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Introduction: With continuously increasing labor costs, an urgent need for

automated apple- Qpicking equipment has emerged in the agricultural sector.

Prior to apple harvesting, it is imperative that the equipment not only accurately

locates the apples, but also discerns the graspability of the fruit. While numerous

studies on apple detection have been conducted, the challenges related to

determining apple graspability remain unresolved.

Methods: This study introduces a method for detecting multi-occluded apples

based on an enhanced YOLOv5s model, with the aim of identifying the type of

apple occlusion in complex orchard environments and determining apple

graspability. Using bootstrap your own atent(BYOL) and knowledge transfer(KT)

strategies, we effectively enhance the classification accuracy for multi-occluded

apples while reducing data production costs. A selective kernel (SK) module is

also incorporated, enabling the network model to more precisely identify various

apple occlusion types. To evaluate the performance of our network model, we

define three key metrics: APGA, APTUGA, and APUGA, representing the average

detection accuracy for graspable, temporarily ungraspable, and ungraspable

apples, respectively.

Results: Experimental results indicate that the improved YOLOv5s model

performs exceptionally well, achieving detection accuracies of 94.78%, 93.86%,

and 94.98% for APGA, APTUGA, and APUGA, respectively.

Discussion: Compared to current lightweight network models such as YOLOX-s

and YOLOv7s, our proposedmethod demonstrates significant advantages across

multiple evaluation metrics. In future research, we intend to integrate fruit

posture and occlusion detection to f]urther enhance the visual perception

capabilities of apple-picking equipment.
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1 Introduction

During the apple maturation season, orchard managers

typically employ a significant temporary workforce to ensure the

timely harvesting and sale of the apples. However, in recent years,

escalating labor costs and the scarcity of manpower have posed

significant challenges for these managers (Liu et al., 2019).

Consequently, there is an increasing demand for automated

apple-picking equipment in the agricultural sector, which

represents a pivotal opportunity for the development of such

technology. Over the past few decades, apple-picking equipment

has garnered substantial attention from both domestic and

international researchers (Li et al., 2022). While vision-based

apple-picking control technologies have experienced rapid

advancement, the hand–eye coordination efficiency of the

equipment remains sub-optimal and has been identified as a key

factor affecting its performance (Jiao et al., 2020). Occlusion is

considered one of the primary challenges in improving visual

control technology for apple-picking. This factor has a negative

impact, as occlusion by leaves, branches, or other apples can

prolong the apple identification time and reduce accuracy.

At present, apple-picking equipment can harvest apples that are

unobstructed or merely occluded by leaves; however, apples

concealed by branches or other apples pose a significant challenge.

During automated harvesting,if the equipment cannot discern the

graspability of an apple based on its occlusion status, the equipment

may fail to grasp the apple or even become damaged, severely

compromising its safety. In this study, the graspability of apples

refers to whether the apple’s growing environment is suitable for

robotic hands to safely harvest them (Yan et al., 2021).To enhance the

selective grasping capabilities of apple-picking equipment, it is

imperative for network models to discern occlusions produced by

branches, leaves, and apples. Recent deep learning-based apple

identification network model research has predominantly focused

on the DasNet (Kang and Chen, 2019; Kang and Chen, 2020), YOLO

(Dean et al., 2019; Wu et al., 2021; Wang et al., 2022), R-CNN

(Dandan and Dongjian, 2019; Zhang et al., 2020), and Mask R-CNN

(Jia et al., 2020; Chu et al., 2021) series of models. However, most

studies have conducted apple identification through single-class

recognition, overlooking the impacts of occlusions on harvesting.

To mitigate risks during harvesting and boost operational efficiency,

apple-picking equipment should be capable of precisely detecting

various apple occlusion scenarios prior to harvesting, subsequently

determining the graspability of apples; however, such detection

methods are inherently more challenging, as they rely on subtle

features based on the apple’s local position (Minervini et al., 2016),

making these fine-grained features elusive.

In conducting multi-occlusion apple detection, it is imperative

to first compile a comprehensive data set representing various apple

occlusion types, ensuring that these data accurately depict a myriad

of occlusion scenarios. However, the compilation of such a data set

is not only time-consuming and costly, but also susceptible to

mislabeling of occlusion categories, which can compromise the

accuracy of the final model. Furthermore, many network models,

burdened by their substantial weights, exhibit sub-par real-time

performance. In contrast, lightweight models, while boasting rapid
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computational speeds, often suffer from diminished recognition

accuracy. To address these challenges, there is a pressing need to

explore techniques centered on model-based label generation,

parameter optimization, and architectural design. Wang et al.

proposed an R-FCN network model based on ResNet-34 that

adeptly identifies apples in the presence of overlap, leaf occlusion,

and surface shadows, achieving recognition recall and accuracy

rates of 85.7% and 95.1%, respectively (Dandan and Dongjian,

2019). Jia (Jia et al., 2020) introduced a lightweight modification

into Mask R-CNN by integrating ResNet and DenseNet, and the

model’s detection precision and recall rates reached 97.31% and

95.70%, respectively. However, the model’s detection speed still fell

short of real-time detection requirements. Addressing this,

Kuznetsova (Kuznetsova et al., 2020) proposed a pre-processing

and post-processing approach based on YOLOv3, achieving a rapid

detection speed of 19 ms per frame. Yan (Yan et al., 2022) designed

the Bottleneck CSP-B module and an SE attention module based on

YOLOv5m, making preliminary strides in detecting apple occlusion

scenarios; nevertheless, instances of misidentification or outright

non-recognition of apples were observed. Kang (Kang and Chen,

2020) introduced LedNet, which offers extensive data labeling

capabilities, with the aim of enhancing fruit detection precision.

