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Hyperspectral imaging is a key technology for non-destructive detection of

seed vigor presently due to its capability to capture variations of optical

properties in seeds. As the seed vigor data depends on the actual germination

rate, it inevitably results in an imbalance between positive and negative

samples. Additionally, hyperspectral image (HSI) suffers from feature

redundancy and collinearity due to its inclusion of hundreds of

wavelengths. It also creates a challenge to extract effective wavelength

information in feature selection, however, which limits the ability of deep

learning to extract features from HSI and accurately predict seed vigor.

Accordingly, in this paper, we proposed a Focal-WAResNet network to

predict seed vigor end-to-end, which improves the network performance

and feature representation capability, and improves the accuracy of seed

vigor prediction. Firstly, the focal loss function is utilized to adjust the loss

weights of different sample categories to solve the problem of sample

imbalance. Secondly, a WAResNet network is proposed to select

characteristic wavelengths and predict seed vigor end-to-end, focusing on

wavelengths with higher network weights, which enhance the ability of seed

vigor prediction. To validate the effectiveness of this method, this study

collected HSI of maize seeds for experimental verification, providing a

reference for plant breeding. The experimental results demonstrate a

significant improvement in classification performance compared to other

state-of-the-art methods, with an accuracy up to 98.48% and an F1 score

of 95.9%.
KEYWORDS

hyperspectral image, seed vigor prediction, sample imbalance, focal loss,
WAResNet, Focal-WAResNet
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1322391/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1322391/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1322391/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1322391/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1322391&domain=pdf&date_stamp=2023-12-15
mailto:chenccj18@gmail.com
mailto:xcwang89@jlu.edu.cn
mailto:yuhelong@jlau.edu.cn
https://doi.org/10.3389/fpls.2023.1322391
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1322391
https://www.frontiersin.org/journals/plant-science


Pang et al. 10.3389/fpls.2023.1322391
1 Introduction

The seed is a vital component of the plant life cycle, containing

genetic information and nutrients. It supports plant propagation,

survival, adaptability, and dispersal. Healthy and viable seeds are

crucial for plant growth and reproduction, increasing plant yields,

enhancing plants adaptation to environmental changes, reducing

susceptibility to diseases, and contributing to the maintenance of

population stability and diversity. By protecting and managing

seeds, humanity can preserve and improve plant resources,

ensuring food production and ecosystem stability. However,

unfavorable conditions such as improper temperature and

humidity will lead to the aging and deterioration of seed vigor

during storage (Van De Looverbosch et al., 2022). Rapid and

accurate identification of seed vigor is essential for improving

seed germination rate, increasing plant yield, ensuring product

quality and promoting agricultural development. Currently, seed

vigor prediction relies on traditional manual inspection, which is

non-automated, time-consuming and destructive, requiring

specialized training and experienced experts for assessment.

The variations of seed vigor caused by long-term storage,

artificial aging and other factors are usually accompanied by

changes in the internal physiological and metabolic characteristics

of the seeds (Sutton and Punja, 2017). These subtle changes affect

the optical properties of the seeds. Hyperspectral imaging

technology is used to detect imperceptible internal variations that

are not visible to the naked eyes by capturing detailed spectral and

spatial information in the visible and near-infrared spectra regions

(Yu et al., 2018; Barbedo, 2023). Hyperspectral imaging is a

promising technique for rapidly and non-destructive assessment

seed vigor. Numerous studies have introduced HSI to capture

changes in the optical properties of seeds for predicting seed vigor.

Analyzing the large amount of data generated by hyperspectral

imaging presents numerous challenges. With the rapid

advancement of computer vision, significant progress has been

made in automating seed prediction (Nie et al., 2019; de

Medeiros et al., 2020; Wang et al., 2023). Nevertheless, there are

still a few urgent issues need to be addressed in predicting seed vigor

using HSI.

Firstly, there is an issue of imbalanced seed vigor samples.

The collection of seed vigor data relies on the actual germination

rate, which inevitably leads to an imbalance between positive and

negative samples during the collection process. Sample imbalance

will result in difficulties in extracting regular features from the

classes with fewer samples due to the limited number of training

samples, which will easily lead to overfitting problems. Sample

imbalances should be addressed without hesitation in seed vigor

prediction with HSI.

Secondly, there are differences in the wavelength extraction

of HSI. HSI typically contains hundreds of wavelengths,

characterized by feature redundancy, collinearity and so on.

Although more spectral features could achieve high accuracy, it

might cause information redundancy and complexity. In HSI

analysis, traditional machine learning algorithms have focused on

improving extraction of characteristic wavelengths. Many

algorithms for extracting characteristic wavelengths have been
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applied to HSI classification in recent years. For example, Cheng

et al. (2023) used HSI in the spectral range of 400 to 1000nm to

predict seed vigor of broad beans and hyacinth beans. Firstly, they

conducted preprocessing on the data, followed by principal

component analysis (PCA) and uninformative variable

elimination (UVE) to select the optimal wavelengths.

