

classifying leaf diseases in cassava and wheat. In order to detect

cassava leaf diseases, Sambasival et al. (Sambasivam and Opiyo,

2021) proposed a cassava disease detection approach demonstrating

high efficiency in identifying various cassava leaf diseases. This

method was developed and evaluated using a dataset of 10,000

images collected from Uganda. The accuracy of the proposed

method surpassed 93% through the utilization of deep CNNs. In

practical implementations of disease detection in field settings, it is

imperative to consider the limitations imposed by low-resolution

capturing devices. Hence, Abayomi-Alli et al. (2021) conducted an

experiment in which deliberate destructive filters were employed to

reduce the quality of the images in the Cassava disease dataset.

Subsequently, a deep network was trained using MobileNetV2 as a

foundation for this experiment. In their study, Ramcharan et al.
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(2017) employed transfer learning techniques to train a deep CNN

to detect multiple diseases and pests affecting cassava plants. The

researchers achieved an impressive overall accuracy rate of 93% by

applying a dataset collected from various fields in Tanzania. Chen

et al. (2021) introduced a novel CNN architecture named

Efficientnet in their study. This framework demonstrates the

ability to classify various cassava leaf diseases by utilizing low-

bandwidth images. The proposed model achieved an accuracy of

89% when evaluated on five distinct cassava leaf datasets. Goyal

et al. (2021) proposed a deep CNN architecture for identifying and

categorizing wheat leaf diseases. The model achieved an accuracy

rate 97.88% in detecting and classifying ten different types of leaf

and spike wheat diseases. In a study, Mi et al. (2020) introduced an

automated approach using the DenseNet architecture to assess the

severity grading of wheat rust disease. The proposed method was

evaluated on the wheat stripe rust grading dataset (WSRgrading

dataset). The results demonstrated an accuracy of 92.53% achieved

by the model. Xu et al. (2023) introduced a novel RFE-CNN

approach for detecting wheat leaf diseases in their study. This

method demonstrated superior performance to popularly

employed CNN architectures such as VGG, Inception, and

EfficientNet. The RFE-CNN achieved an average classification

accuracy of 98.83%. Fang et al. (2023) proposed a novel

lightweight multiscale CNN model that incorporates techniques

to enhance attention toward disease portions of images while

reducing attention toward complex backgrounds. This method’s

results indicate a high accuracy level, specifically 98.7% when

applied to a dataset of seven distinct classes. In their study, Jiang

et al. (2021) researched to enhance the performance of the VGG16

model, which had been pre-trained on the IMAGENET dataset. The

authors focused on fine-tuning this model using images of rice and

wheat leaf diseases. Notably, their approach achieved an impressive

accuracy rate of 98.75%, specifically for wheat leaf diseases. Genaev

et al. (2021) introduced an alternative approach to transfer learning,

which focuses on automating wheat fungi disease identification.

Their method utilizes the EfficientNet architecture and achieves a

notable accuracy of 94.2% on a dataset of 2414 instances of wheat

fungi disease. Notably, 86% of the images in this dataset were

labeled as having either a single or multiple diseases.

Many researchers attempted to find lightweight architectures

for leaf disease detection for low-resource computational devices.

Arun and Umamaheswari (2023) presented a lightweight

architecture using the Complete Concatenated Deep Learning

(CCDL) architecture to classify agricultural diseases across crops.

The Complete Concatenated Block (CCB) manages model

parameter count with a point convolution layer before each

convolution layer. The architecture is trained on the Plant Village

dataset. A Pruned Complete Concatenated Deep Learning model is

created after training. The study includes three architecture options,

with PCCDL-PSCT standing out. This version classifies 98.14%

with a 10-megabyte model. In their study, Yang et al. (2023)

introduced DGLNet, a rice disease diagnosis network that is both

lightweight and accurate. The Global Attention Module (GAM) and

Dynamic Representation Module (DRM) are modules inside the

DGLNet framework that have a modest level of complexity. The

GAM effectively captures essential information in intricate and
Frontiers in Plant Science 04
noisy environments, enhancing the model’s generalization

capabilities. The DRM system has devised a proprietary technique

known as the four-dimensional flexible convolution (4D-FConv),

which effectively creates adaptive convolutional kernel parameters

by utilizing four dimensions. The proposed methodology

demonstrates superior performance compared to widely used

approaches, achieving recognition accuracies of 99.82% and

99.71% on two authentic plant disease datasets. The study

conducted by Gehlot and Gandhi (2023) involved the utilization

of an enhanced, efficient, and tailored Deep Convolutional Neural

Network (DCNN) on the plant village dataset. The primary

objective of this study was to discern various diseases affecting

tomato plants. This study aims to conduct a comparative analysis

and practical implementation of MobileNet and a tailored

lightweight model derived from MobileNetV2 for picture

categorization. The dataset has 14,529 images depicting tomato

leaves, categorized into ten distinct classes. The proposed model

demonstrates high accuracy, with a success rate of 99.26%. Sharma

et al. (2023) introduced DLMC-Net, a more profound lightweight

convolutional neural network architecture, for real-time plant leaf

disease detection across multiple crops. The suggested model

extracts deep features using a succession of collective blocks and

the passage layer. This helps propagate and reuse features, solving

the vanishing gradient problem. Point-wise and separable

convolution blocks are used to reduce trainable parameters. The

DLMC-Net model is tested on four public datasets: citrus,

cucumber, grapes, and tomato. The experimental results of the

proposed model were compared to seven state-of-the-art models. In

experiments with citrus, cucumber, grapes, and tomato, the

suggested model outperformed all other models with an accuracy

of 93.56%, 92.34%, 99.50%, and 96.56%, respectively, under difficult

background conditions. Fan and Guan (2023) developed VGNet, a

corn disease recognition system based on pre-trained VGG16, with

batch normalization (BN), global average pooling (GAP), and L2

normalization. Transfer learning for corn disease categorization

improves the proposed strategy. The Adam optimizer outperforms

SGD for agricultural disease identification in experiments. The

model achieves 98.3% accuracy and 0.035 loss at 0.001 learning

rate. Nine corn diseases have precision and recall values between

98.1% and 100% after data augmentation. Zhong et al. (2023)