While existing studies have made progress in terms of apple

detection, there remains a pivotal need to address misidentification

issues in multi-occlusion apple scenarios. This factor is crucial to

ensure the precise determination of apple graspability and fulfill the

demands of apple harvesting operations.

For this study, mature apples that remained unharvested in an

orchard were selected as the subjects of investigation, and an

occlusion-aware apple detection method based on an enhanced

YOLOv5s model was proposed. Utilizing the results from this

multi-occlusion apple detection method, the graspability of the

apples was further assessed. To effectively reduce the need for

annotations, minimize data preparation costs, and improve the

performance of the YOLOv5s backbone, a training scheme based on

self-supervised learning and knowledge transfer was employed.

Additionally, the selective kernel module was integrated, enabling

the refined YOLOv5s to more accurately identify apples with

multiple occlusions, thereby enhancing the apple harvesting

equipment’s ability to determine apple graspability. This research

offers a viable solution for precisely discerning apple graspability

and has significant implications for improving the efficiency and

safety of apple harvesting equipment.
2 Materials and methods

2.1 Apple orchard environment

Yantai City, located in the northeastern part of the Shandong

Province, has geographical coordinates of 119°34′E to 121°57′E
longitude and 36°16′N to 38°23′N latitude. Recognized as the

birthplace of modern apple cultivation in China, Yantai is also

among the country’s primary apple-growing cities. The apple image

data utilized in this study were collected in October 2021 from the

Zoumaling Orchard in Biguo Town, Zhaoyuan County, Yantai City.
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This orchard utilizes a modern spindle-shaped planting structure.

The apple trees are spaced approximately 3.5 m apart, with a

distance of about 1.5 m between individual trees and an average

height of around 3.5 m, as depicted in Figure 1. During the apple

maturation phase, the apples display a vibrant red hue, are densely

clustered, and become relatively large, with an average weight of 319

g per apple. Prior to harvesting, the apple trees were sprayed with

defoliants by orchard management personnel, which expedite the

shedding of leaves. Consequently, by the time of apple maturation,

fewer leaves remained on the apple trees, revealing a more

pronounced presence of branches and resulting in a sparse

canopy pattern. This distribution of branches and leaves not only

provides the apples with increased sunlight exposure, but also

presents a realistic scenario for research into the automated

harvesting of apples.
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2.2 Data collection and annotation

2.2.1 Data collection
An Intel D455 camera was employed to capture images at a

range of 0.3 to 1.0 m from the apple trees. To ensure diversity in the

captured images, the potential effects of varying weather and

lighting conditions on the images were thoroughly considered.

Images were taken during three distinct periods—morning, noon,

and afternoon—and under both clear and cloudy weather

conditions. These images were captured under various lighting

modes, including front-lit, back-lit, and side-lit, as illustrated in

Figure 2. In total, 5000 images with a resolution of 1280 × 720 pixels

were collected, all of which were saved in the PNG format. After

eliminating images with high redundancy, a final set of 2800 high-

quality apple images were retained.
B

C D

A

FIGURE 2

Images under different lighting conditions. (A) Back-lit image. (B) front-lit image. (C) side-lit image. (D) low-light image.
FIGURE 1

Planting scene of Zoumaling Orchard in Biguo Town, Zhaoyuan County.
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2.2.2 Data annotation
Meticulous annotation of the images was conducted based on

occlusion of the apple surfaces by branches, leaves, and other

apples. All occlusion scenarios within the images were categorized

into eight classes: No occlusion (N), Leaf occlusion (L), Apple

occlusion (F), Branch occlusion (B), Leaf and Apple occlusion (LF),

Leaf and Branch occlusion (BL), Branch and Apple occlusion (BF),

and combined Leaf, Branch, and Apple occlusion (BLF). The

LabelImg annotation software was employed (Zhuk et al., 2015),

with labels generated in txt format. The results of the various

occlusion annotations are depicted in Figure 3. From the

perspective of actual apple harvesting operations, apples were

classified into three categories based on their occlusion status:

apples categorized as N or L were deemed to be Graspable Apples

(GA), as the harvesting process remains unaffected when apples are

either unobstructed or solely obstructed by leaves; apples

categorized as F or LF were categorized as Temporarily

Ungraspable Apples (TUGA) as, once the apples obstructing the

surface are harvested, these apples can become subsequent grasping

targets; and apples categorized as B, BL, BF, or BLF were classified as

Ungraspable Apples (UGA),primarily due to branch obstructions,

which could potentially damage the apples or the harvesting

equipment if direct harvesting were attempted.

As detailed in Table 1, the data set contained a total of 36,803

annotated bounding boxes, among which ungraspable apples

constituted the majority, accounting for 51.5% of total annotations.

Graspable apples represented 42.0% of the total, while temporarily

ungraspable apples made up 7.5%. The annotated results were

divided into training, validation, and test sets at a ratio of 7:1:2,

serving the purposes of network model training, optimization, and

performance evaluation, respectively. During the training process,

data augmentation techniques were employed, primarily involving

the addition of noise to and forming mosaics of the images, as well as

adjustments to contrast and brightness.
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2.3 Construction of detection model

2.3.1 Methodology overview
To determine the graspability of the apples, we introduce a

detection method for multi-occluded apples based on an enhanced

YOLOv5s model. In particular, this method determines the

graspability of the fruit based on the occlusion detection results.