Simultaneously, image features were extracted from the RGB

images of the three channels. Finally, random forest (RF) and

support vector machine (SVM) were employed to construct

classification models based on spectral data, image data, and a

combination of spectral and image data. The results demonstrated

that when spectral data selected by UVE was combined with image

data, the SVM model achieved prediction accuracies of 91.67% and

88.89% for broad beans and hyacinth beans. However, the

prediction accuracy of most traditional machine learning models

based on characteristic wavelengths relies on spectral preprocessing

and the selection of characteristic wavelengths, which vary with

changes in the dataset and algorithm. When the dataset changes,

multiple wavelength selection algorithms and analysis models need

to be retried to select the most effective combination, increasing the

difficulty of establishing a robust model. Deep learning has excellent

self-learning capabilities, automatically extracting and learning

relevant features from raw images. However, deep learning

models either use all wavelengths for training or adopt non-end-

to-end network structures which first employ wavelength extraction

algorithms to extract characteristic wavelengths and then train deep

learning. These structures limit the ability of deep learning in

feature extraction and accurate classification.

Based on the aforementioned, in order to address the issue of

imbalanced sample classes and extract more effective characteristic

wavelengths, this research introduces the focal loss function and

WAResNet network to construct an end-to-end seed vigor

prediction model called Focal-WAResNet. The Focal-WAResNet

model could effectively extract the effective features among different

vigor seeds and solve the problem caused by sample imbalance,

thereby effectively improve the ability of seed vigor identification.

To summarize, the main contributions of this paper are

as follows:
• This study uses the focal loss function to address the

problem of imbalanced seed vigor and improve

network performance.

• An end-to-end deep learning model called WAResNet

based on HSI is constructed, which can end-to-end

extract the characteristic wavelengths of HSI and perform

batch and non-destructive vigor prediction for seeds.

• The recognized and state-of-the-art machine learning

algorithms are compared with the proposed Focal-

WAResNet. The optimal preprocessing algorithm,

characteristic wavelengths extraction algorithm and

classification algorithm were picked.

• The proposed Focal-WAResNet compares with advanced

deep learning algorithms in seed vigor prediction. The

effectiveness of Focal-WAResNet is validate through

ablation experiments and visualizations using t-SNE and

Grad-CAM.
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2 Related work

Numerous studies have demonstrated that the combination of

machine learning with HSI has achieved significant success in seed

vigor classification. Machine learning algorithms applied to HSI

classification general are divided into two categories. The first

category is traditional machine learning classification algorithms,

including linear discriminant analysis (LDA), partial least squares-

discriminant analysis (PLS-DA), K nearest neighbors (KNN),

decision trees (DT), logistic regression (LR), extreme learning

machine (ELM), SVM, RF and so on (Yu et al., 2021; Long et al.,

2022; Xu et al., 2022; Zhang et al., 2023). The second category is

deep learning which is the subset of machine learning. Deep

learning has been successful applied in many smart agricultural

fields, which provides potential opportunities for its application in

seed vigor prediction (Tu et al., 2021; Thakur et al., 2022; Zhang

et al., 2022).

Dimensionality reduction is an essential step in traditional HSI

classification. The algorithms commonly used for extracting

characteristic wavelengths include competitive adaptive

reweighted sampling (CARS), successive projections algorithm

(SPA), PCA and UVE (Wakholi et al., 2018; Pang et al., 2021a;

He et al., 2022; Jin S. et al., 2022). The swarm intelligence

optimization algorithms exhibit strong search capabilities in

addressing practical problems. Many studies have successfully

applied swarm intelligence optimization algorithms to extract

characteristic wavelengths of HSI (Chu et al., 2022). Yang et al.

(2021) used traditional machine learning algorithms with HSI to

predict the vigor of sugar beet seeds. They applied five

preprocessing algorithms: multiplicative scatter correction (MSC),

savitzky-golay (SG), standard normal variate (SNV), detrend

correction (DET) and second derivative (SD), followed by SPA to

extract characteristic wavelengths. The SVM model was established

to predict the vigor of sugar beet seeds with full spectra or

characteristic wavelengths, and the accuracy of SVM-SPA-SD was

92.32%. Fan et al. (2020) conducted preprocessing using SG, SD and

SNV, followed by PCA and SPA to select the most effective

wavelengths. Four machine learning methods: adaptive boosting

(AdaBoost), SVM, ELM and RF were used to predict the vigor of

wheat seeds. The optimal ELM-PCA model achieved a classification

accuracy of 88.9%.

Deep learning effectively utilizes the spatial and spectral

information of HSI and have exhibited excellent performance in

seed vigor prediction (Jia et al., 2023). Jin B. et al. (2022) utilized

convolutional neural network (CNN) and traditional machine

learning (SVM and LR) with full spectra or characteristic

wavelengths selected by PCA to identify the vigor of rice seeds.

The accuracy of the CNN network was 96.88%. Pang et al. (2021b)

employed 2D convolutional neural network (2DCNN) with HSI to

predict the seed vigor of sophora japonica. They used particle

swarm optimization (PSO) to optimize network hyperparameters.

The optimal PSO-2DCNN model achieved an accuracy of 99.73%.

Table 1 summarizes the relevant researches on predicting seed

vigor by combining machine learning with HSI. It is worth noting

that the models in the table either utilize full spectra for training or
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employ non-end-to-end network structures for seed

vigor prediction.
3 Materials and methods

3.1 Methods

3.1.1 ResNet
The ResNet network proposed by Microsoft Labs is champion

network in both the classification and object detection tasks of the

2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC-

2015) (He et al., 2016). ResNet adopts the residual structures to

construct network structures. According to the number of layers,

ResNet is categorized into ResNet18, ResNet34, ResNet50, ResNet101

and ResNet152. Figure 1A is the residual structure for ResNet with

fewer layers: ResNet18 and ResNet34. Figure 1B depicts the residual

structure for deeper network like ResNet50, ResNet101 and

ResNet152. To avoid overfitting caused by high similarity among

seed samples of the same variety, this study utilizes a light network

architecture: ResNet18. The network architecture is depicted in

Figure 1C. The ResNet18 consists of one stem layer, two pooling

layers, eight ResBlocks and one fully-connected layer. The stem layer

is a convolutional layer which kernel size is 7×7 with a stride of 2 and

64 convolutional kernels. The two pooling layers are max pooling and

average pooling which kernel size is 3 with a stride of 2.

