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Regulatory function of the
endogenous hormone in the
germination process of
quinoa seeds
Fang Zeng, Chunmei Zheng, Wenxuan Ge, Ya Gao, Xin Pan,
Xueling Ye, Xiaoyong Wu* and Yanxia Sun*

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan
Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food
and Biological Engineering, Chengdu University, Chengdu, China
The economic and health significance of quinoa is steadily growing on a

global scale. Nevertheless, the primary obstacle to achieving high yields in

quinoa cultivation is pre-harvest sprouting (PHS), which is intricately linked to

seed dormancy. However, there exists a dearth of research concerning the

regulatory mechanisms governing PHS. The regulation of seed germination

by various plant hormones has been extensively studied. Consequently,

understanding the mechanisms underlying the role of endogenous

hormones in the germination process of quinoa seeds and developing

strategies to mitigate PHS in quinoa cultivation are of significant research

importance. This study employed the HPLC-ESI-MS/MS internal standard

and ELISA method to quantify 8 endogenous hormones. The investigation of

gene expression changes before and after germination was conducted using

RNA-seq analysis, leading to the discovery of 280 differentially expressed

genes associated with the regulatory pathway of endogenous hormones.

Additionally, a correlation analysis of 99 genes with significant differences

identified 14 potential genes that may act as crucial “transportation hubs” in

hormonal interactions. Through the performance of an analysis on the

modifications in hormone composition and the expression of associated

regulatory genes, we posit a prediction that implies the presence of a

negative feedback regulatory mechanism of endogenous hormones during

the germination of quinoa seeds. This mechanism is potentially influenced by

the unique structure of quinoa seeds. To shed light on the involvement of

endogenous hormones in the process of quinoa seed germination, we have

established a regulatory network. This study aims to offer innovative

perspectives on the breeding of quinoa varieties that exhibit resistance to

PHS, as well as strategies for preventing PHS.
KEYWORDS

Chenopodium quinoa, seed germination, plant endogenous hormones, RNA-seq,
seed transcriptome
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1 Introduction

Quinoa (Chenopodium quinoaWilld.), indigenous to the Andes

region of South America, has emerged as a prominent food security

crop in the 21st century (Vilcacundo and Hernández-Ledesma,

2017). Since the 1980s, quinoa has been introduced to numerous

countries for cultivation due to its exceptional nutritional profile,

earning it the title of “King of Grains” (Navruz-Varli and Sanlier,

2016). Quinoa, a stress-tolerant crop that flourishes in marginal soil

and unstable climates, has emerged as a noteworthy agronomic

plant choice (Nadali et al., 2020; Asher et al., 2022). Its increasing

prominence in the global economy and the pursuit of a balanced

diet can be attributed to the erratic climate patterns brought about

by climate change and the growing emphasis on health (Jarvis et al.,

2017). Quinoa yields in the United States and Canada vary between

840 and 2000 kilograms per hectare (750 to 1800 pounds per acre).

However, the potential for complete yield loss exists due to pre-

harvest sprouting (PHS) (Peterson and Murphy, 2015). Currently,

the majority of research efforts on PHS have been directed towards

understanding the dormancy and germination processes in other

crops such as Arabidopsis thaliana, wheat, rice, and corn, with

limited investigations on PHS in quinoa. It has been demonstrated

that quinoa varieties exhibiting strong dormancy exhibit greater

resistance to PHS, and promoting seed dormancy represents the

most efficacious approach to suppressing PHS (Gallegos, 2022; Xu

et al., 2022).

Abscisic acid (ABA) and gibberellin (GA) exhibit substantial

antagonism in the regulation of seed germination (Barreto et al.,

2020; Liu et al., 2020; Sohn et al., 2021; Tai et al., 2021). Through

ongoing research on a range of endogenous hormones in plants, it

has been revealed that auxin (IAA), jasmonic acid (JA),

brassinosteroid (BR), ethylene (ETH), cytokinin (CKT), in

addition to CKT and salicylic acid (SA), play a significant role in

the regulation of seed germination (Miransari and Smith, 2014; Shu

et al., 2016b; Ali et al., 2022). The relationship between IAA and JA

with ABA in the regulation of seed dormancy has been extensively

studied (Wang et al., 2011; Varshney and Majee, 2021). In a similar

vein, it has been observed that ETH and BR exhibit a correlation

with GA in facilitating the process of seed germination (Ahammed

et al., 2020; Zhong et al., 2021). Nevertheless, the precise functions

of CTK and SA in seed germination remain ambiguous.With the

global population expanding and the frequency of natural disasters

rising, there is a pressing need for a steady increase in crop yields to

enhance people’s resilience to risks. PHS is one of the main factors

leading to grain yield reduction (Sohn et al., 2021). Despite the

global prevalence of PHS in regions where quinoa is cultivated

(Figure 1), there remains a dearth of scholarly investigation on this

matter, leading to an ambiguity in understanding the regulatory

mechanisms of endogenous hormones in the manifestation of PHS

in quinoa. This study employed quinoa seeds as the focal point of

inquiry to assess the levels of a-amylase activity, soluble sugars,

soluble protein, and starch throughout the process of germination.
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Furthermore, the quantification of eight endogenous hormones was

accomplished using enzyme-linked immunosorbent assays (ELISA)

and high-performance liquid chromatography electrospray

ionization tandem mass spectrometry (HPLC-ESI-MS/MS)

analysis. Following the completion of RNA-seq analysis, a total of

14 potential genes were identified as pivotal connectors within

diverse hormone regulatory pathways. Ultimately, we established a

comprehensive endogenous hormone regulatory network to

elucidate the germination process of quinoa seed. This regulatory

network differs significantly from that of common grain crops,

which we speculate is due to the structural specificity of quinoa

seeds. This study significantly enhances the comprehension of the

underlying mechanisms pertaining to endogenous hormones in

quinoa seed germination, while also offering valuable insights for

the development of anti-PHS molecular breeding strategies and the

resolution of PHS-related issues in quinoa.
2 Materials and methods

2.1 Plant material

The Quinoa seeds (Cheng Li No. 2) used in this study were

provided by the Key Laboratory of Coarse Cereal Processing, Ministry

of Agriculture and Rural, Chengdu University. This variety, which is

high in protein content at 19.2% and was bred by Chengdu University,

is highly susceptible to PHS (Pan et al., 2023b). Two sheets of filter

paper were spread in a Petri dish with a diameter of 9 cm, and the

sterilized quinoa seeds were placed in the Petri dish along with an

appropriate amount of sterile water. The Petri dishes were then

incubated in an artificial light-lit incubator at a temperature of (30.0

± 1.0) °C, with a photoperiod of 16 hours of light and 8 hours of

darkness, and a light intensity of 3000 Lux (Hao et al., 2022). The seeds

were extracted from the incubator at specific time intervals (4 hours, 8

hours, 12 hours, 16 hours, and 20 hours). Subsequently, the seeds were

drained with sterile filter paper to eliminate any surface moisture. The

drained seeds were then transferred into 2 mL EP tubes and rapidly

frozen with liquid nitrogen to prepare material for three biological

replicate experiments. These frozen samples were subsequently stored

in a -80°C refrigerator for further analysis.
2.2 Measurement of relevant indicators
during quinoa seed germination