The technical framework of this method is depicted in Figure 4.

Initially, data collection, annotation, and augmentation are

conducted, establishing an eight-category occluded apple data set.

The YOLOv5s model was employed for fully supervised data

training, and the backbone of the post-training model was

extracted to serve as the teacher backbone model for guided

training. Given the data set size constraints, a joint training

strategy combining knowledge transfer and self-supervised

learning algorithms was devised, primarily aiming to construct a

more robust student backbone model. To further optimize

YOLOv5s, we integrated the SK module (Li et al., 2019).

Ultimately, the student backbone model was utilized to initialize

the enhanced YOLOv5s backbone. With the aid of the augmented

training set, fully supervised fine-tuning was conducted in order to

achieve optimal performance of the improved YOLOv5s model.

2.3.2 Improvement of YOLOv5s
In the context of the application requirements for embedded

computing in apple harvesting equipment, the network model must

possess the capability to rapidly and accurately identify apples (De-

An et al., 2011). We chose YOLOv5s, which was designed

specifically for embedded systems, for the baseline network model

as it strikes a balance between detection speed and accuracy.

YOLOv5s primarily consists of three components: the Backbone,

Neck, and Head. To enhance the model’s performance,

modifications were made to both the backbone and Neck

sections; see the overall architecture depicted in Figure 5.
FIGURE 3

Annotation results for various occluded apples in an image using the LabelImg. N stands for No occlusion, B stands for Branch occlusion, BL stands
for Leaf and Branch occlusion, BLF stands for Leaf, Branch, and Apple occlusion.
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The backbone is responsible for transforming the input image

into multi-layer feature maps suitable for object detection tasks.

This component primarily consists of Conv modules, C3 modules,

and Spatial Pyramid Pooling Fast (SPPF) modules. The Conv

modu l e encompas se s convo lu t ion (Conv2d) , Ba t ch

Normalization, and the SiLU activation function. The C3 module

draws inspiration from DarkNet53 in YOLOv3 (Redmon and

Farhadi, 2018), combined with the design philosophy of CSPNet

(Wang et al., 2020), and includes three Conv and multiple

Bottleneck modules. The Bottleneck module employs the residual
Frontiers in Plant Science 05
structure from ResNet (He et al., 2015), primarily in two variations:

the first path uses a 1 × 1 convolution to halve the channel number

of the feature map before a 3 × 3 convolution extracts features,

ensuring consistent input and output channel numbers; while the

second path uses a direct shortcut for residual connection, thus

achieving feature fusion. The other variation omits the feature

fusion step when no shortcut is applied. The C3 module aims to

enhance the network’s depth and receptive field, thereby improving

its feature extraction capabilities. Inspired by SPPNet (He et al.,

2014), the SPPF module replaces a large pooling kernel with
FIGURE 4

Technological framework of the proposed approach. In the technical framework, the same color represents the same experimental stage, grey
boxes represent raw images pre-processing, yellow boxes represent the construction of teacher backbone model, dark yellow boxes represent the
construction of self-supervised learning algorithm, light red boxes represent the construction of student backbone model, green boxes represent
the improvement process of YOLOv5s model, and light pink represents the performance outputs of the improved YOLOv5s model.
TABLE 1 Statistics for three types of apple targets.

No. of Apples
No. of Graspable Apples No. of Temporarily Ungraspable Apples No. of Ungraspable Apples

N L F LF B BL BF BLF

36803 9856 5597 1936 474 10,579 6405 1296 660
frontie
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multiple smaller ones, thereby enhancing the execution speed and

feature expressiveness. In Sections 2.3.3 and 2.3.4, we describe a

guided pre-training strategy based on self-supervised learning and

knowledge transfer, developed with the aim of training a backbone

capable of fine-grained feature extraction for multi-obstructed

apple detection.

The Neck module is tasked with integrating feature maps at

different levels, producing feature maps with multi-scale

information, and forwarding those maps to the Head section.

This component is composed of Conv modules, Upsample,

Concat, and a C3 module without a shortcut. Moreover, the

design of the Neck incorporates structures from FPN (Lin et al.,

2016) and PAN (Liu et al., 2018), employing both top-down and

bottom-up feature extraction methods, thus facilitating the fusion

of shallow graphic features and deep semantic features of the

network. In Section 2.3.5, we detail how the SK module is

introduced to enhance the Neck’s focal representation capabilities

for target region features. The Head primarily conducts multi-scale

object detection on the feature maps integrated by the Neck. This

module’s design aims to expand the channel numbers of the three

differently sized feature maps in the Neck. The expanded channel

number calculation method is presented in Equation 1.

CM = (OAC+5)�NA (Eq: 1)

where OAC represents the number of occluded apple categories,

and the 5 represents five parameters: the bounding box center’s x-

and y-coordinates, width, height, and confidence score). NA

represents the number of anchors per detection layer. In this

study, OAC is 8,and NA is 3.
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2.3.3 Pre-training of the student backbone model
based on BYOL

In recent years, Self-Supervised Learning (SSL) has gained

significant attention in the realm of image processing, offering a

novel approach to model training that does not rely on manually

annotated data (Jing and Tian, 2019). By autonomously extracting

labels from a vast amount of unlabeled data, this training method

substantially reduces the dependency on annotated data, leading to

significant savings in both time and cost. Early SSL methods

typically relied on designing specific predictive tasks, such as

estimating image rotation angles or color arrangements, thereby

encouraging the model to discern meaningful image features

(Doersch et al., 2015). More recently, researchers have identified

SSL techniques that draw similar image features closer while

pushing dissimilar ones apart, such as Momentum Contrast (He

et al., 2019), BYOL (Grill et al., 2020), and SimCLR (Chen et al.,

2020b). Notably, BYOL stands apart from other contrastive learning

methods that rely on negative samples; instead, BYOL learns image

representations from two distinct image views derived from a target

network and an online network, respectively. This strategy not only

streamlines the learning process, but also achieves efficient feature

representation without the use of any negative samples. Given the

potential of SSL in deep learning, this study leverages BYOL to

enhance the performance of the YOLOv5s backbone.