3.1.2 Focal loss
Focal loss is a variant of binary cross entropy loss, which is a

common loss function (Lin et al., 2017). Its formula is as follows:

CE(p;y) = CE(pt) = −log(pt) (1)

where y of Equation 1 is the ground-truth class of sample, and pt
is the model’s estimated probability for the class. The definition of

parameter pt is as indicated in Equation 2.

pt =
p y = 1

1 − p otherwise :

(
(2)

Incorporate weight factor at into Equation 1 to address the issue of

class imbalance. The cross entropy loss could be expressed as Equation 3.

CE(p, y) = CE(pt) = −at log(pt) (3)

where at is defined as Equation 4.

at =
a y = 1

1 − a otherwise :

(
(4)

While the Equation 3 could address the class imbalance

problem, it does not distinguish between difficult and easy

samples. A factor (1−pt)
g is introduced to the cross entropy loss.

The focal loss function is defined as:

FL(pt) = −at(1 − pt)
g log(pt) (5)

Thus, Equation 5 could adjust the weights of classes and control

the weights of easy and hard samples.
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3.1.3 Structure of Focal-WAResNet
According to the characteristic of seed HSI, we improve the

ResNet18 model and propose an end-to-end model called Focal-

WAResNet (wavelength attention ResNet with focal loss) for seed

vigor prediction. Figure 1D shows the network structure of Focal-

WAResNet. The network consists of two pooling layers, two 2D

convolutional layers and ResNet18. The two pooling layers are max

pooling and average pooling with a pooling size of 64×64 and a

stride of 1. The convolutional kernel size of the two convolutional

layers is 1×1, with 11 and 176 convolutional kernels respectively.

The first convolution layer is followed by a ReLU activation

function. Since the size of the convolutional kernel is 1×1, it only

affects calculation between channels without changing the spatial

resolution of the feature maps. The resolution of the HSI is

normalized to 64×64 in the experiment. Given the relatively small

image resolution, the stem layer of ResNet18 is replaced with a 3×3

convolutional layer with a stride of 2. At the end of this network,

focal loss function is set as the loss function to measure the errors

between the predicted outputs and the actual targets.

The propagation process of Focal-WAResNet network is depicted

in Figure 1D. The input X∈ RW×H×C passes through max pooling and

average pooling layers respectively to capture the maximum feature of

the channel Xmax∈ R1×1×C and the mean feature Xavg ∈ R1×1×C. These

processes could be characterized by Equations 6 and 7.
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Xmax = MaxPooling(X) (6)

Xavg = AvgPooling(X) (7)

The features Xmax and Xavg separately pass through 1×1

convolution layer to reduce dimension to 11. Then, the results go

through a ReLU activation function and increase the dimension to

the original channel dimension C using another 1×1 convolution

layer. These two convolutional layers share weights to reduce the

number of model parameters, which can reduce model complexity

and the risk of overfitting, and improve model generalization

capability. These operations achieve two feature matrices and

rescaling in the channel dimension. The addition of the two

feature matrices passes through the sigmoid activation function to

scale the output value to the range of 0 to 1, obtaining the

wavelength attention weights Xwa ∈ R1×1×C. The formula is as

Equation 8.

Xwa = sigmoid(W1(W0Xavg) +W1(W0Xmax)) (8)

where W0 ∈ RC/r×C and W1 ∈RC×C/r are the weights of the two

convolutional layers separately.

Finally, the wavelength attention weights are applied to each

channel of the original input using Equation 9. Then the result feeds

into the modified ResNet18 network to strengthen or suppress
TABLE 1 Current major methods on seed vigor prediction with HSI.

Seed Image Preprocessing Wavelength
Selection

Classification Accuracy Reference

Peanut HSI SG, MSC, MF CatBoost, GBDT XGBoost,
LightGBM,
SVM, RF

90.83% (Zou et al., 2023)

Maize NIR HSI,
SWIR HSI

Normalization, SNV,
MSC, SG

Full PLS-DA 95.6% (Ambrose
et al., 2016)

Bean HSI SG, MSC PCA, UVE SVM, RF 91.67% (Cheng et al., 2023)

Beet HSI FD, SD, MSC, SNV,
DET, SG

Information Gain SVM,
RF, LightGBM

89% (Zhou et al., 2020)

Sugarbeet HSI MSC, SNV, DET, SG, SD SPA SVM, RF, KNN 95.5% (Yang et al., 2021)

Maize HSI WT SD, PCA SVM 71.31% (Feng et al., 2018)

Wheat NIR HSI SNV, SG PCA, SPA SVM, RF,
ELM, AdaBoost

88.9% (Fan et al., 2020)

Soybean FHSI MSC, SNV, SG CARS, VISSA, IRIV SVM, AdaBoost 86% (Zhang T.
et al., 2020)

Rice NIR HSI FD, MSC, SG SPA SVM, PLS-
DA, ELM

94.38% (He et al., 2019)

Rice HSI None Full DCNN-Balanced 97.69% (Wu et al., 2022)

Sophora
japonica

HSI None Full 2DCNN 99.73% (Pang et al., 2021b)