2.2.1 Determination of germination rate and
water absorption

A total of 100 sterilized quinoa seeds were carefully placed on

sterile filter paper within a Petri dish. Subsequently, 8 mL of sterile

water was added to the Petri dish, and germination experiments were

conducted within an artificial climate chamber. Seed germination was

observed at regular intervals of 4 hours within a 24-hour period, and
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the number of germinated seeds was documented. The criterion for

germination was the breakthrough of the seed coat by at least 1 mm

(Gao et al., 2023). A total of 1,000 seeds were selected and their mass

wasmeasured using an electronic balance. Subsequently, the seeds were

placed in a petri dish of identical dimensions, immersed in water,

agitated with a glass rod and let stand (Gao et al., 2023). The seeds were

then removed from the dish at intervals of 4 hours, specifically at 4

hours, 8 hours, 12 hours, 16 hours, 20 hours, and 24 hours after water

absorption. The surfacemoisture was removed bymeans of filter paper,

and the corresponding weight was recorded for each time point.

Germination rate (%) = number of germinated seeds/total number of

seeds × 100%. Water absorption rate (%) = [(weight after immersion -

weight before immersion)/weight before immersion] × 100% (Pan

et al., 2023b).

2.2.2 Methods for measuring physiological and
biochemical indicators

The prepared plant material was removed from the refrigerator

at -80°C for the determination of relevant indicators. The content of

soluble protein, starch, and soluble sugar were determined in

accordance with the instructions of the kit provided by Suzhou

Keming Biotechnology Co., Ltd. The activity of a-amylase was

determined according to the instructions of the kit provided by

Shanghai Yuanye Bio-Technology Co., Ltd.
2.3 Determination of plant
hormone content

The samples preserved at a temperature of -80°C were promptly

pulverized into powder using liquid nitrogen, and the ABA, ZT

(Zeatin), IAA, JA, GA3, and SA contents were assessed through the

HPLC-ESI-MS/MS internal standard method (Niu et al., 2014; Liao

et al., 2021). The specific techniques employed for measurement are

provided in Supplementary Text 1. The content of ETH and BR was

determined by Enzyme-linked Immunoassay Kit (Jiangsu Meimian

industrial Co., Ltd) according to the manufacturer’s protocol.
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2.4 Total RNA extraction and construction
of a cDNA library

The total RNA extraction from each quinoa seed sample was

performed using the RNA Easy Fast Plant Tissue Kit (Tiangen Biotech

(Beijing) CO., LTD.) according to the manufacturer’s instructions, with

three biological duplications. The concentration and purity of the RNA

were assessed using the ScanDrop 200 (Analytik Jena AG, Germany).

The integrity of the RNA was evaluated using the RNA Nano 6000

Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent

Technologies, CA, USA). Only RNA samples with a RIN (RNA

integrity number) exceeding 8.0 were utilized for subsequent cDNA

libraries construction. The initial step involved employing fragmented

mRNA as a template and random oligonucleotides as primers to

initiate the synthesis of the first strand of cDNA in the M-MuLV

reverse transcriptase system. The RNA strand was degraded through

the action of RNase H, and the second strand of cDNAwas synthesized

using the DNA polymerase I system, with dNTPs serving as the raw

materials. The purified double-stranded cDNA then underwent end

repair, followed by the addition of an adenylate tail and the attachment

of a sequencing linker. Subsequently, cDNA fragments ranging from

250-300 bp were selected using AMPure XP magnetic beads. PCR

amplification was then conducted, and the resulting PCR products

were once again purified using AMPure XP magnetic beads.

Ultimately, the cDNA library was obtained.
2.5 Illumina sequencing and
data processing

After conducting a quality inspection of the library, Illumina

sequencing was performed on the pooled libraries, which were

selected based on optimal concentration and desired data volume.

The raw data obtained from each sample was processed using the fastp

software (Chen et al., 2018) followed by alignment of the clean data to

the quinoa reference genome sequence (https://www.cbrc.kaust.edu.sa/

chenopodiumdb) using the HISAT2 software (Kim et al., 2015). The
FIGURE 1

PHS of quinoa. (A) Cheng Li No. 2. (B) Cheng Li No. 1. (C) Long Li No. 1.
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transcript assembly for each sample was performed utilizing the

StringTie software (Pertea et al., 2015), followed by merging the

genome annotation of the assembled transcript for each sample. The

GffCompare software (Pertea and Pertea, 2020) was employed to

compare the annotations of all the sample transcripts with the

reference genome annotation files. This enabled the extraction of

unannotated transcripts from the reference genome and the

identification of predicted new transcripts with a length of less than

100 and less than 2 exons. The gene expression levels were estimated by

calculating the FPKM value of each gene utilizing StringTie (Pertea

et al., 2015). The identification of differentially expressed genes (DEGs)

was performed using the DESeq2 package in the R programming

language (version 4.2.2), employing a model based on the negative

binomial distribution (Love et al., 2014). The criteria for DEGs

identification were set as |log2 (fold change)| > 1 and padj < 0.05.
2.6 Functional annotation and pathway
enrichment analysis