The initial step involved setting up the target network model

and the online network model. The backbone of YOLOv5s was first

selected as the online encoder. Subsequently, the weights of the

online network model were cloned to produce the target encoder,

the calculation method is presented in Equation 2.
FIGURE 5

Improved YOLOv5s architecture.
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F(x) = Wv5sBi
(x) (Eq:2)

where F(x) is the feature tensor extracted from the input image

and Wv5sB _ 1 , i ∈ online, targetf g represents the type of encoder.

To enhance the encoder’s generalization capability, we devised a

data augmentation strategy considering the characteristics of

agricultural images. Initially, random cropping and horizontal

flipping of the images were employed, supplemented with color

adjustments and brightness/contrast modifications, succinctly termed

Color Adjustment (CRAJ). The calculation method for generating

augmented images from the original images is presented in Equation 3.

xk = RandomCrop(RandomHorizontalFlip(CRAJ(x))) (Eq: 3)

where xk, k ∈ 1, 2f g represents the augmented image.

Subsequently, construction of the projection head and predictor

was carried out. Within the online network model, both the

projection head and predictor are composed of a multi-layer

perceptron (MLP). The prediction calculation method for the

online network model is presented in Equation 4.

zonline _ i = W2s (W1F(xi)) (Eq: 4)

In the target network model, the projection head consists of a

single MLP and does not include a predictor. The projection

calculation method for the online network model is presented in

Equation 5.

ztarget _ i = s (W
0
1F(xi)) (Eq: 5)

where W1 and W2 represent the weights of the projection head and

predictor in the online network model, respectively;W
0
1 denotes the

weights of the projection head in the target network model; and s is

the ReLU activation function.

Subsequently, construction of the BYOL loss function was

undertaken. The loss calculation method is presented in Equation 6.

L =o
1

i=0
2 − 2� 〈 zonline _ i, ztarget _ i〉

jjzonline _ ijj2 � jjztarget _ ijj2
(Eq: 6)
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where the inner product of vectors is denoted by 〈 ·, · 〉, zonline_1
represents the output processed by the online encoder when

processing x1, ztarget_1 signifies the output processed by the target

encoder when processing x2, and L is the result of the

loss computation.

Subsequently, an overarching training optimization strategy for

the network model was devised. Utilizing standard backpropagation

and the Adam optimizer, the gradient of the loss function L with

respect to the weights of the online encoder was computed, allowing

for updating of the online weights. Concurrently, to stabilize the

self-supervised training process, we employed an exponential

moving average strategy to update the weights of the target

encoder, which was calculated in Equation 7.

Wtarget = b �Wtarget + (1 − b)� ½Wv5sBonline
,W1� (Eq: 7)

where Wonline represents the combination of [Wv5sB _ online , W1, W2]

andWtarget represents [Wv5sB _ target ,W
0
1]. For b, a value of 0.90 was set

to update the weights of the target encoder.

The self-supervised training process of the YOLOv5s backbone

based on BYOL is illustrated in Figure 6. We utilized 5000 images to

deeply pre-train the backbone of YOLOv5s in a self-supervised

manner. The BYOL method efficiently learns features while relying

solely on the loss of the online network. Upon completion of the

pre-training step, the acquired weights—encapsulating vital visual

feature information about apple trees—were stored within the

YOLOv5s backbone. These weights could then be applied to

downstream object detection tasks. In the subsequent phase, we

fine-tuned the YOLOv5s backbone using the test data set, resulting

in the final BYOL-improved YOLOv5s.

2.3.4 Pre-training of the student backbone model
based on knowledge transfer

In the realm of deep learning, the process of knowledge transfer

primarily refers to utilizing a model trained on one task as a starting

point for training on another task (Passalis and Tefas, 2018). The

foundational concept is to transfer the knowledge from the teacher
FIGURE 6

Self-supervised training framework of the YOLOv5s backbone based on BYOL.
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backbone model to the student backbone model, with the hope that

the student backbone model may approach or even surpass the

performance of the teacher model (Chen et al., 2020a). We focused

on enhancing the feature extraction capability of the YOLOv5s

backbone, exploring how to further amplify the backbone’s feature

extraction ability through knowledge transfer methods by

leveraging the pre-trained YOLOv5s.