Mustard
spinach

NIR HSI None PCA, SVM Mapping 2DCNN 90% (Ma et al., 2020)

Maize HSI SG, FD, DET, SNV, MSC UVE, SPA, IRF, IVSO 1DCNN 95.24% (Xu et al., 2022)
FD, First Derivative; RC, Regression Coefficients; MF, Median Filtering; GBDT, Gradient Decision Tree; XGBoost, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; SD,
Second Derivative; DET, Detrend Correction; WT, Wavelet transform; AdaBoost, Adaptive Boosting; IRIV , Iteratively Retaining Informative Variables; VISSA, Variable Iterative Space
Shrinkage Approach; IRF, Interval Random Frog; IVSO, Iteratively Variable Subset Optimization; Vis-NIR HSI, Visible Near Infrared HSI; SWIR HSI, Short-wave Infrared HSI; NIR HSI, Near-
infrared HSI; FHSI, Fluorescence Hyperspectral Imaging.
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feature representations of different channels to improve the model

performance.

output = Xwa ⊗X (9)

where ⊗ is element-wise multiplication.
4 Results and analysis

4.1 Data collection

4.1.1 The seed aging experiment
Since the natural aging of seeds is a prolonged process, and

according to the different environments in which the seeds are

located, the uncertainty of natural aging is comparatively higher.

Artificial aging tests enable to artificially control the aging
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conditions and degree of the seeds, and get more diversified data

for reference. To avoid the influence of human subjective factors on

the test results, 1200 maize seeds of the same batch “Meiyu 817”

were randomly selected from the seed repository before the

collection of HSI. Then 600 seeds were randomly selected and

divided into three groups with 200 seeds in each group. These three

groups were stored at a constant temperature of 20°C, 0°C and -20°

C respectively to obtain maize seeds with different degrees of aging:

20°C, 0°C and -20°C. The remaining 600 seeds were vacuum-sealed

in plastic bags and placed in a water bath maintained at a

temperature of 45°C and a relative humidity of 100% for aging.

On the 3rd day, 6th day, and 9th day after the beginning of aging,

200 seeds were separately taken out to obtain maize seeds with

different degrees of aging: 3d, 6d, 9d. After the accelerated aging

process, HSI collection and standard germination tests

were conducted.
B

C

D

A

FIGURE 1

Example network architectures for mazie seed. (A) ResBlock. (B) ResBlockDeep. (C) ResNet18 model. (D) Focal-WAResNet model.
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4.1.2 The collection of HSI
Obtaining high-quality HSI is the crucial step in HSI analysis.

HSI combines traditional imaging with spectral information to

obtain both spectral and spatial information in a single scan. In

this study, the HSI system included a hyperspectral imager, lighting

equipment, a conveyor belt, an electronic transmission control

system, and a computer, as shown in Figure 2. The Gaiasky-

mini2VN hyperspectral imager with the wavelength range of

393.7-1001.4nm, 176 spectral channels, and the single image

resolution of 960 * 1040 from Dualix Spectral Imaging

Technology Co., Ltd. was used in the experiment. The other

parameters are shown in Table 2. The GaiaSky-mini2-VN

constructed high-resolution images I(X, Y, l) by scanning, where

X and Y represented spatial dimensions, and l represented spectral

dimensions. Each pixel of HSI reflected a spectral curve, and each

grayscale image corresponded to a spectral band. The lighting

system consisted of four 50W halogen lamps, which needed to be

adjusted to the appropriate position and warmed up for 30 minutes

before the collection of HSI. During the process of capturing HSI,

multiple maize seeds were placed on a blackboard. They were

transported through the electronic transmission control system

and conveyor belt, and photographed by Gaiasky-mini2-VN. To

eliminate the effects of uneven illumination and dark current, the

HSI was rectified using white and black reference images after

obtaining the HSI of maize seeds. The correction formula is

depicted in Equation 10.

Io =
I − Ib
Iw − Ib

; (10)

where I and Io respectively represented HSI before and after

correction. Ib and Iw represented black and white reference images.

Finally, the region of interest which was the HSI of a single

maize seed was segmented from the black background. The average

spectral curve of each maize seed was extracted as shown

in Figure 2.

4.1.3 The standard germination test
Seed vigor refers to the potential germination capacity of seeds

or the vitality possessed by seed embryos, representing the potential
Frontiers in Plant Science 06
capacity of seeds to develop into healthy seedlings. In this study, we

assess the vigor of maize seeds through standard germination test.

According to the International Rules for Seed Testing,

transparent, moisturizing and non-toxic circular petri dishes with

a diameter of 120mm were used in the standard germination test

(ISTA, 2018). Germination papers which were moistened and drain

off surplus water were placed in the sterilized petri dishes. Ten seeds

were evenly placed in each petri dish to ensure that each seed had a

germination space with a distance of 1-2 times the seed own size, as

shown in Figure 3. Put those petri dishes in the germination

chamber. The optimum oxygen, moisture, temperature, and

lighting conditions for maize seeds were provided and the

germination beds remained moist throughout the germination

period. According to the technical regulations for crop seed

germination (GB/T 3543.4-1995), maize seeds can germinate

normally and well under the optimum temperature 20-30°C. In

this experiment, the thermostatic germination chamber which

temperature was set at 25°C was used to ensure that the

temperature variation did not exceed ±2°C.