To elucidate the function of the unigene, an extensive search

was performed across various databases (Altschul et al., 1997),

including Nr (NCBI non-redundant protein sequences), Swiss-Prot

(Annotated Protein Sequence Database), KOG (Clusters of Protein

homology), GO (Gene Ontology), and KEGG (Kyoto Encyclopedia

of Genes and Genomes). Additionally, KEGG was utilized for

further analysis of the biochemical pathways associated with the

differential genes. The enrichment test and analysis of GO terms

and KEGG pathways were conducted using the ClusterProfiler

package of R language (v 4.2.2) (Yu et al., 2012).
2.7 qRT-PCR analysis

The quantification of endogenous hormone regulatory gene

expression levels during the germination of quinoa seeds was

conducted through the utilization of quantitative real-time

polymerase chain reaction (qRT-PCR). The process involved the

extraction and purification of RNA, followed by reverse transcription

into complementary DNA (cDNA) using the FastKing RT Kit (With

gDNase) FastKing cDNA (Tiangen Biotech (Beijing) CO., LTD.) as per

the manufacturer’s instructions. The specific genes and corresponding

primers employed in this study can be found in Supplementary

Table 1. The qTOWER3 G Real-Time PCR System (Analytik Jena

AG, Germany) was employed to perform the qRT-PCR reactions,

which were replicated three times. The qRT-PCR program consisted of

a pre-denaturation step at 95°C for 30 seconds, followed by 40 cycles of

denaturation at 95°C for 5 seconds, and annealing/extension at 60°C

for 30 seconds. The reference gene employed was Actin gene (ACT),

and the relative gene expression levels were determined using the

2−DDCT method (Livak and Schmittgen, 2001).
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2.8 Statistical analysis

The data collected in this study was organized using Excel 2016

software. Significance difference analysis was conducted using the

one-way ANOVA and Tukey test methods of SPSS 19.0 software,

with a significance level set at P < 0.05. The correlation analysis was

performed using R language (v 4.2.2), and the resulting data was

visualized using GraphPad Prism 9 and Cytoscape (v 3.7.1)

software. All the experiments were repeated three times, and the

results were calculated in x ± n. The RNA-seq data was submitted to

the NCBI SRA database (accession number: PRJNA1028334).
3 Results

3.1 Dynamic changes in indicators related
to quinoa seed germination

The morphology of quinoa seeds underwent changes during the

germination, as depicted in Figure 2A. The rate of water absorption by

the seeds exhibited a significant and rapid increase within the initial 8

hours (P < 0.05), reaching a rate of 47.45% at the 8-hour mark. Despite

this heightened water absorption rate within 8 hours, the germination

rate remained low at a mere 1/300. During the 8-20 hour period, the

water absorption rate decelerated, while the germination rate

experienced a significant increase (P < 0.05), ultimately reaching

100% at the 20-hour mark, as depicted in Figure 2B. Furthermore,

the activity ofa-amylase exhibited a consistent increase, with respective

activities of 0.025 U/mg and 0.053 U/mg at 0 hours and 16 hours, as

depicted in Figure 2C. This rise in a-amylase activity triggers the

decomposition of starch within the seeds, resulting in a reduction in

starch content (Figure 2D). Additionally, the total content of soluble

protein displayed a decreasing trend, measuring 33.422 mg/g and

19.133 mg/g at 0 hours and 20 hours, respectively (Figure 2E). The

soluble sugar content exhibited a decline followed by an increase, with

contents of 14.279 mg/g and 21.455 mg/g at 8 hours and 16 hours,

respectively (Figure 2F). Through data analysis, it is evident that quinoa

seeds undergo an initial imbibition phase lasting from 0 to 8 hours,

during which energy is accumulated for germination. Subsequently, the

later stage of germination may involve a gradual balance between

internal material synthesis and metabolism.
3.2 Changes in the endogenous hormone
contents during seed germination

3.2.1 Changes in GA3, ETH and BR content
Figure 3A depicts a notable augmentation in GA3 content

during the seed swelling stage, reaching a maximum of 1.638 ng/g

at the 4-hour mark. Subsequently, the GA3 content gradually

diminished, displaying a fluctuating pattern of change and an
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FIGURE 3

Changes in endogenous hormone content during the germination process of quinoa seeds. (A-H) represents the changes in endogenous hormone
content of GA3, ETH, BR, ABA, IAA, JA, ZT, and SA during the germination process of quinoa seeds. Different treatments marked with different
lowercase letters showed a significant difference (P < 0.05), while error bars represent the mean ± standard (n=3).
FIGURE 2

Dynamic changes in germination with quinoa seeds. (A) Progress of quinoa seed germination at 30°C from 0 hours to 24 hours. (B-F) Plots of water
absorption and germination, a-amylase activity, starch content, soluble protein content, and soluble sugar content during germination of quinoa
seeds. Different treatments marked with different lowercase letters showed significant difference (P < 0.05), while error bars represent the mean ±
standard (n=3).
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overall decrease in content. In contrast, the endogenous hormone

ETH exhibited a consistent increase throughout seed germination,

with contents of 2.941 ng/g at 0-hour and 4.034 ng/g at 20-hour

(Figure 3B). The highest content of BR in dried seeds was

determined to be 1.087 ng/g. Interestingly, it displayed a rapid

decrease during the initial absorption phase of 0-4 hours, followed

by a gradual increase. The BR content reached its lowest point at

0.942 ng/g at the 4-hour mark, but subsequently rose to 0.992 ng/g

by the 12-hour mark (Figure 3C).

3.2.2 Content changes in ABA, IAA, and JA
The alterations in ABA, IAA, and JA content during

germination showed remarkable similarities, with a consistent

pattern of initial increase followed by subsequent decrease

(Figures 3D-F). The dried seeds had the lowest contents of ABA,

IAA, and JA, measuring at 2.328 ng/g, 3.436 ng/g, and 1.090 ng/g,

respectively. During the germination phase spanning of 8-20 hours,

the contents of ABA, IAA, and JA experienced an initial rise before

subsequently diminishing. At the 12-hour mark, the content of

ABA, IAA, and JA peaked at 6.198 ng/g, 25.469 ng/g, and 3.812 ng/

g, respectively. We found that there was a significant positive

correlation between the decline in ABA, IAA, and JA levels and

the enhanced seed germination rate.