In orchard environments, apples are frequently occluded by

leaves, branches, and other apples. It is crucial to consider how to

enable the model’s backbone to learn about the shapes, sizes, and

textures of such obstructions. We employed a backbone distillation

approach, utilizing intermediate feature activation layers to enable

the student backbone model to learn from the teacher model. These

intermediate feature activation layers can accurately represent the

shapes and textures of leaves, branches, and apples, thereby offering

improved detection in scenarios with multiple obstructions. Given

the inherently commendable performance of YOLOv5s and based

on preliminary experimental results, we decided to use the

backbone of YOLOv5s trained with supervised data as the

teacher backbone model. We chose the untrained YOLOv5s

backbone as the student backbone model. This design strategy

aims to achieve self-guidance and transfer learning for YOLOv5s,

thus promoting enhanced backbone performance. Throughout this

process, multiple intermediate feature activation layers in the

teacher backbone model are utilized. For each intermediate layer,

denoted by l, we compute the corresponding feature activation

results Fl
T . To enable the student backbone model, denoted by S, to

learn the information from these intermediate feature activation

layers, we designed a feature matching loss, which was calculated in

Equation 8.
Frontiers in Plant Science 08
Llf eature =
1
Nl

SNl
i=1jjFl,i

T − Fl,i
S jj22 (Eq: 8)

where N1 represents the number of feature channels in layer l, while

Fl,i
T and Fl,i

S denote the feature tensors of the student and teacher

backbone models at layer l in channel i, respectively. In our practical

experiments, we selected the fifth feature activation layer as

preliminary experiments indicated that the model’s backbone

performance reached its peak when l is 5.

For the knowledge transfer process, we employed several

techniques to ensure training stability and expedite convergence,

including learning rate decay, early stopping strategies, and data

augmentation. We configured the optimizer as Adam with an initial

learning rate of 0.001 and weight decay of 0.0005. The learning rate

was scheduled to decrease by 2% every 10 epochs.

To fully leverage the limited training data set and quantity of

unlabeled data, we further explored combinations of self-supervised

learning methods in addition to knowledge transfer, with the aim of

enhancing the performance of the YOLOv5s backbone for

improved results in object detection tasks. The specific

architecture is illustrated in Figure 7, and the overall loss

calculation method derived from the combination of these two

approaches is presented in Equation 9.

Lall = aL + bLlf eature (Eq: 9)

where L represents the contrastive loss generated through self-

supervised learning and Llfeature denotes the loss arising from

knowledge transfer. Additionally, a and b are hyperparameters,

with bcontrolling the strength of knowledge transfer and a
regulating the impact of self-supervision on model training. In
FIGURE 7

Guided training of the student backbone model through fusion of the teacher backbone model and BYOL.
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our experiments, these hyperparameters were set as 0.1 and

0.9, respectively.
2.3.5 Selective Kernel module
Attention mechanisms have recently become indispensable in

the design of deep learning models, especially when addressing

intricate image problems (Zhang et al., 2018). The Squeeze-and-

Excitation (SE) attention mechanism optimizes feature weights at

the channel level (Hu et al., 2017), yet its responsiveness to specific

spatial contexts remains limited. In contrast, CBAM aims to

integrate both spatial and channel attention (Woo et al., 2018),

but its performance still requires improvement when handling

multi-scale and intricate occlusion scenarios. Given the demand

for detecting apples with various types of occlusion—especially

considering the sensitivity to diverse occlusion patterns and target

size variations—a strategy that can dynamically adjust the receptive

field has become crucial. Considering this need, the SK module has

a unique advantage (Li et al., 2019): it endows each spatial location

with the ability to dynamically select convolutional kernels, offering

profound contextual understanding of different occlusion types,

thereby achieving more refined and adaptive feature extraction.

The SK module is illustrated in Figure 8. In this model, the input

feature tensor X first undergoes full convolution operations with two

distinct kernel sizes. For this study, 3 × 3 and 5 × 5 convolutional

kernels were employed, with dilation parameters set to 1 and 2,

respectively, yielding two feature maps (denoted A1 and A2)

matching the dimensions of the original feature map. Subsequently,

the corresponding elements of A1 and A2 are summed to produce an

overall feature map, B, which retains the dimensions of the original

input feature map. B is then subjected to a global average pooling

operation, resulting in the feature map S. A fully connected layer (FC)

is then utilized to extract channel attention information, producing a

further feature map Z, with dimensions of d × 1 × 1. Then, the feature

map Z is separately processed by two softmax functions, a and b, to

obtain the channel attention information. The channel attention

information is then multiplied element-wise with the feature maps

A1 and A2, outputting two channel attention feature maps, denoted

C1 and C2. To further emphasize key features and suppress

extraneous information, C1 and C2 are fused by adding their

corresponding positions, yielding a final feature map Y, with

dimensions H × W × C.
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2.4 Model training and
performance metrics

2.4.1 Training equipment
We conducted all experiments on a deep learning server

equipped with a 64-core Intel Xeon(R) Gold 6226R mailto:v4@

2.90v4@2.90 Hz CPU, 251.6 GB of RAM, and a 1.9 TB solid-state

drive, along with two 16 GB NVIDIA Tesla V100 GPUs. On the

software side, the server ran the Ubuntu 20.04 operating system

with NVIDIA driver version 495.46, PyTorch 1.10, CUDA 11.5, and

cuDNN 8.2.4.

2.4.2 Training details
We adopted the following training strategy. First, we performed

teacher backbone model training based on YOLOv5s and a labeled

data set of multi-occluded apples. This training ensured that the

model could better understand and handle apple occlusion scenarios.