developed LightMixer, a lightweight tomato leaf disease diagnosis

model. The LightMixer model uses Phish and light residual

modules for depth convolution. Phish is a lightweight

convolution module that employs depth convolution to splice

nonlinear activation functions and lightweight convolutional

feature extraction for deep feature fusion. Lightweight residual

blocks were used to build the light residual module to increase

network design computational efficiency and prevent disease

feature information loss. LightMixer obtained 99.3% accuracy on

public datasets with 1.5 M parameters in experiments. Guan et al.

(2023) presented Dise-Efficient, a network architecture based on

EfficientNetV2, to improve plant disease and pest diagnosis. Their

findings show that training this model with dynamic learning rate

degradation improves plant disease and pest recognition. Transfer

learning improves the model’s generalization capacity during

training. Experimental data showed that the model achieves
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99.80% accuracy on the Plant Village plant disease and pest dataset.

Transfer learning on the IP102 dataset, which simulates real-world

environmental circumstances, gives the Dise-Efficient model

64.40% plant disease and pest recognition accuracy.

The majority of the existing research has primarily concentrated

on positive performance outcomes. While previous research has

demonstrated impressive results, several areas for improvement still

need to be addressed, including optimizing model complexity and

robustness. Moreover, the absence of other significant performance

metrics is evident. To effectively address the issue of insufficient

complex data, it is imperative to conduct careful experiments. The

present research necessitates a comprehensive examination of

frequent issues, including complex, less research data,

underfitting, and overfitting. Moreover, most of the research in

the literature utilized a leaf segmentation method, which is costly in

terms of resources and time. This research presents a solution to the

various challenges associated with plant disease without leaf

segmentation, making the proposed framework cost-effective, fast,

and efficient for farmers. It involves the development of a robust

and lightweight architecture for detecting leaf diseases in complex

real-time scenarios for multiple plant species. Moreover, the

proposed architecture also introduces a state-of-the-art technique

to mitigate complex, less research data, underfitting, and

overfitting issues.
3 Materials and methods

3.1 Dataset

An appropriate dataset is required at each stage of the research

process, starting from training and extending to the evaluation of

algorithm effectiveness. Since our main goal was to develop a

lightweight, robust, and accurate leaf disease detection system

regardless of leaf size from fewer images and complex

backgrounds, we selected two datasets: cassava leaf disease (L G

et al., 2021), and wheat leaf disease dataset (Hawi, 2021) which

matched all our selection criteria. All the datasets comprise two

disease classes and a class representing healthy samples. These

datasets have significantly fewer images per class. The datasets are

publicly available on Mendeley. We split every dataset’s image into

two groups: train (80%) and test (20%). Table 1 shows detailed

information on the datasets, train, and test images per class.
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Figures 1, 2 represent the sample image per class of cassava and

wheat leaf disease dataset.
3.2 Data augmentation and preprocessing

A substantial quantity of data is imperative for the deep learning

algorithm to identify and classify leaf diseases accurately (Li et al.,

2021a). Generating extra data from existing data is called “data

augmentation”. Furthermore, this approach could address the

problem of overfitting commonly occurring in CNN training.

Thanks to data augmentation approaches, a more extensive

dataset can be employed during training, which increases

generalization without endangering overfitting (Jiang et al., 2019).

We enhanced the leaf images to mimic actual conditions by

shearing, rotating, adjusting the height and width, and flipping

them horizontally. The dataset images went through preprocessing

before being used to train the model to increase feature extraction

and classifier performance. The RGB coefficients in the dataset used

in this study ranged from 0 to 255. Processing images with higher

values, nevertheless, takes much work. To overcome this situation,

all of the images in the dataset were normalized using a scale factor

of 1/255, yielding values between 0 and 1. The dataset’s data has

been standardized to a fixed pixel size of 224*224 to facilitate

training. Utilizing neural networks with higher-resolution images

would require four times as many input pixels, increasing training

time (Saponara and Elhanashi, 2021).
3.3 Experimental setup

We trained various pre-trained models using the Nvidia

GeForce GTX 1650 Max-Q GPU (4 GB), Keras, and TensorFlow

libraries. This study investigated multiple factors: the number of

images per batch, various epochs, augmentation settings, and

activation functions. The models were resized by determining the

appropriate input shape according to the specifications of each

model. Effective augmentation methods were used, including

rotation, vertical flipping, width shifting, and height shifting. All

experiments utilized the identical optimizer, Adam, with a batch

size 8. The learning rate was set to 1 × 10−5, and the number of

epochs was fixed at 50, with early stopping implemented. Accuracy,

precision, recall, and area under the curve (AUC) were included in

the performance metrics.
3.4 The proposed “LeafDoc-
Net” architecture

Several pre-trained models such as InceptionV3, ResNet152V2,

InceptionResNetV2, MobileNet, MobileNetV2, NASNetLarge,

DenseNet121, DenseNet169, DenseNet201, EfficientNetV2S, and

EfficientNetV2L were employed to measure the detection

performance on the cassava and wheat leaf diseases datasets. All

the pre-trained models were trained without freezing any layer.