Damaged, cracked, malformed, or uneven seeds, as well as the

dead seeds which were severely decayed or moldy were promptly

removed from the bud beds during the germination process and culled

for counting. In the experiment, germinating seeds, germinated seeds,

seeds with primary root, seeds with secondary root were defined as

viable seeds, and ungerminated seeds, dead seeds and fresh

ungerminated seeds were defined as non-viable seeds. As depicted

in Figure 3 that the phase in which the radicle of the seed elongates

between 0-2mm is characterized as ‘germinating’, whereas the phase

with elongation exceeding 2mm is characterized as ‘germinated’. The

phase of generating the primary root, derived from the radicle, is

termed as the ‘primary root’. The phase in which generates more than

one secondary root in addition to the primary root is termed as the

‘secondary root’. On the 7th day of the standard germination test, the

germination statuses of six groups of maize seeds with different

degrees of aging were recorded, which was referred to as seed vigor

statistics. The removed maize seeds are deleted during the statistical

process, and a total of 1133 seeds are recorded, of which 915 are viable

and 218 non-viable. Lastly, the dataset was divided into training set,

validation set and test set at a ratio of 8:1:1.
FIGURE 2

The system and process of HSI acquisition.
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4.2 Data augmentation

The total number of samples in the dataset is insufficient due to

the inability to obtain a sufficient number of hyperspectral images of

maize seeds during hyperspectral image acquisition and standard

germination tests, which could potentially impact the classification

effect of the model. In this study, online augmentation technique

was employed to expand the dataset and ensure data diversity.

Randomly data augmentation techniques, such as rotation,

horizontal flipping, scaling, and so on, were applied during each

iteration to generate different training examples. It helps the model

better adapt to various input variations without the need to

explicitly increase storage space to store augmented examples,

reducing the risk of overfitting and improving the model’s

generalization and robustness.
4.3 Evaluation metrics

In this study, viable seeds were regarded as positive samples,

while non-viable seeds were regarded as negative samples.

Accuracy, precision, recall, F1 were used to evaluate the

performance of the model. The calculation formula of each

metric was shown in Table 3B, where TP, TN, FP, and FN

represent the numbers of true positive samples, true negative

samples, false positive samples, and false negative samples,

respectively. The corresponding confusion matrix is presented

in Table 3A. Precision reflects the model’s ability to distinguish

negative samples. A higher precision indicates a stronger ability of

the model to discriminate negative samples. Recall, on the other

hand, reflects the model’s ability to distinguish positive samples. A

higher recall indicates a stronger ability of the model to

discriminate positive samples. F1 is a combination of both

precision and recall, and a higher F1 indicates a more

robust model.
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4.4 Analysis of results

4.4.1 Germination and vigor statistics
Figure 4 is the frequency histogram representing the

germination of maize seeds at different aging stages. It shows that

the germination rates of maize seeds stored at 20°C, 0°C and 3 days

of aging are about 99%, and the germination rate of maize seeds

stored at -20°C is 100%. The germination rates of maize seeds are

hardly affected in these four environments. However, the

germination rate drops to 83.33% after 6 days of aging. The

germination rate decreases to 6.53% after 9 days of aging. This

indicates that aging for a sufficiently long period of time has a

serious effect on germination and vigor.

4.4.2 Spectral analysis
The variations of seed vigor caused by seed aging typically

accompany with changes of seed cell structure, biochemical

composition and metabolic characteristic.These tiny changes can

affect the optical properties of the seeds. Hyperspectral imaging

technology can detect tiny changes that are invisible to the naked

eyes. Figure 5A is a box plot of the spectral reflectance of maize

seeds at different aging degrees in different bands in the experiment.

Given the distinct variations in spectral reflectance across different

bands, Figure 5A evenly divides the 176 wavelengths into eight

bands to assess the impact of different degrees of aging on the

spectral reflectance in different bands. Different colors in the figure

represent different bands, and the values from 1 to 6 in the

horizontal axis represent different aging degrees: 20°C, 0°C, -20°

C, 3d, 6d, and 9d. As indicated in Figure 5A that there are certain

differences in the average spectral reflectance of maize seeds with

different aging degrees. The spectral reflectance of seeds aged for 6

days and 9 days is higher than others in each band, indicating that

the more severe the degree of aging, the higher the spectral

reflectance of maize seeds. The spectral reflectance of maize seeds

aged for 3 days did not increase, indicating that aging for 3 days did

not significantly affect the vigor of maize seeds. Therefore, the

germination rate of maize seeds was also not affected, which is

consistent with the results of the statistical analysis of germination

rate and vigor mentioned above.

Figure 5B is a box plot of the spectral reflectance of maize seeds

with different vigor at different aging stages. Different colors in the

figure represent different aging degrees, and the values of 0 and 1 in

the horizontal axis represent non-viable and viable seeds. Since the

seeds stored at -20°C were all viable seeds in the experiment, there is

only one box at this aging stage. As observed from the Figure 5B

that the spectral reflectance of viable seeds stored at 20°C and 0°C,

as well as maize seeds aged for 3 days and 6 days is lower than the

non-viable seeds. Since the loss of vigor in maize seeds aged for 9

days has already reached the peak and the seeds will be completely

non-viable if the aging continues, the spectral reflectance of the

viable maize seeds aged 9 days is almost as high as that of the non-

viable maize seeds. This reveals that aging of maize seeds will lead to

the wastage of seed vigor and increase the spectral reflectance of

maize seeds.
TABLE 2 Technical parameters of GaiaSky mini2-VN.