3.2.3 Content changes in CTK and SA
Prior to germination of quinoa seeds, there was a noticeable

increase in the endogenous ZT content. Specifically, at the 8-hour

and 12-hour, the ZT content reached 0.599 ng/g and 0.655 ng/g,

respectively. Subsequently, as the process of seed germination

progressed, there was a significant decrease in the ZT content,

with a recorded value of 0.214 ng/g at the 20-hour mark

(Figure 3G). In numerous investigations on stress resistance, it

has been observed that SA has a stimulating effect on seed

germination under stressful conditions (Lee and Park, 2014; Yan

et al., 2023). Remarkably, our research demonstrates that the SA

content tends to increase during the germination process

(Figure 3H). Specifically, the SA content at 0 hours and 20 hours

was measured at 9.445 ng/g and 69.592 ng/g, respectively, with a

difference of 60.147 ng/g.
3.3 Illumina sequencing results
and assembly

After the cDNA library has been constructed and assessed for

quality, Illumina sequencing is conducted by combining various

libraries based on the desired effective concentration and target data

volume. The raw sequencing data for each sample is subjected to

quality control using the fastp software (Chen et al., 2018). After the

assembly procedure, a total of 37.10 G clean reads was obtained,

demonstrating a GC content of 44.32% and a Q30 value of

92.80% (Table 1).

The Pearson correlation coefficient was calculated to evaluate the

correlation between different samples based on their gene expression

levels. The resulting Pearson correlation coefficients for three
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biological replicates surpassed 0.933, indicating a robust association

among these replicates (Figure 4A). A total of 29210 genes were

found to be expressed in all samples. To identify genes with

differential expression, a significance analysis was performed using

the DESeq2 (Love et al., 2014) package, employing a screening

criterion of |log2 (fold change)| > 1 and padj < 0.05. In our study,

a total of 1236 downregulated differentially expressed genes and 2113

upregulated differentially expressed genes were identified (Figure 4B).
3.4 Unigene function annotation

The GO database annotation revealed that among the 29,210

single genes of quinoa, 952 GO terms were assigned, with 96 of

them being associated with plant hormones (Supplementary table

2). Notably, the analysis revealed a significant enrichment of GO

terms related to the regulation of hormone levels, with a

considerable number of genes involved, as illustrated in

Figure 4C. To further explore the involvement of hormone-

related metabolic pathways in different stages of quinoa seed

germination, the expected sequencing of individual gene

biochemical pathways was subjected to additional analysis using

the Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of

22,503 individual genes were comprehensively annotated in the

KEGG database and classified into 366 distinct signaling pathways

(Supplementary Table 3).

Figure 4D visually represents the 20 biochemical pathways with the

lowest padjs values for enrichment analysis. Among the KEGG

enrichment pathways examined, the plant signal transduction

pathways associated with the synthesis of plant hormones,

specifically the ABA biosynthetic pathway (map ko00906), IAA

biosynthesis pathway (map ko00380), GA biosynthetic pathway

(map ko00904), ETH biosynthesis pathway (map ko00270), BR

biosynthesis pathway (map ko00905), JA biosynthetic pathway (map

ko00592), CKT biosynthesis pathway (map ko00908), and the SA

biosynthetic pathway (map ko00360), exhibited significant enrichment.

Therefore, the findings have demonstrated the significant involvement

of plant endogenous hormones in the regulatory mechanisms

governing the process of quinoa seed germination.
3.5 Identification of genes associated with
the hormone regulatory network

A total of 280 gene sequences associated with the plant

hormone pathway were identified through the application of

transcriptome sequencing KEGG single hormone signaling

pathway data. Out of these, 99 gene sequences exhibited a |log2

(fold change)| > 1, as indicated in Supplementary Table 4. Heat

maps were generated to visualize the expression patterns of these

genes, as shown in Figure 5A. Additionally, Figure 5B illustrates 39

gene sequences with a |log2 (fold change)| > 2. Among the 99

differentially expressed genes with a |log2 (fold change)| > 1, 65

genes exhibited increased expression while 34 genes displayed

decreased expression, as depicted in Figure 5C.
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As shown in Figure 5D and Figure 5E, a significant proportion of

the differentially upregulated genes were found to be associated with

ABA, GA, and IAA, accounting for 15.63%, 17.19%, and 35.94%

respectively. Specifically, ABA and IAA exhibited 5 differential genes

each, meeting the criterion of |log2 (fold change)| > 2, while GA had 7

differential genes satisfying the same condition. Among the down-

regulated differential genes, ABA, GA, and IAA related genes

accounted for a substantial proportion, representing 29.41%, 20.59%,

and 17.65% respectively. We employed |log2 (fold change)| > 2 as the

screening threshold to identify 10 ABA-related genes, 7-GA related

genes, and 6-IAA related genes. This observation suggests that ABA,

GA, and IAA may act as the principal regulatory hormones in the
Frontiers in Plant Science 07
germination of quinoa seeds. Furthermore, the presence of other

endogenous hormones in the regulation of differentially expressed

genes indicates the involvement of multiple endogenous hormone-

related genes in the germination process of quinoa seeds.
3.6 Quantitative analysis

The R.4.4.2 software was utilized to evaluate the correlation among

99 differential genes, leading to the discovery that a majority of these

genes exhibited significant correlations (P < 0.05). Notably, 14

differential genes displayed degrees exceeding 55 (Figure 6). Given
TABLE 1 Sequencing raw Data and Filtered data quality statistics.

Sample Length Reads Bases Q20 (%) Q30 (%) GC (%)

Sequencing raw Data quality statistics

4h-1 150 45183914 6777587100 97.322 92.633 44.894

4h-2 150 42802694 6420404100 97.155 92.332 44.596

4h-3 150 43988100 6598215000 96.904 91.838 44.982

12h-1 150 42155318 6323297700 97.141 92.290 43.793

12h-2 150 42334706 6350205900 97.200 92.450 44.178

12h-3 150 42846718 6427007700 97.055 92.100 44.174

Filtered data quality statistics

4h-1 143 44976220 6471473929 97.711 93.119 44.782

4h-2 143 42579486 6115274362 97.571 92.855 44.475

4h-3 143 43707740 6267867480 97.380 92.428 44.854

12h-1 144 41924370 6041239782 97.552 92.804 43.688

12h-2 144 42093168 6068680002 97.606 92.956 44.071

12h-3 144 42607348 6132486797 97.470 92.619 44.071
A

B

DC

FIGURE 4

Correlation heat map, differential gene volcano map, and enrichment analysis map for each sample. (A) Pearson correlation coefficient of gene
expression profiles between different groups of biological repeats, with group replicates exhibiting high correlation coefficients being grouped
together. (B) Summarize the number of up-regulated and down-regulated gene sets based on 12-hour VS 4-hour differential gene sets. (C, D) GO
molecular function and KEGG enrichment analysis.
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FIGURE 6

Correlation diagram of 99 related genes of hormone regulation in the seed germination pathway.
A B D