With no learning process restrictions, this method helped the
TABLE 1 The number of images depicting leaf diseases across
various datasets.

Dataset Class Train Test

Cassava Leaf Disease

Cassava CB (Cassava Blight) 39 10

Cassava CM (Cassava Mosaic) 70 18

Cassava Healthy leaf 73 18

Wheat Leaf Disease

Healthy 81 21

Septoria 78 19

Stripe Rust 169 39
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models comprehend the new challenge better. DenseNet201

performed better than other base models on the cassava leaf

disease datasets. However, EfficientNetV2s outperformed

DenseNet201 on the wheat leaf disease dataset. It proved that no

classification model could perform similarly on all leaf disease

datasets. Some pre-trained models encountered a significant issue

of underfitting, representing significant limitations of the base

models. Several Transfer-learning-based strategies, such as

integrating various types of layers with the model, have been

investigated to address the underfitting and overfitting issues.

Transfer learning-based techniques dramatically enhance the

detection performance of the proposed LeafDoc-Net architecture.

Before beginning the training process of the LeafDoc-Net

architecture, a range of data augmentation and preprocessing

techniques were employed to boost the architecture’s performance

and address the threat of overfitting. We employed DenseNet121 and

MobileNetV2 as the foundation of the LeafDoc-Net architecture.

DenseNet121 was chosen for its parameter efficiency and dense
Frontiers in Plant Science 06
connectivity, facilitating feature reuse and effective learning, while

MobileNetV2 was selected for its efficiency and speed, making it

suitable for resource-constrained environments. The combination of

these models leverages DenseNet’s rich feature extraction capabilities

and MobileNetV2’s computational efficiency, creating a hybrid

architecture that excels in applications requiring detailed feature

extraction and adaptability to limited computational resources. The

ensemble effect and complementary strengths of each model enhance

the overall performance of the proposed architecture. DenseNet121 is

a convolutional neural network (CNN) architecture in the DenseNets

(Densely Connected Convolutional Networks) family. DenseNets are

designed to address some of the shortcomings of traditional CNN

architectures, such as VGG and ResNet, by encouraging feature reuse,

addressing the vanishing gradient issue, and improving model

compactness. The DenseNet121 design is built around several

dense blocks. Each dense block is made up of multiple closely

connected convolutional layers. Each layer in a dense block takes

input from the layers above it and gives its feature maps to the layers
FIGURE 2

Sample image per class of wheat leaf disease dataset.
FIGURE 1

Sample image per class of cassava leaf disease dataset.
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below it. This high degree of connectivity increases feature reuse and

gradient flow during training (Huang et al., 2017). The Mathematical

equation for the dense block in Equation 1 is as follows:

x1 = Hl(½x0, x1,…, xl−1�) (1)

Where, ½x0, x1,…, xl−1� denotes the result of the concatenation

of all of the feature-maps created in layers 0,1,. . .,l − 1, Hl has been

described as a composite function that consists of three sequential

operations on the l th layer.

Figure 3 presents the layers in the dense block of the pre-trained

DenseNet121 model.

Transition layers between dense blocks reduce the spatial

dimensions of the feature maps and the number of channels. This

aids in reducing computational complexity and managing the

model’s growth. Convolutional, batch normalization and pooling

layers are standard components of transition layers. Within each

dense block, there are bottleneck levels. 1x1 convolutional layers are

utilized before the standard 3x3 convolution to reduce the number

of channels. This reduction in channel count contributes to a

reduction in computing complexity (Huang et al., 2017). The

mathematical equation presented in Equation 2 for the transition

layer can be defined as:

zl = Wl � f1(z
l−1) + bl (2)

Where, zl is the lth layer neuron status, f1() is the activation

function. Wl and bl are the weight matrix and bias from (l − 1)th to

the lth, respectively.

DenseNet121 is a deep network with fewer parameters than

previous deep architectures, allowing it to be trained on standard

hardware. Figure 4 presents the core components of the pre-trained

DenseNet121 model.
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On the other hand, MobileNetV2 is a convolutional neural

network (CNN) architecture that is optimized for on-device vision

applications. It enhances the original MobileNet architecture to

improve accuracy and efficiency. The concept of “inverted

residuals” is introduced in MobileNetV2 to make the network

deeper while keeping computing costs low. Each inverted residual

block typically has an Expansion Layer (1x1 convolution),

Depthwise Separable Convolution layer, Projection Layer (1x1

convolution), and Skip Connection layer. The expansion layer

(1x1 convolution) increases the channels, allowing the model to

capture more complicated features. The depthwise separable

convolution is the foundation of MobileNetV2. It is divided into

two significant steps: Depthwise Convolution and Pointwise

Convolution. Each input channel is convolved separately with its

associated filter in Depthwise Convolution, resulting in a set of

feature maps. Following the depthwise convolution, the feature

maps from the preceding phase are combined using a 1x1

convolution (pointwise convolution). This contributes to the

model’s depth (number of channels) and capacity. The projection
Dense Block

Concatenate

ConV 1x1

ConV 3x3

Concatenate

FIGURE 3

The layers in the dense block of the pre-trained
DenseNet121 model.
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The core components of the pre-trained DenseNet121 model.
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layer decreases the number of channels to a more manageable

number while keeping essential information and lowering

computational complexity. A skip connection (or residual

connection) is added to the projection layer’s output, which

allows gradients to flow freely and prevents the vanishing

gradient problem. MobileNetV2 also employs bottleneck blocks

with 1x1 and 3x3 convolutions to reduce computing costs further.