Once the model converged, we saved the optimal weights and

extracted the backbone weights for further use in training the

student backbone model. Next, we extracted the backbone portion

from the improved YOLOv5s model and integrated it into both the

online and target backbones of BYOL. During this stage of training,

while the teacher backbone was frozen, we iteratively updated the

student backbone model using the self-supervised learning loss and

knowledge transfer loss. After training on 5000 orchard images, we

obtained an optimal student backbone model. Next, we swapped the

optimal student backbone model with the improved YOLOv5s

backbone and proceeded to fine-tune the model. Notably, the

entire training process was divided into two stages: The backbone

freezing stage and the backbone unfreezing stage. In the initial 100

iterations of the backbone freezing stage, the backbone parameters

remained unchanged and we only fine-tuned the neck and head

networks. The initial learning rate for this stage was set to 0.002, and

we used the Adam optimizer with a momentum parameter of 0.85. If

the loss did not decrease between two iterations, the learning rate was

halved. After 100 iterations, we entered the backbone unfreezing

stage, where all network parameters were updated. The initial

learning rate was set to 0.001, and the learning rate update strategy

was the same as in the previous stage. Ultimately, when the network

model converged, we obtained the YOLOv5s backbone optimized for

multi-occluded apples.
FIGURE 8

Selective kernel module.
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2.4.3 Performance metrics
We evaluated the performance of the trained network model

using four metrics: Precision (P), Recall (R), Average Precision

(AP), and Mean Average Precision (mAP). The specific calculation

methods for these metrics are presented in Equations 10–13.

P = TP=(TP +  FP) (Eq: 10)

R = TP=(TP + FN) (Eq: 11)

AP =
Z 1

0
Pn(Rn)d Rn (Eq: 12)

mAP(n) = 0:125�o
8

n=1
AP(n) (Eq: 13)

where P represents the proportion of correctly predicted boxes

among all predicted boxes and R represents the proportion of

correctly predicted boxes among all labeled boxes. To assess the

model’s performance in different categories, we used AP(n), which

denotes the average precision for the nth class of multi-occluded

apples, and mAP, which represents the average precision across the

eight types of occluded apples. Here, TP stands for the number of

predicted boxes correctly matched with annotated boxes, FP

represents the number of incorrectly predicted boxes, and FN

represents the number of labeled boxes that are not predicted.

3 Results

3.1 Detection results and analysis

To precisely assess the performance of the improved YOLOv5s

model in terms of apple graspability detection, validation was

conducted on a test set comprising 560 images. For the evaluation

process, three critical metrics were defined: APGA, APTUGA, and

APUGA, representing the average precision of detection for

graspable, temporarily ungraspable, and ungraspable apples,

respectively. Table 2 presents a performance comparison between

the improved YOLOv5s and the original YOLOv5s. Notably, when

compared to the original network, the improved YOLOv5s

exhibited increases of 2.08%, 3.03%, and 3.65% in the mAP,

APGA, and APUGA metrics, respectively, while showing a slight

decline of 0.45% in the APTUGA metric. This result suggests that the

improved YOLOv5s achieved enhanced detection accuracy for the

GA and UGA categories, with only a minor decrease in

performance for the TUGA category. Figure 9 provides a

comparative visualization of detection outcomes for both models,

in which instances of misidentification by YOLOv5s are indicated
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by yellow circles. Ultimately, the improved YOLOv5s model

achieved accurate discernment.

In image detection tasks conducted under various lighting

condi t ions , the or ig ina l YOLOv5s exhib i ted severa l

misclassification errors. Specifically, under side lighting

(Figure 9A), the L was misclassified as N and BL as L. These

errors were primarily attributed to the subdued brightness of the

apple leaves in shadowed areas towards the upper right, leading to

indistinct leaf features and, consequently, misidentification of N.

Additionally, substantial leaf occlusion diminished the salient

characteristics of prominent branches, causing misidentification

of BL. In the back-lit case (Figure 9B), low light occluded subtle

features of L and BL, resulting in their misclassification as N and B,

respectively. In low-lighting situations (Figure 9C), confusion

between BL and L was observed. Under front-lit condition 1

(Figure 9D), similarities between background and target features

resulted in detection failures. This inadequacy was a consequence of

YOLOv5s losing certain features during the convolution and

pooling processes. In addition, under front-lit condition 2

(Figure 9E), the shadow formed by the leaves on the apples led to

B being mistaken for BL. The improved YOLOv5s model

ameliorated the detection outcomes for all aforementioned tasks,

yielding superior performance in terms of capturing fine-grained

features. This result highlights the model’s enhanced ability to

discern between similar categories. Overall, the improved

YOLOv5s consistently excelled across diverse lighting conditions,

fulfilling the perceptual needs of apple harvesting equipment more

effectively and significantly mitigating the risk of misjudging

apple graspability.
3.2 Ablation study

To validate the positive impact of each proposed improvement

on the performance of the YOLOv5s model, we conducted ablation

experiments, the results of which are presented in Table 3. During

the training of YOLOv5s, we employed an online network self-

supervised learning strategy based on BYOL. The purpose of this

strategy was to enhance the feature extraction capabilities of the

online network model with respect to the images. By introducing a

teacher backbone model to train the student backbone model, we

aimed to more accurately map the teacher feature space to the

student feature space. Additionally, we integrated the SK module

with the goal of optimizing the detection capabilities for occluded

targets at different scales (including distance and size), thereby

reducing instances of missed detections and errors.

Following training on the YOLOv5s backbone under the BYOL

self-supervised learning strategy, the backbone was integrated into
TABLE 2 Comparative detection performance results between YOLOv5s and improved YOLOv5s.

Network Model mAP (%) APGA (%) APTUGA (%) APUGA (%) FLOPs(G) FPS

YOLOv5s 91.29 91.55 92.20 90.13 16.4 120

Improved YOLOv5s 94.54 94.78 93.86 94.98 19.2 101
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FIGURE 9

Recognition results before and after improvement of YOLOv5s. (A) Comparison of detection results under side-lit conditions. (B) Comparison of
detection results under back-lit conditions. (C) Comparison of detection results under low-light conditions; (D) Comparison of detection results
under front-lit condition 1. (E) Comparison of detection results under front-lit condition 2.
TABLE 3 Results of the ablation experiments.