Technical parameters of GaiaSky mini2-VN

Device GaiaSky mini2-VN

Wavelength range 393.7-1001.4nm

Spectral resolution 3.5nm @30um slit

Spectral sampling rate 0.5nm

Pixel pitch 4.54 um

Spectral channel count 176(8X)

Image resolution 960*1040

Spatial resolution 0.085@16mm

Power 45W

Voltage DC12V( ± 10%)

FOV 30.25°@16mm
The ‘@’ symbol represents ‘at’ or ‘with’, which is used to describe measurement conditions.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1322391
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pang et al. 10.3389/fpls.2023.1322391

Frontiers in Plant Science 08
4.4.3 Comparison with traditional
machine learning

Currently, HSI classification primarily revolves around

traditional machine learning algorithms. Therefore, this section

provides a comparative analysis of traditional machine

learning algorithms.

The HSI obtained by hyperspectral imaging system includes

various noises, such as random high-frequency noise, sample

background, baseline drift, scattered light and so on. Therefore,

the HSI should be preprocessed to eliminate noises before

extracting characteristic wavelengths and data modeling. This

experiment compared various preprocessing algorithms based on

full spectra, including mean centering (MC), moving average

smoothing (MA), SNV, SG, MSC, FD, SD and WT. Figure 6

shows the comparisons of spectral curves between viable and

non-viable seeds after different pretreatments with the full

spectra. As depicted in Figure 6A that the spectral curves of

viable and non-viable maize seeds exhibit similar wave patterns:

peaks and valleys appear at similar band positions. This
FIGURE 3

The different stages of seed germination.
TABLE 3 Evaluation metrics.

(A) The definition of confusion matrix

True
Predict

Positive Negative

Positive TP FP

Negative FN TN

(B) The calculation formula of evaluation metric

Evaluating Indicator Formula

Accuracy Accuracy =
TP + TN

TP + FP + TN + FN

Precision Precision =
TP

TP + FP

Recall Recall =
TP

TP + FN

F1 F1 = 2� Recall � Precision
Recall + Precision
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FIGURE 4

The maize seeds germination frequency at different ageing stages.
A

B

FIGURE 5

The box plots of spectral reflectance. (A) Box plot of spectral reflectance at different bands for maize seeds at various aging levels. (B) Box plot of
spectral reflectance at different aging stages for seeds with different vigors.
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phenomenon may be attributed to the similar chemical

composition within the seeds. There are significant spectral

differences between viable and non-viable seeds in the wavelength

ranges of 393.7-580nm and 620-950nm, which the spectral

reflectance of viable maize seeds is lower than non-viable maize

seeds. After MC preprocessing (Figure 6C), there are significant

differences in spectral reflectance between viable and non-viable

maize seeds in the 393.7- 580nm and 620-1001.4nm wavelength

ranges. The spectral reflectance of viable seeds is higher than non-

viable seeds in the 393.7-580nm and 880-1001.4nm wavelength

ranges. The spectral reflectance of viable seeds is lower than non-

viable seeds in the 580-880nm wavelength ranges. However, the

spectral curves processed by MSC and SNV algorithms (Figures 6B,

E) show an obvious overlap of spectral reflectance in the 393.7-

580nm wavelength ranges between viable and non-viable seeds. The

spectral curve processed by SD shows that the viable and non-viable

seeds have more overlapping spectral reflectance. However, the

spectral curves preprocessed by the SG, WT and MA algorithms do

not show significant differences from the original spectral curves.

Further modeling and analysis are needed to select the optimal

preprocessing algorithm for predicting maize seed vigor.
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Table 4 is a statistical table of accuracy for predicting maize seed

vigor using different classifiers on HSI processed by different

preprocessing algorithms within the full spectra, which noticed

that the MC algorithm performs the best on HSI by applying

different classifiers, resulting in achieving the optimal

classification accuracy of the five classification algorithms: DT,

Ridge Regression, KNN, RF and PLS-DA. This is consistent with

the analysis results in Figure 6. Because MC preprocessing increases

the spectra differences between different classes, it improves the

robustness and recognition ability of the model.

To ensure the fairness of the experiment, this study adopted the

three optimal preprocessing algorithms to preprocess HSI which

was used for wavelength extraction and classification analysis. As

can be observed from Table 4, MC, MA and FD algorithms have the

prominent preprocessing performance. CARS, SPA, least angel

regression (LARS), UVE, PCA as well as various swarm

intelligence optimization algorithms which are recognized and

advanced algorithms for extracting characteristic wavelengths of

HSI were used to extract characteristic wavelengths, including

differential evolution (DE) (Storn and Price, 1997), grey wolf

optimizer (GWO) (Mirjalili et al., 2014), PSO (Kennedy and
B C

D E F

G H I

A

FIGURE 6

Comparison of spectral curves for viable and non-viable seeds by various preprocessing. (A) None. (B) MSC. (C) MC. (D) SG. (E) SNV. (F) MA. (G) WT.
(H) SD. (I) FD.
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Eberhart, 1995), whale optimization algorithm (WOA) (Mirjalili

and Lewis, 2016), genetic algorithm (GA) (Holland, 1975) and bat

algorithm (BA) (Yang, 2010). After characteristic wavelengths

extraction, the optimal machine learning classifier is adopted for

seed vigor prediction. In this study, classical machine learning

classification models including gaussian process classification

(GPC), gaussian naive bayes (GNB), ridge regression (Ridge),
Frontiers in Plant Science 11
PLS-DA, SVM, KNN, RF and DT were compared. Table 5

presents the accuracy statistics of the combined application of

MC, MA, FD algorithms with characteristic wavelengths

extraction algorithms and classification algorithms for predicting

the vigor of maize seeds. As we could identify from Table 5, SVM-

UVE-MA and PLS-CARS-FD models predicted the vigor of maize

seeds with the highest accuracy of 95.15%.
TABLE 4 Comparison of classification accuracy of different classifiers for seed vigor prediction (%).