Inverted Bottlenecks are inverted residual block extensions. They

boost network depth and are employed at deeper levels. Linear

bottlenecks are used to reduce the number of channels while

avoiding the addition of non-linearity. MobileNetV2, like other

recent CNN architectures, uses Global Average Pooling at the end

to turn spatial input into a fixed-size vector for classification

(Sandler et al., 2018). Figure 5 presents the core components of

the inverted residuals layer of the pre-trained MobileNetV2 model.

In order to enhance the ability of the proposed architecture, we

incorporated an attentive transition layer comprising 1024 filters

with the DenseNet121 model. The process of attentive transition

begins with computing the attention map through the global

average pooling of input feature maps, reducing their spatial

dimensions to a single value per channel. This attention map is

then processed using a dense layer with 1024 filters and a sigmoid

activation function, learning attention weights for input channels.

Next, the attention map is reshaped to (1, 1, 1024 filters) for

element-wise multiplication with the input feature maps,

enhancing or diminishing specific characteristics based on learned

attention weights. Following this attention application, a

convolutional layer with 1024 filters and a 1x1 kernel size further
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refines the feature maps. Subsequently, spatial dimensions are

reduced using max pooling with a 2x2 pool size and stride.

The attentive transition module’s role is to compute attention

weights for different channels in the input feature maps, allowing

the model to emphasize essential features and prioritize

discriminative information selectively. This adaptive refinement

enhances meaningful representations by boosting crucial features

and suppressing noise. The attentive transition enhances

computational efficiency while maintaining critical information by

employing dimensionality reduction techniques like reducing the

number of filters and max pooling. This approach captures higher-

level spatial patterns and abstract representations while retaining

spatial dependencies for improved class discrimination (Mi

et al., 2020).

We also modified the MobileNetV2 model by adding an extra

attention layer. The attention layer computes attention weights

using a 1x1 convolutional layer followed by a sigmoid activation

function, yielding attention values ranging from 0 to 1. These

attention weights are subsequently applied to the original feature

maps through element-wise multiplication. This technique

emphasizes specific regions in feature maps based on their

relevance as indicated by attention weights. The resulting

attended features contain the original feature information but

with a stronger emphasis on essential locations, making this

method ideal for applications like object recognition or

segmentation, where the model needs to choose to emphasize

crucial image regions for better performance (Mi et al., 2020).

After modifying the DenseNet121 and MobileNetV2 models,

we added a global average pooling layer with each model. In this

study, the use of global average pooling was preferred over the

implementation of a flattened layer. This choice was made to

expedite the training process by reducing the parameters in the

proposed architecture. Utilizing the global average pooling layer

effectively addresses the problem of overfitting. Outputs from the

global average pooling layer of each model fed into the concatenate

layer. This concatenate layer concatenates feature maps from the

DenseNet121 and MobileNetV2 models. The Concatenation of

feature maps from two different models enables the proposed

architecture to learn diverse representations of features from the

input image. The concatenated feature maps can extract more

patterns and information from an image. This can lead to better

generalization, making the proposed architecture more robust and

capable of managing many sorts of information. Concatenating

feature maps helps the model discriminate between objects or

similar classes. Distinct models may concentrate on distinct

elements of an object, and their combination may provide more

discriminative ability. Combining feature maps from different

models can assist in reducing overfitting by adding redundancy

and regularization. This is very helpful when working with limited

training data (Pan et al., 2019).

Additionally, we implemented a dense layer consisting of 1024

filters with swish activation, followed by batch normalization, as it

increases the reliability and quickness of our proposed architecture.

Furthermore, we integrated another dense layer with 512 filters,

utilizing swish activation and batch normalization, followed by an

additional dense layer with 128 filters to increase the complexity of
Input Input

ConV 1x1, Relu6 ConV 1x1, Relu6

Dwise 3x3, Relu6 Dwise 3x3,
Stride=2, Relu6

ConV 1x1, Linear ConV 1x1, Linear

Add

Stride = 1 Block Stride = 2 Block

FIGURE 5

The core components of the inverted residuals layer of the pre-
trained MobileNetV2 model.
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the proposed architecture. Including additional dense layers in the

architecture boosts its capacity to extract supplementary features

and improve overall performance (Josephine et al., 2021).

Our study conducted experiments by incorporating the

Rectified Linear Unit (ReLU), Parametric Rectified Linear Unit

(PReLU), and Swish activation functions with all the additional

dense layers into our proposed architecture. Swish’s performance

was superior to using ReLU and PReLU across all performance

metrics. Ramachandran et al. (2017)’s experimentation showed that

the Swish activation function outperformed ReLU on complicated

datasets. The faster convergence of this smooth, non-monotonic

function makes data normalization conceivable. The activation

function swish is defined mathematically in Equation 3 as follows:

f (x) = x − s (x) (3)

Where, s(x) = (1 + exp(−x)) − 1) is the sigmoid function.

Compared to ReLU and PReLU, the Swish activation function is

a promising new activation function with many advantages. It is

more effective, expressive, and has a better gradient flow. It has also

been demonstrated to perform better in practice on several tasks,

including our experiment. Finally, we utilized a dense layer with an

activation function called SoftMax (Sharma et al., 2017).