YOLOv5s BYOL KT SK mAP (%) APGA (%) APTUGA (%) APUGA (%) FLOPs(G) FPS

√ × × × 91.29 91.55 92.20 90.13 16.4 120

√ √ × × 93.04 93.30 93.05 92.77 16.4 120

√ √ √ × 93.77 93.82 92.60 93.90 16.4 120

√ × × √ 93.71 94.08 93.32 93.73 19.2 101

√ √ √ √ 94.54 94.78 93.86 94.98 19.2 101
F
rontiers in Plant Sc
ience
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*”×” indicates the module is not used, while “√” indicates the module has been used.
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the YOLOv5s model. Subsequently, YOLOv5s was fine-tuned using

the test set. The end result was a YOLOv5s model reinforced

through the BYOL self-supervised approach. The performance

improvements in mAP, APGA, APTUGA, and APUGA were 1.75%,

1.75%, 0.85%, and 2.64%, respectively, indicating the enhanced

ability of the backbone to extract the features of apples. The

Reference image (Figure 10A) was selected to provide a visual

comparative analysis of the backbone feature maps before and after

BYOL training with YOLOv5s, as shown in Figures 10B, C.

Additionally, specific attention was paid to the feature maps of

the fifth layer. In post-training with the BYOL strategy, the

convolutional layers indicated improved detection of the subtle

contours and textures of branches and apples. The feature maps

from this layer—in terms of both quality and extent—noticeably

surpassed those from the original YOLOv5s model, providing solid

evidence for the efficacy of the BYOL strategy in enhancing the fine-

grained feature extraction capabilities of the YOLOv5s backbone.

We further evaluated the improvement of the backbone’s

performance through a guided training strategy integrating BYOL

approaches with knowledge transfer. Across the various evaluation

metrics, performance increases of 0.73%, 0.52%, and 1.13% were

observed in mAP, APGA, and APUGA, respectively. However, a

decline of 0.45% was observed in APTUGA. Both the computational

complexity and inference speed of the network remained unaffected.

We carefully examined the disparities between the multi-level feature

maps of the hidden layers in the teacher backbone model and the

student backbone model in order to compute the regularization loss.

This loss was successfully integrated with the self-supervised learning

loss to iteratively update the student backbone model. Notably, while

the teacher backbone model was trained based on a self-supervised

learning approach using YOLOv5s, the teacher backbone model still

offers beneficial guidance on the hidden features of the student

backbone model. This guidance is possibly due to the supervisory

signals generated by the teacher backbone model, which provide a

clear learning direction for the student backbone model at the same

scale. This positively influenced the convergence process of the

student backbone model.

Upon integrating only the SK module into YOLOv5s, further

performance enhancement was realized. Specifically, the improved

model experienced increases of 2.42%, 2.53%, 1.12%, and 3.6% in
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mAP, APGA, APTUGA, and APUGA, respectively. Although inclusion

of the SK module led to a computational complexity increase of 2.8

GFLOPs, the computational speed still adequately met real-time

processing requirements. To elucidate the reasons for this

performance enhancement, the output feature maps of the

detection network model across three sizes were mapped to

pseudocolor images in the original size and overlaid onto the

original images, allowing for visualization of the output features.

These visualized feature images were generated in three resolutions:

80 × 80, 40 × 40, and 20 × 20, as depicted in Figure 11. In

Figure 11A, the 20 × 20 resolution feature map primarily

highlights the higher-order features of the apples while

simultaneously smoothing out background details. This

representation aids in more accurately distinguishing between

background and target apples during detection. With the

introduction of the SK module, one can directly observe a

pronounced enhancement in the model’s apple perception

capabilities, thus reducing omissions in apple detection. The

particular feature map shown in Figure 11B primarily accentuates

the background. Before the introduction of the SK module, the

extracted landmarks were somewhat coarse; however, with the SK

module, there was a significant expansion in the model’s feature

perceptive range. In Figure 11C, the 80 × 80 feature map reveals

more profound background perception and heightened

differentiation between all apple features, thereby validating that

integration of the SK module justifiably and effectively elevated the

performance of the improved model.
4 Discussion

In the complex environments characteristic of orchards,

harvesting equipment needs to not only precisely detect the

locations of fruits but also intelligently determine the types of

obstruction preventing access to the fruit. It is crucial to discern

the fruit’s graspability to help such equipment avoid rigid

obstructions and achieve damage-free harvesting of apples. As

shown in Table 4, the methodology proposed in this study

achieved scores of 94.54%, 94.78%, 93.86%, and 94.98% in the

mAP, APGA, APTUGA, and APUGA metrics, respectively. These
B CA

FIGURE 10

Backbone Feature maps of YOLOv5s Before and After Improvement. (A) Reference Image. (B) Backbone feature maps without BYOL. (C) Backbone
feature maps with BYOL.
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results demonstrate that the proposed approach provides robust

support for both actual harvesting needs and future research in

related domains. To specifically discuss the advantages and

underlying reasons for the improved performance of YOLOv5s

over contemporary similar models, we conducted comparative

experiments with the improved YOLOv5s and other popular

object detection network models. Additionally, YOLOv5x was

incorporated to observe the peak performance of the YOLOv5

series, serving as a benchmark for optimal performance.