EC

FIGURE 5

Analysis of differential expression genes involved in hormone regulation during the germination of quinoa seeds at 12 hours compared to 4 hours.
(A) Heatmap of 99 differential gene expressions. (B) Histograms of 280 gene sequences with |log2 (fold change)| > 1 and |log2 (fold change)| > 2.
(C) Histogram with up- regulation and down-regulation of expression in 99 differential genes. (D) Stacked histogram of the distribution of different
genes involved in endogenous hormones. (E) Proportion of endogenous hormone-related differential genes.
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the process of quinoa seed germination, it is reasonable to speculate

that these genes play crucial roles as central “transportation hubs” in

hormonal interactions. Consequently, these 14 differentially expressed

genes were chosen for qRT-PCR validation. The expression levels of the

14 genes examined exhibited statistically significant differences (P <

0.05) between the pre-germination (4 hours) and post-germination (12

hours) stages. These expression patterns were consistently in line with

the findings from transcriptome sequencing, as depicted in Figure 7.

Specifically, at the 12-hour stage, a noteworthy decrease in gene

expression was observed for NCED-1 and PP2C-2 compared to the

4-hour stage. Conversely, the expression of the remaining 12 genes

demonstrated a significant increase (P < 0.05). The gene expression

level of TGA-2, GA2ox-2, MYBP-6, CTR1-1, TCH4-1, SAUR-1, and

PP2C-2 demonstrated a statistically significant augmentation at the 12-

hour (P < 0.0001), with TCH4-1 exhibiting a nearly tenfold increase.
4 Discussion

4.1 a-Amylase promotes starch hydrolysis
to provide energy for seed germination

Along with the water absorption of seeds, the internal storage

compounds, including starch and protein, are degraded by various
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hydrolases leads to the formation of sugars, thereby facilitating the

development of the seed radicle and germ (Sano et al., 2022). The

germination of quinoa seeds exhibited a consistent increase in a-
amylase activity, which is in accordance with the observed pattern ofa-
amylase activity during the germination of African finger millet

following water absorption (Gimbi and Kitabatake, 2009). The

synthesis and release of a-amylase from the paste layer, induced by

GAs, facilitates the conversion of starch molecules within the

endosperm into readily sugars, thereby providing nourishment for

the embryo’s growth (Brown et al., 2018). The findings of our study

provide clear evidence of a strong correlation between the starch anda-
amylase activity in quinoa seeds during the process of germination.

Moreover, we observed a significant decrease in the starch content of

quinoa seeds throughout germination, which can be attributed to the

gradual hydrolysis of starch into glucose and other substances by

amylase. We speculate that the initial decrease and subsequent increase

in soluble sugar content in quinoa seeds during germination are also

linked to this phenomenon. The findings are consistent with those of

Anna-Sophie Hager (Hager et al., 2014). Additionally, our results

indicate a general decline in the overall soluble protein content of

quinoa seeds during the germination process. This phenomenon could

potentially be attributed to the heightened enzymatic activity of

proteolytic enzymes observed during the process of seed germination

(Gupta et al., 2021).
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FIGURE 7

Expression profiles of hormone regulation-related genes in ‘Cheng Li No. 2’ seeds. (A) TGA-2 (AUR62035261, transcription factor TGA). (B) GA2ox-2
(AUR62011753, gibberellin 2beta-dioxygenase [EC:1.14.11.13]). (C) MYBP-4 (AUR62013046, transcription factor MYB, plant). (D) MYBP-6 (AUR62024678). (E)
MYBP-2 (AUR62015573). (F) BIN2-1 (AUR62024576, glycogen synthase kinase 3 beta [EC:2.7.11.26]). (G) EBF1-2 (AUR62011878, ethylene-responsive
transcription factor 1). (H) CTR1-2 (AUR62041011, serine/threonine-protein kinase CTR1 [EC:2.7.11.1]). (I) CTR1-1 (AUR62042936). (J) ABF-5 (AUR62039213,
ABA responsive element binding factor). (K) TCH4-1 (AUR62008061, xyloglucosyl transferase TCH4 [EC:2.4.1.207]). (L) SAUR-1 (AUR62006917, SAUR family
protein). (M) PP2C-2 (AUR62001731, protein phosphatase 2C [EC:3.1.3.16]). (N) NCED-1 (AUR62002735, 9-cis-epoxycarotenoid dioxygenase [EC:1.13.11.51]).
Data represent mean ± SD, n = 3. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.001, vs. Control (4 hours).
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4.2 Effects of plant endogenous hormones
during quinoa seed germination

The intricate hormone regulatory networks observed in

germinated plant seeds involve the antagonistic and synergistic

interactions of endogenous hormones (Miransari and Smith, 2014;

Shahzad et al., 2016). Previous research has indicated that GA3

undergoes a transformation from a bound to a free state and it plays

a vital role in promoting seed germination (Li et al., 2019a). Our

results showed that a significant increase (P < 0.05) in the

endogenous GA3 content of quinoa seeds within the first four

hours of water absorption, indicating the potential for substantial

GA3 production during the initial stages of seed germination. The

a-amylase activity and the soluble proteins content additionally

confirmed the notion that GA3 mainly affects the germination of

quinoa seeds in the initial stage of water absorption. ETH has also

been reported to play a certain role in promoting seed germination

(Ahammed et al., 2020). Our results demonstrated a general

increase in ETH content during seeds germination, it is plausible

to speculate that enhanced ETH synthesis may contribute to

breaking the dormancy of quinoa seeds and subsequently

facilitating germination. Exogenous ABA can inhibit the output of

BR regulatory signals, consequently inhibiting BR-GAs-induced

seed germination (Zhang et al., 2009; Xiong et al., 2021). We

observed that the dried quinoa seeds exhibited a high content of

BR and the BR content experienced a sharp decline to the lowest

level 4 hours before seed germination, followed by a subsequent

increase. Consequently, we speculated that the sudden reduction in

BR content during the initial phase of quinoa seed germination may

be attributed to the inhibition of BR synthesis by ABA, as well as the

substantial depletion of stored BR during the seed swelling stage.

The ABA content typically decreases gradually during the

germination process in seeds of sorghum, soybean, and rice

(Benech Arnold et al., 2006; Gosparini et al., 2007; Xiao et al.,

2018). However, our findings reveal a contrasting trend in quinoa

seeds, where the ABA content increases during swelling, resembling

the behavior observed in Anemone rivularis var. flore-minore and

desia polycarpa Maxim seeds (Yanmei et al., 2018; Ge et al., 2020).