Determining how many neurons are required in this layer was

predicated upon the number of classes present within the dataset.

The SoftMax function is frequently utilized when addressing

multiclass classification tasks. The function generates a

probability distribution across various classes, assigning each class

a probability value ranging from 0 to 1. The SoftMax function

assigns a higher probability to the target class than the remaining

classes, indicating its likelihood as the predicted class. The

activation function SoftMax is formally defined in Equation 4 as

follows:

softmax(zi) =
exp (zi)

oi exp   (zj)
(4)

Where, z = values of the output layer’s neurons, and exp serves

as the non-linear function.

We conducted experiments to determine the effects of

deploying various learning rates for modifying hyperparameters

in the Adam optimizer. In the proposed architecture, we

subsequently employed the Adam optimizer with a learning rate

of 1 × 10−5. The loss function employed in this study for the

proposed architecture, which aims to address multiclass

classification problems, is categorical crossentropy (Li et al.,

2022). The mathematical equation of categorical crossentropy

presented in Equation 5 as:

Li = −o
j
ti,jlog (Pi,j) (5)

where, P = predictions, t = targets, i = data points, j = class.

Furthermore, to mitigate the problem of overfitting, an early

stopping function was implemented. The function was configured

by setting the monitoring parameter to ‘val loss’ and assigning a

patience value of 3. Once the validation loss value exhibits an

upward trend, signifying the possibility of overfitting, the model’s

training process is automatically terminated. This measure aids in
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mitigating the model’s tendency to train continuously on data that

could potentially decrease its overall ability to generalize. Figure 6

illustrates the core elements of the proposed architecture.
3.5 Performance metrics

An essential part of developing a deep learning model is

assessing its performance. Performance or assessment metrics

assess a model’s performance on the provided data. Using these

measurements, the researchers may better understand how closely

the data and model match and adjust its parameters to increase

effectiveness. Different evaluation measures have been used in this

experiment to explain how well the model performed. Below is a

brief explanation of the evaluation criteria utilized for the study.

3.5.1 Confusion matrix
Confusion matrix (CM) is utilized as NxN arrays to evaluate the

outcome of a deep learning-based algorithm, with N representing

the total number of classes within the predefined set. This matrix

facilitates the evaluation of the model’s predictions compared to the

actual values. By utilizing a confusion matrix, researchers can

comprehend the efficiency of their deployed algorithm and the

various types of errors it may generate. The insights provided by

these evaluations are of significant value as they enable researchers

to analyze and enhance the model’s performance across

various classes.

3.5.2 Accuracy
Accuracy (AC) is a widely employed technique in deep learning

to determine a classification algorithm’s ability. It provides a

straightforward method for comprehending the model’s overall

performance by calculating the proportion of correctly classified

samples relative to the total number of samples within the dataset.

Nevertheless, the usefulness of this metric may be limited,

particularly in the context of imbalanced datasets. Accuracy can

be mathematically expressed (Equation 6) as:

AC =
TP + TN

TP + FP + TN + FN
(6)
3.5.3 Precision
Precision is a commonly employed benchmark in the field of

deep learning. The model’s performance is evaluated by

determining the percentage of accurate positive predictions,

which refers to correctly identifying positive samples among all

the positive predictions made by the model. It focuses on the

accuracy of a model’s positive predictions, which is crucial when

working with unbalanced datasets or when the cost of false positives

is high. High precision means the model is good at correctly

predicting the positive outcome, which lowers the incidence of

false positives. PR can be mathematically explained (Equation 7) as:

PR =
TP

TP + FP
(7)
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3.5.4 Recall
Recall is an indicator of statistics employed to evaluate the

predictive accuracy of a model. The calculation involves dividing

the count of correctly predicted positive outcomes by the overall

count of actual positive occurrences. In contrast to the accuracy

metric, which solely evaluates the proportion of correctly predicted

positive occurrences out of all anticipated positives, recall considers

the number of positive instances the model failed to identify. The

recall metric quantifies the proportion of true positive instances

correctly identified by the model, indicating the model’s ability to
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capture positive predictions. The mathematical definition of RE

presented in Equation 8 is:

RE =
TP

TP + FN
(8)

Here, TP = true positive, TN = true negative, FP = false positive,

FN = false negative.

Furthermore, we measured the Area Under the Curve (AUC)

value, a performance parameter for classifiers. The AUC is used to

evaluate the discriminatory ability of a model in distinguishing
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The figure shows the core elements of the proposed LeafDoc-Net architecture. The foundation models are DenseNet121 and MobileNetV2, with
additional layers in DenseNet121 and MobileNetv2. Additional layers in the proposed LeafDoc-Net architecture include concatenating two models,
several dense layers with swish activation, batch normalization, and the output layers with softmax activation.
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between different occurrences. It is a scalar value that ranges

between 0 and 1, where a higher AUC signifies greater accuracy

in the model’s predictions.
3.6 Interpreting with XAI

For complex systems that rely on neural networks, it is crucial to

establish trust by explaining how and what the models predict. To

establish sufficient confidence and reliance on the model, we

employed Grad-CAM++ (Chattopadhay et al., 2018), an

enhanced iteration of Grad-CAM, to elucidate our approach

visually. It is a technique for visual explanation based on CAM.