Pretreat DT GPC GNB Ridge SVM KNN RF PLS-DA

None 88.99 92.95 75.33 93.39 93.83 91.19 91.19 92.95

MC 90.31 92.51 79.30 93.83 92.95 92.07 93.39 93.83

MA 86.34 93.39 75.77 92.95 93.83 92.07 91.63 92.95

SNV 87.22 92.07 82.82 91.63 91.63 91.19 90.31 92.51

SG 86.34 92.95 75.33 92.95 93.83 91.19 90.75 91.63

MSC 88.11 92.07 83.26 91.19 92.51 91.19 89.43 93.39

FD 88.11 92.51 85.46 93.83 92.51 84.14 91.63 93.83

SD 77.97 91.19 78.85 92.95 91.63 78.85 82.82 93.39

WT 89.43 92.95 75.33 93.39 93.83 91.19 91.19 92.95
fro
The bold font indicates the best performances of different classifiers.
TABLE 5 Comparing state-of-the-art machine learning methods for predicting seed vigor (%).

Pretreat Wavelength Extraction DT GPC GNB Ridge SVM KNN RF PLS-DA

MC

None 90.31 92.51 79.30 93.83 92.95 92.07 93.39 93.83

CARS 89.87 92.95 76.21 94.27 93.39 90.31 92.95 94.71

SPA 89.43 93.39 76.21 92.51 93.83 90.31 91.63 92.51

LARS 90.31 92.51 74.01 92.95 93.39 92.07 90.75 91.63

UVE 91.19 92.95 89.43 93.83 92.95 93.39 94.27 94.27

PCA 86.34 92.95 88.99 93.83 93.39 92.07 90.31 93.83

DE 87.22 92.51 77.97 93.83 92.95 91.63 93.39 93.39

GWO 89.43 92.95 86.78 94.27 92.51 93.39 94.71 93.83

PSO 88.55 92.95 80.62 92.95 94.71 92.07 93.39 93.83

WOA 88.55 93.39 79.74 93.39 92.95 92.95 92.51 93.39

GA 90.31 93.39 80.62 93.83 93.83 90.75 92.51 93.83

BA 88.55 92.95 81.94 93.39 91.63 90.75 92.95 92.95

FD

None 88.11 92.51 85.46 93.83 92.51 84.14 91.63 93.83

CARS 88.11 93.83 87.22 94.71 92.95 88.99 92.95 95.15

SPA 88.11 93.83 90.31 94.27 92.51 88.99 92.07 94.27

LARS 88.11 92.07 89.87 91.63 92.95 88.55 90.75 91.63

UVE 88.55 92.51 88.55 93.83 93.39 87.67 92.07 93.83

PCA 83.70 87.67 88.55 92.07 92.51 85.90 88.99 92.51

DE 85.46 92.07 88.55 92.51 92.51 91.63 92.51 92.51

GWO 86.34 92.95 89.43 91.19 92.51 92.95 91.63 92.95

(Continued)
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4.4.4 Comparison with deep learning classifiers
The Focal-WAResNet proposed in this article was compared

with advanced deep learning researches. The comparison primarily

focused on two aspects: one is the comparison with nonend-to-end

network architecture (NETE), the other is the comparison with
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end-to-end network architecture (ETE). As shown in Table 6, the

Focal-WAResNet outperforms previous researches in performance.

The accuracy of Focal-WAResNet surpasses the state-of-the-art

non-end-to-end network PCA-1DCNN by 1.565%. Compared with

end-to-end network architectures, it achieves an accuracy

improvement of 1.044%.
4.4.5 Ablation experiment
In this section, we conducted ablation experiments on the maize

HSI to validate the effectiveness of the focal loss function and the

WAResNet network, and better understand the proposed method.

We utilize t-SNE (t-distributed stochastic neighbor embedding) and

Grad-CAM visualization tools to enhance our comprehension of

the proposed model. t-SNE serves as a technique for non-linear

dimensionality reduction and visualization of high-dimensional

data (Van der Maaten and Hinton, 2008). It calculates the

similarity between samples in high-dimensional space through

gaussian joint probabilities, and constructs a similar probability

distribution in low-dimensional space. It employs KL divergence to

measure the difference between these two probability distributions,
TABLE 5 Continued

Pretreat Wavelength Extraction DT GPC GNB Ridge SVM KNN RF PLS-DA

PSO 88.11 92.51 87.67 94.27 93.39 89.43 92.51 93.83

WOA 88.99 91.63 91.63 88.55 90.75 88.11 92.51 88.11

GA 86.78 92.51 83.26 93.39 93.39 86.34 92.07 94.27

BA 83.26 92.95 87.67 93.39 91.63 91.19 90.31 92.95

MA

None 86.34 93.39 75.77 92.95 93.83 92.07 91.63 92.95

CARS 86.34 92.95 77.09 92.51 94.27 92.07 91.63 94.27

SPA 88.99 92.95 72.69 92.07 93.39 92.07 92.07 92.07

LARS 85.02 92.07 73.13 92.51 92.07 90.75 91.63 93.83

UVE 88.11 93.39 72.25 93.83 95.15 91.63 94.27 94.27

PCA 83.26 93.39 89.43 92.95 93.39 92.07 89.43 93.83

DE 85.90 92.07 77.09 92.95 93.39 93.39 91.19 92.95

GWO 86.78 92.51 76.21 92.51 92.51 92.07 91.63 92.07

PSO 87.67 92.95 73.13 93.39 93.39 91.63 92.07 92.95

WOA 86.34 92.51 77.09 92.51 92.07 92.07 90.31 91.63

GA 87.22 92.95 74.89 93.39 93.83 91.19 92.07 93.83

BA 87.22 93.39 75.77 93.39 93.83 91.63 92.07 92.51
fro
The bold font indicates the best performances.
TABLE 6 Comparing with the deep learning model (%).