Additionally, our results demonstrate that the contents of IAA and

JA in quinoa seeds are consistent with those of ABA during the

germination. This further verified the synergistic effect of IAA, JA,

and ABA in inhibiting seed germination (Liu et al., 2013; Pan et al.,

2020). The change in ABA content in desia polycarpa Maxim seeds

during germination exhibited a similar trend to the findings of our

study. However, the change in IAA and GA3 contents differed from

our results (Yanmei et al., 2018). Our study suggests that the

fluctuations in endogenous levels of IAA and JA during the

germination process of quinoa seeds align with those observed in

rice seeds, while the alterations in ABA content exhibit

inconsistency (Xiao et al., 2018). The hormone content during the

process of germination can differ among seeds of different species,

and different quinoa varieties may exhibit either primary or

physiological dormancy, or may not exhibit any dormancy at all

(Baskin and Baskin, 2007; McGinty et al., 2021). In order to

enhance resilience to particular natural calamities, it is plausible
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that a feedback regulatory mechanism exists for the negative

regulation of germination hormones within quinoa seeds, thereby

augmenting their synthesis during the initial phases of germination

and impeding the process.

Our study showed a significant positive correlation (P < 0.01)

between ZT content and ABA during quinoa seed germination, and

SA content exhibited the highest throughout all time periods of

quinoa seed germination. The roles of ZT and SA in the regulation of

seed germination have been a subject of controversy (Miransari and

Smith, 2014; Anaya et al., 2018; Tuan et al., 2019; Yan et al., 2023).

Previous research has suggested that SA can impede seed germination

by inhibiting the activity of a-amylase induced by GAs in the cells of

the pasteurized layer. Conversely, SA has also been found to promote

seeds germination under stressful conditions (Xie et al., 2007; Lee and

Park, 2014). Based our research findings, we propose a research

question: is there a correlation between the tolerance of quinoa

towards environmental stress and the internal regulatory function

of SA?
4.3 Hormone related regulatory factors in
the germination process of quinoa

GA counteracts the inhibitory impact of the DELLA protein on

seed germination by binding to the plant gibberellin receptor GID1 and

degrading DELLA (Yoshida and Ueguchi-Tanaka, 2014). The results of

our study showed that the expression of DELLA (1-2) and GID1-2

during the process of quinoa seed germination is concomitant with an

upregulation in the expression of GID1-1. This suggests that GID1-1

within the gene GID1 (1-2) may play a major role in regulating quinoa

germination. In contrast, in rice, gibberellic acid triggers seed

germination by activating the transcription factor GAMYB, which in

turn influences amylase (AMY) activity (Washio, 2003). Notably, only

MYBP-4 and MYBP-6 in quinoa seeds showed a significant positive

correlation with AMY-1 (P < 0.05). Therefore, we speculated that the

transcription factorsMYBP-4 andMYBP-6 could interact withAMY to

promote the germination of quinoa seeds. To our surprise, a notable

decrease in the expression of the GA20ox regulatory geneGA20ox (1-2)

was observed during quinoa seed germination, whereas a significant

increase in the expression of the GA2ox regulatory gene GA2ox (1-2)

was observed (P < 0.05). GA20ox1 and GA2ox9 are responsible for

governing the synthesis and metabolism of GA within seeds, thereby

exerting control over seed germination and dormancy (Fukazawa et al.,

2021; Xing et al., 2023). Concurrently, ABA triggers the transcription of

the GA 2-oxidase 7 gene (GA2ox7) and stabilizes the ABI4 protein,

leading to GA degradation and the induction of seed dormancy (Shu

et al., 2016a). These findings imply that the regulatory mechanisms

governing GA synthesis and degradation during quinoa seed

germination may exhibit species-specific characteristics. In relation to

BR, it was observed that the expression level of the regulatory genes

BIN2-1 (Brassinosteroid insensitive 2, BIN2) and BRI1-1

(Brassinosteroid insensitive 1, BRI1) were significantly higher at the

12-hour. The correlation coefficients between BRI1-1 and the quinoa

GA synthesis gene GA20ox-1 were -0.886, while the coefficients

between BRI1-1 and the GA catabolism genes GA2ox-1 and GA2ox-
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2 were 1 and 0.880, respectively. These findings suggest that BR may

also affect the ABF genes during quinoa seed germination through the

involvement of the two regulators, BIN2-1 and BRI1-1. These

regulators influence the functioning of ABF genes and promote GA

synthesis via BRI1, thereby promoting seed germination. This result is

consistent with the reported conclusion that BR can promote seed

germination by attenuating ABA on seed germination and promoting

GA3 synthesis (Hu and Yu, 2014; Zhao et al., 2018; Kim et al., 2019;

Zhong et al., 2021). We also found that the BR-regulated pathway

effector TCH4-1 (Xyloglucosyl transferase) was significantly increased

nearly 9-fold in expression during germination of quinoa (P < 0.0001),

but its specific regulatory role needs to be investigated in depth. The

regulatory pathways of ABA and GAwere observed to interact with the

ETH pathway, leading to an elevation in ETH production, which was

correlated gradual accumulation of ACC-synthase (ACS) transcripts

and the activity of ACC-oxidase (ACO) (Wang et al., 2005; Rzewuski

and Sauter, 2008; Corbineau et al., 2014). With the germination of

quinoa seeds in our study, the expression level of gene ACO-1 was also

extremely significantly increased (P < 0.0001). This discovery has led us

to suggest a plausible correlation between the heightened endogenous

ETH content and the increased expression of ACO-1 genes. In

Arabidopsis thaliana, it has been observed that ethylene response

factor 12 (ERF12) could bind to the promoter region of the dormant

key gene delay of germination 1 (DOG1), thereby exerting inhibitory

effects on the expression of DOG1. This interaction, known as

“Ethylene response 1 (ETR1)-ERF12-Topless (TPL)-DOG1”, has been

identified as a negative regulator of the seed dormancy pathway (Li

et al., 2019b). ETR1 has been also found to engage in co-regulation of

ethylene’s signaling pathway through its interaction with the

Constitutive triple response 1 (CTR1) (Ju et al., 2012). In this study,

a comprehensive analysis was conducted on 10 differential sequences

linked to the pathway under investigation in quinoa seeds. The

expression levels of ETR (1-2), CTR1 (1-2), and ERF1 (1-2), found to

be significantly augmented, while the genes associated withDOG1 (1-6)

exhibited reduced expression. Our findings suggest the existence of a

potential negative regulation of quinoa seed dormancy, referred to as

“ETR-CTR1-ERF-DOG1”, which exhibits similarities to the

germination process of Arabidopsis thaliana.