3.6.1 Grad-CAM++
The Grad-CAM technique applies to localizing multiple

instances belonging to the same class. Moreover, the localization

of the heatmap produced by Grad-CAM may demonstrate

enhanced precision in accurately identifying the precise region

associated with a particular class within an image. The

Convolutional Neural Network (CNN) model’s predictions can be

effectively visualized by employing Grad-CAM++ (Chattopadhay

et al., 2018) to enhance the object localization procedure and depict

the visual representation of multiple object occurrences within an

individual image. The Grad-CAM++ technique employs the

weighted mean of the positive portion of the partial derivatives of

the feature maps derived from the ultimate convolutional layer. The

mathematical formulation of Grad-CAM++ can be represented

(Equation 9) as follows:

Wc
k =o

i
o
j
akc
i,j ReLU

∂Yc

∂Ak
i,j

 !
(9)
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where, Wc
k= neuron weights, akc

i,j = signifies the importance of

location (i,j), Ak = activation map, c = target class, Yc = The score of

a network’s class c.

The effective use of pixel-wise ReLU on the final activation map

is of utmost importance as it amplifies the characteristics that

positively influence the desired class.
4 Result and analysis

Precise diagnosis is crucial for cases involving plants that

directly affect human beings. This study proposes a transfer

learning-based architecture called LeafDoc-Net to construct a

lightweight and robust deep-learning model. We utilized two

distinct datasets, cassava and wheat Leaf Disease, to compare the

proposed and existing CNN pre-trained models. The objective was

to assess the weight and robustness of the LeafDoc-Net architecture

and compare it with the existing CNN model. The LeafDoc-Net

architecture was analyzed by evaluating various performance

metrics, including accuracy, precision, recall, and area under the

curve (AUC) value. Other important factors, such as loss and total

parameters, were also analyzed. The DenseNet201 pre-trained

model outperformed all other pre-trained models on the cassava

leaf disease dataset. However, on the wheat leaf disease dataset,

EfficientNetV2S demonstrated superior performance compared to

DenseNet201 and other pre-trained models. The pre-trained

models showed issues of underfitting across the two leaf disease

datasets, indicating a need for more robustness in their

performance. The pre-trained models could not perform better

due to the need for sufficient images per class in the selected two

datasets. In deep learning, a large amount of input data is required

to learn essential features and perform better. In order to solve this
TABLE 2 The performance summarization of different pre-trained models and proposed LeafDoc-Net architecture on cassava leaf disease dataset.

Model Accuracy Precision Recall Area Under the Curve (AUC)

ResNet152V2 0.7543 0.7771 0.7826 0.9348

InceptionV3 0.7391 0.7727 0.7391 0.9030

InceptionResNetV2 0.6087 0.6471 0.4783 0.7765

MobileNet 0.7846 0.7222 0.7043 0.9016

MobileNetV2 0.8143 0.7822 0.7543 0.9100

DenseNet121 0.8043 0.8222 0.8043 0.9257

DenseNet169 0.8113 0.8101 0.8096 0.9784

DenseNet201 0.8230 0.8130 0.8130 0.9831

NASNetLarge 0.5870 0.6000 0.5870 0.8040

EfficientNetV2S 0.8013 0.8124 0.8096 0.9108

EfficientNetV2L 0.8090 0.7910 0.7895 0.9080

LeafDoc-Net_PReLU 0.9783 0.9783 0.9783 0.9998

LeafDoc-Net_Relu 0.9530 0.9733 0.9530 0.9897

LeafDoc-Net 0.9999 0.9999 0.9999 1.0000
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TABLE 3 The performance summarization of different pre-trained models and proposed LeafDoc-Net architecture on wheat leaf disease dataset.

Model Accuracy Precision Recall Area Under the Curve (AUC)

ResNet152V2 0.8101 0.8205 0.8101 0.9499

InceptionV3 0.8354 0.8421 0.8101 0.9533

InceptionResNetV2 0.7342 0.8361 0.6456 0.8802

MobileNet 0.8143 0.8212 0.8143 0.9407

MobileNetV2 0.8114 0.8014 0.8014 0.9386

DenseNet121 0.8734 0.8718 0.8608 0.9678

DenseNet169 0.8861 0.8961 0.8734 0.9807

DenseNet201 0.9114 0.9103 0.8987 0.9887

NASNetLarge 0.6835 0.7105 0.6835 0.8717

EfficientNetV2S 0.9114 0.9114 0.9114 0.9821

EfficientNetV2L 0.8896 0.8895 0.8895 0.9678

LeafDoc-Net_PReLU 0.9494 0.9494 0.9494 0.9950

LeafDoc-Net_Relu 0.9367 0.9367 0.9367 0.9911

LeafDoc-Net 0.9873 0.9873 0.9873 0.9996
F
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FIGURE 7

Performance comparison between different pre-trained models and our proposed LeafDoc-Net architecture on cassava leaf disease dataset.
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problem, we modified the DenseNet121 and MobileNetV2 pre-

trained models by adding more complex layers to these models and

combining them, resulting in satisfactory outcomes. After

conducting various experiments involving modifications and

hyperparameter tuning, the proposed LeafDoc-Net architecture

showed significant superiority over all other pre-trained models.

Our proposed architecture, LeafDoc-Net, displayed outstanding

results compared to all the pre-trained models tested across the

two datasets, resulting in the highest accuracy, precision, recall, and

area under the curve (AUC) metrics. LeafDoc-Net achieved an

accuracy score of 0.9999, a precision score of 0.9999, a recall of

0.9999, and an area under the curve (AUC) of 1.000 on the cassava

leaf disease dataset. On the wheat leaf disease dataset, it performed

similarly and achieved an accuracy of 0.9873, a precision of 0.9873,

a recall of 0.9873, and an area under the curve (AUC) of 0.9996.