Type Model Reference Accuracy

NETE

PCA+SVM-2DCNN (Ma et al., 2020) 90.10

CARS-1DCNN

(Zhang C. et al., 2020)

91.67

SPA-1DCNN 95.83

PCA-1DCNN 96.88

WT-1DCNN 95.31

ETE

DCNN-Balanced (Wu et al., 2022) 97.40

2DCNN (Pang et al., 2021b) 94.79

Our – 98.44
The bold font indicates the best performances.
TABLE 7 Ablation experiments for the Focal-WAResNet model (%).

Model Accuracy Precision Recall F1

ResNet18 90.10 45.05 50.00 47.40

Focal-ResNet 91.15 76.43 64.63 68.30

WAResNet 94.79 82.76 97.11 88.10

Our 98.44 93.18 99.13 95.90
The bold font indicates the best performances.
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and minimizes this difference through optimization algorithms like

gradient descent. The relationships and clustering among data

points after dimensionality reduction could be observed more

straightforward. Grad-CAM generates a heatmap by computing

the gradients of the output feature map of a convolutional layer with

respect to a specific class (Selvaraju et al., 2017). The heatmap

contributes to understanding the image regions of that the model

focuses on, providing interpretability into the model’s decision-

making process.

In the experiment, ResNet18 was used as the baseline. Firstly,

the loss function of ResNet was replaced with focal loss function,

which was expressed as Focal-ResNet. As shown in Table 7,

although the accuracy of Focal-ResNet is only 1.05% higher than

ResNet18 network, the precision improves by 31.38%, recall

increases by 14.63%, and F1 score increases by 20.9%. It can be

concluded that focal loss effectively addresses the issue of

imbalanced samples. To better observe the impact of the focal

loss function on model performance, this study utilized t-SNE

technique to visualize the features from the last layer of the deep

learning models in two-dimensional space. As depicted in

Figures 7A, B that the feature distribution between viable and

non-viable seeds of the last layer of the ResNet18 is relatively
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scattered and with no obvious distinction. However, the Focal-

ResNet network is able to distinguish between viable and non-

viable seeds.

Then, the performance of the WAResNet network has been

evaluated. As shown in Table 7, the accuracy, precision, recall and

F1 score increase by 4.69%, 37.71%, 47.11% and 40.7% respectively.

Figure 8 displays three-channel heatmaps of different models. The red

regions in the heatmap represent strongly activated regions of the

network model, while the blue regions represent weakly activated

regions of the network model. The steeper the gradient, the redder

the region, indicating that the region has a greater impact on the

classification results. It is evidenced from Figure 8C that theWAResNet

network is able to significantly focus on the region associated with seed

vigor in HSI and extract features compared to Focal-ResNet.

Finally, WAResNet network is combined with the focal loss

function to form the Focal-WAResNet network. The accuracy of the

Focal-WAResNet network increases to 98.44%, precision to 93.18%,

recall to 99.13%, and F1 to 95.90%. It can be observed from

Figure 8D that Focal-WAResNet network can better extract

features and locate the key locations which are related to seed

vigor compared to Focal-ResNet and Focal-WAResNet. Meanwhile,

as revealed in Figure 7 that Focal-WAResNet might gradually make
B

C D

A

FIGURE 7

t-SNE visualization of the last layer of features of models. (A) ResNet18. (B) Focal-ResNet. (C) WAResNet. (D) Focal-WAResNet.
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the features of maize seeds distinguishable. Samples within the same

category are closely clustered, while samples between different

categories become discrete, making the samples from the original

cross-mixed state into a more clearly discernible state. The

experiments have demonstrated that Focal-WAResNet network

could effectively end-to-end extract characteristic wavelengths

from HSI, allowing it to learn subtle differences between different

vigor seeds. This provides new insights for seed vigor prediction.
5 Conclusion

This paper proposes a deep learning network structure called

Focal-WAResNet, which combines deep learning algorithms with

HSI to predict seed vigor. The proposed method employed the focal

loss function to adjust the loss weights for different classes, thereby

resolving the problem of imbalanced seed vigor samples.

WAResNet achieves characteristic wavelengths and classification

in an end-to-end manner by adjusting the weights of different

channels to enhance or suppress the feature representation of

different channels in the channel dimension. Experimental results

demonstrate that Focal-WAResNet can effectively locate the regions
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relevant to seed vigor to achieve characteristic wavelengths of HSI

and non-destructive seed vigor prediction under imbalanced

sample conditions. The model could also be utilized to predict the

vigor of other plant seeds. In future research, we will acquire more

informative and multidimensional data to further enable seed vigor

classification into no vigor, low vigor, medium vigor, and high

vigor. In addition, we will explore solutions for labeling noise,

multiscale and multimodal data fusion in seed vigor prediction to

further improve the performance of model.
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