ABA receptors (PYR/PYL/RCAR) interact with and suppress the

activity of PP2C (Protein phosphatase 2C, a negative regulator of ABA

signaling), leading to the activation of Sucrose non-fermenting 1-

related protein kinases (SnRKs). This activation subsequently

enhances the regulatory effect of downstream ABRE-binding protein

(AREB)/ABRE-binding Factor (ABF) transcription factors, which

ultimately inhibits seed germination (Carrera-Castano et al., 2020).

Overexpression of 9-cis-epoxycarotenoid dioxygenase 6 (NCED6) in

seeds results in an increased ABA content during the imbibition period,

consequently promoting seed dormancy (Martıńez-Andújar et al.,

2011). In our study, we observed a down-regulation of the gene

NCED-1 during the germination of quinoa seeds, which may be

attributed to the short dormancy period of quinoa (McGinty et al.,

2021). Additionally, we found significant increases (P < 0.05) in the

differential sequences of three key components involved in the ABA

early sensing and signaling pathway: SNRK2 (1-2), PYR/PYL (1-2), and

PYR/PYL-4. Conversely, we noted significant decreases (P < 0.05) in

the expression of PYR/PYL-2 and PP2C (1-6). Therefore, we speculated
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that the regulatory mechanism of ABA in quinoa seed germination is

species-specific. IAA is another endogenous plant hormone, apart from

ABA, that has been recently discovered to induce seed dormancy. IAA

can indirectly stimulate the expression of abscisic acid insensitive 3

(ABI3) through ARF10 and ARF16, which are auxin responsible

factors, ARFs (Liu et al., 2013). Additionally, the ARF2 mutant arf2

exhibited heightened sensitivity to ABA during seed germination,

providing further evidence for the regulatory role of ARF2 in ABA

signaling. This regulation is achieved through the interaction of ARF2

with its target gene HB33, ultimately influencing seed germination

(Wang et al., 2011). During the process of quinoa seed germination, a

notable positive correlation (P < 0.01) was observed between the ARF

(1-3) genes and theABF (1-5) genes. Furthermore, the expression levels

of these genes exhibited a significant increase (P < 0.05) upon seed

germination. The inhibitory effect of ABA on seed germination is

weakened by the auxin signaling inhibitor Aux/IAA8 through the

suppression of ABI3 expression (Hussain et al., 2020). Our study

reveals that a decrease in TIR1-1 (Transport inhibitor response 1)

expression leads to an increase in IAA-2 and IAA (4-7) expression,

which may enhance the inhibitory influence on the “ARF-ABF”

pathway. Both ABA and JA can inhibit seed germination, and their

interconnection can be facilitated by the involvement of PYL6

(RCAR9) and MYC2 (Aleman et al., 2016; Pan et al., 2023a). During

the process of quinoa germination, we found 15 distinct genes

associated with JA regulation of seed germination, and among them,

6 genes exhibited significant differences (P < 0.05). Notably, the

correlation coefficients between PYR/PYL-1 and PYR/PYL-2, as well

as MYC2-1, were found to be 0.829. This suggests that the interaction

between ABA and JA in quinoa may also be mediated through the

participation of PYL6 and MYC2. The JA signaling receptor F-box

protein coronatine insensitive 1 (COI1) initially forms a complex called

SCFCOI1 (Skp1/Cullin1/F-box protein COI1) by binding to the proteins

SKP1 and Cullin1. This complex then interacts with the JAZ inhibitor,

leading to the degradation of the JAZ1 protein and ubiquitination of

the 26S proteasome. Consequently, downstream JA transcription

factors are activated, enabling the regulation of JA response events

(Devoto et al., 2002; Pan et al., 2020). The JAZ protein, in turn, inhibits

the transcriptional activity of ABI3 and abscisic acid insensitive 5

(ABI5). However, the introduction of exogenous ABA can degrade the

JAZ protein and facilitate seed germination (Ju et al., 2019; Pan et al.,

2020). During the process of quinoa germination, our study revealed a

significant increase in the upregulation of JAZ-1 (P < 0.0001) and

ABF1-5 (P < 0.05). Additionally, a negative correlation was observed

between the decrease in JAZ-2 expression and ABF1-5 (P < 0.05).

Meanwhile, the expression levels of the positive regulators JAR1-1 and

COI1-1, which are involved in the JA regulatory pathway, was also

found to be enhanced. Moreover, the regulatory signals of ABA

exhibited the potential to amplify the functionality of the allene

oxide cyclase (AOC) in the JA synthesis pathway (Wang et al.,

2020). Therefore, we postulated that the significant increase of AOC

(1-2) (P < 0.05) expression in quinoa resulted in the increase of

endogenous JA content during quinoa seed germination,

consequently impeding the germination process.

Through an examination of the expression patterns of CKT-related

genes, namely TacZOG, TaGLU, and TaARR12, in embryonic tissues

of both dormant and non-dormant genotypes, it was determined that
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CKT possesses the ability to regulate seed dormancy (Tuan et al., 2019).

In our study, the expression levels of the ARR-A-1 and ARR-B-1 genes,

which are link to CKT, exhibited a significant increase (P < 0.05) during

quinoa seed germination, indicating that ARR may serve as a positive

regulator in this process. SA also has a significant effect on seed

germination, but the regulatory pathways of seed dormancy and

germination have not been thoroughly studied (Anaya et al., 2018;

Yan et al., 2023). And to our surprise, the expression of TGA-2 in the

SA-regulated pathway exhibited a substantial ten-fold increase (P <

0.0001) following quinoa germination. Quinoa, being a quintessential

example of a crop resilient to environmental stress, holds significant

promise for research in the regulation of seed germination by SA. As a

typical representative crop of tolerant to environmental stress, SA

regulation of quinoa seed germination has great research potential.