Tables 2, 3 present comprehensive data regarding the performance

of the proposed LeafDoc-Net architecture and various pre-trained

models on the cassava and wheat disease datasets below. Figures 7, 8

visualize the comparison of the performance of different pre-trained

models and our proposed architecture LeafDoc-Net.

From the comparison, it is clear that our proposed architecture

LeafDoc-Net, showed excellent performance on both datasets,
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proving its robustness. It is also observed that the activation

function dramatically impacts the performance of deep learning

models. We experimented with three different activation functions

applied to our proposed architecture. The swish activation function

outperformed PReLU and Relu in our case. This activation function

exhibits 3% better results on average on both datasets than PReLU

and Relu. Figures 9, 10 represent the accuracy graphs of different

pre-trained models and the proposed architecture LeafDoc-Net

with PReLU and Relu activation on cassava and wheat leaf

disease datasets. The early stopping function was implemented

with all the models that stopped the training of the models before

50 epochs if the loss of the models increased for three consecutive

epochs to prevent the overfitting problem.

LeafDoc-Net is a lightweight architecture compared to the

many pre-trained models we experimented with for this research.

We modified two very lightweight pre-trained models, namely

DenseNet121, which has only 8.1 million parameters, and

MobileNetV2, which has only 3.5 million parameters. Including

extra layers with these two models and the concatenation of feature

maps from the two models slightly increases our proposed

architecture’s weight. It has 12 million parameters, which helped

the architecture perform better than any other pre-trained models.
FIGURE 8

Performance comparison between different pre-trained models and our proposed LeafDoc-Net architecture on wheat leaf disease dataset.
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The lightweight model takes less training time and can be

implemented in low-resource devices, which agriculture requires.

Table 4, Figure 11 presents the weight comparison between

different pre-trained models and the proposed LeafDoc-

Net architecture.

The confusion matrix (CM) has been employed to present an

in-depth overview of the performance of the model, as it

encompasses various metrics, including accuracy (AC), precision

(PR), recall (RE), and AUC. It is organized in a manner where

each row and column represent the predictions made for a specific

label category compared to the actual labels. It is a comprehensive

instrument for accurately analyzing and interpreting the model’s
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predictions. Figures 12, 13 represent the confusion matrix of

LeafDoc-Net on cassava and wheat leaf diseases, respectively.

The confusion matrix visually represents the correct predictions

indicated by diagonal blue-colored boxes. Among the 46 cassava

leaf disease test images dataset, the LeafDoc-Net architecture

demonstrated high accuracy by accurately predicting all 46 images.

On the other hand, the wheat leaf disease dataset consisted of

79 test images. LeafDoc-Net showed a notable level of accuracy

by correctly predicting all 79 images without any instances

of misclassification.

As previously stated, the best-performing base model utilized

for the data sets of the cassava (DenseNet201), and wheat
FIGURE 9

The accuracy graphs of different pre-trained models and the proposed architecture LeafDoc-Net with PReLU and Relu activation on cassava leaf
disease dataset.
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(EfficientNetV2S) leaf disease encountered the issue of underfitting,

presented in Figures 14, 15.

In the Figures 14 and 15, it was observed that the pre-trained

model’s training loss line was much lower than the validation loss

indicating the underfitting issue. Early stopping functionality avoids

the overfitting issue in the pre-trained model as it stopped the

training process earlier than 50 epochs when the validation

loss increased.

The proposed LeafDoc-Net addresses the issues of

underfitting and overfitting by employing a more complex

architecture that involves modifications to DenseNet121 and

MobileNetV2. These modifications include incorporating

attentive transition, batch normalization, global average

pooling, and dense layers with swish activation. Including an

early stopping function in the proposed model, they have

effectively addressed the overfitting issue by terminating the

training process when there was an increase in validation loss.

Figures 16, 17 depict the graphical representations of the loss

for the LeafDoc-Net architecture across the two datasets

associated with leaf diseases.
FIGURE 10

The accuracy graphs of different pre-trained models and the proposed architecture LeafDoc-Net with PReLU and Relu activation on wheat leaf
disease dataset.
TABLE 4 The comparison of the total parameters of the proposed
LeafDoc-Net architecture and experimented pre-trained models.

Model Total Parameters (in million)

ResNet152V2 60.4

InceptionV3 23.9

InceptionResNetV2 55.9

MobileNet 4.3

MobileNetV2 3.5

DenseNet121 8.1

DenseNet169 14.3

DenseNet201 20.2

NASNetLarge 88.9

EfficientNetV2S 21.6

EfficientNetV2L 119

LeafDoc-Net 12
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FIGURE 11

Weight comparison between different pre-trained models and our proposed LeafDoc-Net architecture.
FIGURE 12

The LeafDoc-Net architecture’s confusion matrix on the cassava leaf
disease dataset.
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FIGURE 13

The LeafDoc-Net architecture’s confusion matrix on the wheat leaf
disease dataset.
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Based on an analysis of the provided graphs, it can be

concluded that the LeafDoc-Net architecture exhibited

excellent performance. Initially, the architecture showed a

slight underfitting problem, as depicted in Figures 16, 17.
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Nevertheless, as the curves for training and validation

approached a state of convergence, the architecture exhibited

enhanced learning capabilities and efficiently displayed its

capacity to gain knowledge from the training data. The early

stopping function stopped the training process of the proposed

architecture when the validation loss started to increase, which

prevented the overfitting problem. The loss graphs show a

consistently minimal difference between the training and

validation loss values, suggesting that the architecture

performed effectively and did not encounter any issues related

to underfitting and overfitting. Figures 18, 19 represent the

accuracy, precision, recall, and area under the Curve (AUC)

graphs of the proposed architecture LeafDoc-Net on both

cassava and wheat leaf disease datasets.