Lightweight network models primarily include YOLOX (Ge et al.,
Frontiers in Plant Science 13
2021), YOLOv4-s (Bochkovskiy et al., 2020), and YOLOv7s (Wang

et al., 2022). To ensure fairness and consistency in testing, a uniform

data set was employed to deeply train and assess the performance of

multiple network models. Table 4 provides the detection results,

detailing not only the Floating Point Operations (FLOPs) of each

model, but also the processing speed advantages and disadvantages

of each model, represented in terms of Frames Per Second (FPS).

The results indicated that, due to its larger weights, the YOLOv5x

model distinguished itself from the many evaluated models, especially

in the four evaluation metrics mAP, APGA, APTUGA, and APUGA.
TABLE 4 Test results for different network models.

Network Model mAP (%) APGA (%) APTUGA (%) APUGA (%) FLOPs(G) FPS

YOLOv5x 95.00 95.36 94.60 95.04 205.5 59

YOLOv5s 91.29 91.55 92.20 90.13 16.4 120

YOLOv4-s 88.40 87.64 89.65 87.91 15.4 164

YOLOv7s 72.20 70.56 71.94 74.10 13.2 113

YOLOX-s 90.40 91.56 89.85 89.79 26.8 73

improved YOLOv5s 94.54 94.78 93.86 94.98 19.2 101
frontier
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FIGURE 11

Visualization of features maps before and after addition of the SK module. (A) Comparison of the visualization results for 20 × 20 feature maps with
and without the SK module. (B) Comparison of visualization results for 40 × 40 feature maps with and without the SK module. (C) Comparison of
the visualization results for 80 × 80 feature maps with and without the SK module.
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However, the differences between the improved YOLOv5s and

YOLOv5x on these key indicators were relatively minimal (0.46%,

0.58%, 0.74%, and 0.06%, respectively). These findings provide a critical

insight: in the domain of graspable apple detection, the improvements

introduced in this paper enabled YOLOv5s to achieve performance

nearly on par with that of the YOLOv5x model. In terms of detection

speed, the improved YOLOv5s significantly surpassed YOLOv5x,

offering a distinct advantage for deployment in actual embedded

devices. When juxtaposed with other prevalent lightweight network

models, the improved YOLOv5s exhibited conspicuous performance

enhancements in the mAP metric over YOLOv4-s, YOLOX-s,

YOLOv7s, and YOLOv5s (by 3.25%, 4.5%, 22.32%, and 6.14%,

respectively). Although YOLOv4-s presented outstanding inference

speeds—reaching up to 164 FPS—its performance in various AP

metrics was less than ideal, with results akin to those of YOLOv7s.

This result offers a salient lesson: it is imprudent to solely prioritize

speed at the expense of accuracy. Conversely, while YOLOv7s possesses

a straightforward model structure, its overall performance was

relatively underwhelming, suggesting that this model may not be

appropriate for high-precision granular detection tasks. The

integration of the SK module, despite enhancing the model’s

computational demands, impacted its inference speed. However, the

authors in (Suo et al., 2021) determined that the picking time for a

singular apple is approximately 2780 milliseconds. This result suggests

that, even with a slight decrease in detection speed, our model remains

adept at meeting the real-time requirements of agricultural apple

harvesting equipment.

In summary, the advantages of the method proposed in this study

were apparent in three primary areas. Initially, the proposed training

approach and enhancement strategies for the network model enabled

precise identification of various apple occlusion types within images.

This method not only allows for determination of the graspability of

apple targets, thus saving data annotation costs, but also achieved the

stipulated design objectives. Furthermore, the detection performance of

the improved YOLOv5s was markedly superior when compared to

similar algorithms, making it well-suited to the damage-free harvesting

needs of apple-picking equipment. The improved YOLOv5s retained

its lightweight attributes, suggesting its significant potential for

deployment in embedded hardware systems and laying a foundation

for broader applications. On the other hand, certain limitations to our

approach were identified. For example, the training process for our

network model is intricate. Compared to the training protocol of the

original YOLOv5s, this backbone requires multiple training iterations,

prolonging the training duration. Additionally, the methodological

data sets employed in this research largely prioritized red apples,

leading to potential compromises in detection efficacy for non-red

varieties, such as yellow and green apples. Finally, our detection

strategy does not account for the potential impacts of fruit pose

variations on apple graspability.
5 Conclusions

In response to the demand for more efficient and safe apple

harvesting equipment, we proposed an improved YOLOv5s-based

multi-occluded apple detection network model, which can efficiently
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identify graspable, temporarily ungraspable, and ungraspable apples.

By incorporating knowledge transfer and BYOL strategies, along with

integration of the SK module, the improved YOLOv5s model

achieved optimized detection performance. Experimental data

confirmed that this model offers strong performance in detecting

multi-occluded apples, obtaining APGA, APTUGA, and APUGA scores

of 94.78%, 93.86%, and 94.98%, respectively; furthermore, compared

to the original YOLOv5s, our model presented improvements of

3.23%, 1.66%, and 4.85%, respectively, for these metrics. Although

our proposed SK module slightly increased the computational

complexity, it significantly enhanced detection accuracy and

discrimination while still meeting the speed requirements for

practical harvesting. When compared to state-of-the-art popular

lightweight network models, the improved YOLOv5s model

presented clear advantages in detection accuracy and approached

the performance level of larger network models such as YOLOv5x.

For future research, we intend to focus on integrating fruit occlusion

types with fruit poses in the detection model, in order to further

enhance the model’s practical value.
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