Drawing upon the aforementioned regulatory genes and alterations in

hormone content, a comprehensive network of endogenous hormones

during the 4-12 hour period of quinoa seed germination was

established (Figure 8).
Frontiers in Plant Science 12
4.4 The structural specificity of quinoa seeds may affect the

specificity of hormone regulationThe endosperm plays a crucial role

in seed germination. During seed water absorption and expansion,

diverse enzymes are activated by changes in endogenous hormone

levels. These enzymes facilitate the breakdown of energy storage

compounds, thereby supplying the essential energy required for

embryonic growth (Yan et al., 2014; McGinty et al., 2021). The

paraffin sections reveal significant differences in seed structure

between quinoa, a distinct heterotetraploid plant variety, and

conventional crop seeds such as rice, wheat, and corn. The embryos

of rice, wheat, and corn are enveloped by the endosperm, while quinoa

endosperm is enveloped by the embryos (Figure 9). Hence, it is

postulated that the dissimilarity in seed structure potentially

underlies the susceptibility of quinoa towards PHS.

The seed coat of quinoa is a barrier for the release of endogenous

ABA, and the sensitivity of seeds to ABA is influenced by this factor, or

they are not sensitive to ABA (Ceccato et al., 2015). The quinoa cultivar

“Qaidam Red-1” has brown seed color, and its endogenous ABA
FIGURE 8

Regulatory network of plant hormone functions during the germination process of quinoa seeds. ABA receptors (PYR/PYL/RCAR) bind to and inhibit
the activity of PP2C, leading to the activation of SnRKs and subsequent increase the expression of downstream transcription factor ABF, thereby
inhibits seed germination. The up-regulation of AOC by ABA promotes the increase of synthesis of JA, and the expression of JA receptors JAR1 and
COI1 is upregulated as a result. These receptors, in turn, impact the regulatory genes of JAZ protein, and the degree of ubiquitination of JAZ protein
influences its inhibitory effect on ABF gene expression. The upregulation of the IAA response gene ARF has the potential to impact the expression of
the ABF gene. Simultaneously, the expression of the auxin influx facilitator AUXI is enhanced, while the expression of TIR1 downstream is reduced.
TIR1 plays a role in ubiquitinating AUX/IAA protein, thereby reducing the inhibitory effect of AUX/IAA on the “ARF-ABF” interaction. In the BR signaling
regulatory pathway, the GSK3 kinase BIN2 negatively regulates ABF, leading to a diminished effect of ABF on the GA2ox decomposition regulatory
gene. Additionally, the BR receptor kinase BRI1 regulatory gene influences the content of GA through GA20ox. Further research is required to
confirm the ability of the transcription factor BZR1/2 to bind to the promoters of GA20ox1 and other GA synthesis genes, thereby inducing GA
expression. GA plays a crucial role in seed germination by regulating the expression of the receptor gene GID1, leading to the ubiquitination of
DELLA protein. Besides, GA promotes seed germination by activating the transcription factor regulatory gene MYBP. Furthermore, the synthesis of
ethylene promotes the upregulation of ACO expression in the ethylene synthesis pathway, specifically ACC-oxidase, resulting in an increase in ETH
content. ETH, in turn, inhibits the expression of the ABA synthesis gene NCED. ETH has a negative regulatory effect on the expression of its receptor
gene ETR, leading to the promotion of CTR1 and ERF1/2 expression, inhibition of the dormant regulatory gene DOG1 expression, and subsequent
facilitation of seed germination. The potential positive regulatory roles of genes ARR in the CTK regulatory pathway and genes TGA in the SA
regulatory pathway in quinoa seed germination require additional verification. Black arrows denote positive regulation, while bars represent negative
regulation. Red and green arrows are employed to signify increased and decreased gene expression, respectively.
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content decreases gradually during germination, which is different

from “Cheng Li No. 2”, whose seed color is black (Hao et al., 2022). In

addition to seed coat structure and seed coat color, the inconsistent

germination rates of different quinoa varieties may also be caused by

differences in seed inflorescence and perianth (Vilcacundo and

Hernández-Ledesma, 2017; Wu et al., 2019; Pan et al., 2023b).

Previous studies have indicated that the endogenous hormones ABA,

IAA, and JA exert inhibitory effects on seed germination, while GAs,

ETH, and BR stimulate seed germination. However, the specific

regulatory mechanisms governing the influence of SA and CTK on

seed germination necessitate further comprehensive investigation.

(Penfield, 2017; Yanmei et al., 2018; Ahammed et al., 2020; Barreto

et al., 2020; Xiong et al., 2021; Ali et al., 2022). Our results of this study

showed that the alterations in endogenous hormone levels and

associated regulatory genes during the germination process of quinoa

seeds differ significantly from those observed in conventional crop

seeds, except for ETH, BR, CTK, and SA. Following 4-12 hours of seed

germination, the levels of endogenous ABA, IAA, and JA, along with

the expression levels of numerous documented negative regulatory

genes associated with seed dormancy, exhibited a noteworthy increase

(P < 0.05). Conversely, the expression levels of genes associated with

GA3 content and GAs synthesis demonstrated a significant decrease (P

< 0.05).

Plant hormones are closely related to endosperm, and we

speculate that the results of hormones such as ABA in quinoa

germination may be related to the specific structure of quinoa seeds,

a conclusion to be explored in further studies.
5 Conclusion

The results of this study offer empirical support for the notion that

the hormonal regulation process during quinoa seed germination
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exhibits distinct characteristics that are species-specific. This

discovery holds considerable implications for the cultivation and

progress of quinoa cultivars with resistance to PHS, while also

providing valuable insights in this research field. This study shows

that quinoa seed germination is intricately linked to energy substances,

including a-amylase, endogenous hormones, and soluble sugars. By

analyzing the regulatory roles of eight different types of plant

endogenous hormones during quinoa seed germination, it was found

that the levels of various endogenous hormones showed continuous

fluctuations during quinoa seed germination, which suggests that the

regulation of quinoa seed germination involves the influence of

multiple hormones. The network of endogenous hormones

regulating seed germination in quinoa is complex and different from

traditional crops. The analysis of transcriptome sequencing data

unveiled a total of 99 genes that exhibited differential expression in

relation to hormone-regulated pathways governing quinoa seed

germination. Out of these, 73 genes demonstrated statistically

significant differential expression (P < 0.05). Among the significant

genes, 14 may serve as pivotal elements within the regulatory network

governing quinoa seed germination, as they exhibit close associations

with this process. Additionally, diverse quinoa varieties exhibited

distinct alterations in hormone content, and disparities were also

observed in the seed structure of quinoa when compared to

conventional crops.
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FIGURE 9

Seed internal structure diagram of Cheng Li No. 2.
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