Additionally, it is essential to establish a sense of trust

among users by providing a comprehensive explanation of the

suggested architecture. In this research, the utilization of Grad-

CAM++ has been employed to visually represent the proposed

architecture’s predictions based on the specific regions of the

image on the ‘conv_2d’ layer of the architecture. Grad-CAM++

was utilized to capture and analyze every image from each class

within the dataset. Each image presents a unique set of

challenges, including variations in rotation and background.

The generated region exhibits a deep red hue, indicating its

significance as the primary location determined by the learned

model and predicted label. The heatmap has revealed the

presence of a red spot in each area where a defect is present.

The contours and edges have been accurately visualized,

exhibiting a lack of overlapping concerns. Figures 20, 21

present the input and Grad-CAM++ generated images from

all four-leaf disease datasets.
5 Discussion

This study investigated multiple pre-existing models based

on the transfer learning concept for accurate leaf disease

detection. All the experimented pre-trained models struggled
FIGURE 14

DenseNet201 model’s loss on cassava leaf disease dataset.
FIGURE 15

EfficientNetV2S model’s loss on wheat leaf disease dataset.
FIGURE 16

LeafDoc-Net architecture’s loss on cassava leaf disease dataset.
FIGURE 17

LeafDoc-Net architecture’s loss on Wheat leaf disease dataset.
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to deliver the expected results. Nevertheless, it was noted that

every model, including DenseNet121 and MobileNetv2,

experienced underfitting challenges when dealing with a

restricted number of complex images from the datasets. In

general, transfer learning-based models exhibit enhanced

performance when trained on extensive datasets, as they can

acquire more features from the data. Some heavyweight pre-

trained models required longer to be trained on the selected

datasets due to the vast number of learning parameters. To

address these particular challenges, we proposed a solution

known as LeafDoc-Net within the context of this study. The

LeafDoc-Net architecture successfully addressed the issues of

fewer complex images and underfitting across various datasets

and demonstrated exceptional performance. Integrating

complex layers helped the proposed architecture learn more

features from the less complex images. As a result of its complex

architectural design, LeafDoc-Net possessed the capacity to

acquire noise during the training process. We utilized

efficient data preprocessing and augmentation methods to
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address the potential overfitting issue. LeafDoc-Net is a

lightweight architecture that takes very little time to be

trained and can be implemented in any low-resource

computational device. In general, the LeafDoc-Net framework

introduced an innovative strategy to address the issue of

underfitting in the context of datasets containing a limited

number of complex images.
6 Conclusion and the future work

Plants have an unparalleled connection with every living

creature, primarily due to their crucial role in survival and

finances. The health of plants plays a crucial role in agricultural

productivity and can result in substantial economic losses. The

presence of infectious, bacterial, fungal, and insect-related

pathogens can significantly negatively impact the condition

and health of plant leaves. Early diagnosis of these diseases is

crucial for farmers to implement timely treatments. This
FIGURE 18

The accuracy, precision, recall and area under the Curve (AUC) graphs of the proposed architecture LeafDoc-Net on cassava leaf disease dataset.
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research aimed to establish a lightweight and robust method for

detecting plant leaf diseases, regardless of leaf size or

background complexity, to aid farmers in detecting such

diseases. This study examined several advanced transfer

learning techniques. Nevertheless, most pre-trained models

exhibited poor performance with underfitting problems

during the training process because of the less amount of

input data. To effectively tackle these issues, and achieve

optimal performance within a single network, a lightweight

and robust transfer learning-based architecture called LeafDoc-

Net was proposed. The performance of this architecture was

enhanced by incorporating various techniques. LeafDoc-Net

effectively addressed these challenges and demonstrated

superior performance to existing models regarding the

accuracy, precision, recall, and area under the curve (AUC)

performance metrics across the two datasets encompassing
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cassava, and wheat leaf diseases. Although the LeafDoc-Net

architecture demonstrated encouraging outcomes in generic

leaf disease detection, further investigation is necessary to

enhance and expand the abilities of leaf disease detection

models within a more comprehensive framework. Our

possible research attempts will go deeply into further

investigation of optimization techniques like increasing model

complexity, variation in regularization, learning rate,

optimizer, and loss function to mitigate the problems of

overfitting and underfitting and will be implemented into the

proposed architecture. By balancing model complexity and

generalization, these strategies will increase the architecture’s

capacity to generalize successfully to new, unknown data by

reducing the likelihood of underfitting and overfitting. Our

objective will be to present an enhanced and accurate

architecture for detecting multi-leaf diseases. By recognizing
FIGURE 19

The accuracy, precision, recall, and area under the Curve (AUC) graphs of the proposed architecture LeafDoc-Net on wheat leaf disease dataset.
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FIGURE 20

Input Image vs. Grad-CAM++ assisted output of different classes of cassava leaf disease dataset.
FIGURE 21

Input Image vs. Grad-CAM++ assisted output of different classes of wheat leaf disease dataset.
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the constraints of existing research and utilizing advancements

in deep learning techniques, we aim to contribute to the

effective management of leaf diseases in various plant species.
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