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Resistance traits of plants can be activated both at the damaged site and

undamaged parts. Systemic resistance induced by local exogenous abscisic

acid (ABA) application alleviated negative effect of low water availability on

growth performance of clonal plant. However, timing of systemic resistance

was poorly understood. Timing of systemic resistance refers to its activation and

decay time within clonal network. Clonal fragment of Centella asiatica with four

successive ramets (including first-oldest, second-older, third-old and fourth-

young ramets) subjected to lowwater availability (20% soil moisture content) was

used to explore effects of local exogenous ABA application on the timing of

resistance activation and decay. Systemic resistance activated by local

exogenous ABA application after 4 days remained at least 28 days. Compared

with control, biomass accumulation of whole clonal fragment, root biomass and

ratio of belowground to aboveground biomass significantly increased by local

exogenous ABA application after 28 days. It is suggested that rapid activation and

delay of resistance response induced by local exogenous ABA application within

clonal network may improve fitness of clonal plant subjected to abiotic stress.
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clonal integration, resistance activation, resistance delay, chlorophyll fluorescence,
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1 Introduction

Non-resource substances (such as defense or stress signal) can be

transmitted or shared between interconnected ramets of clonal plant as

well as resource substances (Stuefer et al., 2005; Jelinkova et al., 2012;

Liu et al., 2015). With the increase of foliar tannin content, growth

performance of interconnected young ramets was improved by local

herbivory on old ramets of stoloniferous herb Trifolium repens (Gomez

et al., 2008). Similarly, damage of caterpillarGynaephora rnenyuanensis

herbivory on young ramets of rhizomatous sedge Carex alrofusca was

significantly alleviated by local application of jasmonic-acid to

interconnected old ramets (Chen et al., 2011). Systemic defense or

resistance within clonal networks induced by transportation or sharing

of non-resource substances (such as defense or stress signal) may be

very important for improving fitness of clonal plant subjected to biotic

or abiotic stress (Gomez et al., 2007; Koubek and Herben, 2007; Sharifi

and Ryu, 2021).

Systemic defense of soybean (Glycine max) induced by Mexican

bean beetle (Epilachnavarivestis) herbivory after damage by 3 days

gradually decayed by 15 days after damage (Underwood, 1998).

With enhanced expression of defense-related genes, phytohormone

concentration of leaf tissue (such as jasmonic acid and linolenic

acid) significantly increased when leaf of hybrid poplar saplings was

exposed to volatile compounds (cis-3-hexenyl acetate) for 72-96

hours (Frost et al., 2008). Foliar palatability of stoloniferous herb T.

repens decreased local herbivory attack of Mamestra brassicae

larvae after damage by 38-51 hours, which lasted for 28 days at

least among interconnected undamaged ramets (Gomez et al.,

2010). Therefore, rapid activation and delay of systemic defense

induced by local herbivory within clonal network may improve

fitness of clonal plant subjected to abiotic stress.

Exposure to volatile organic compounds (bacterial volatile blends

from Bacillus subtilisGB03 and Bacillus amyloliquefaciens IN937a) from

rhizobacteria for as little as 4 days was sufficient to activate induced

systemic resistance in Arabidopsis seedlings (Ryu et al., 2004). Melatonin

application improved the activity of antioxidant enzymes [APX

(ascorbate peroxidase), CAT (catalase), DHAR (dehydroascorbate

reductase), GST (glutathione S-transferase), GR (glutathione

reductase), MDHAR (monodehydroascorbate reductase), POD

(peroxidase), and SOD (superoxide dismutase)] and their relative

genes expression when tomato seedlings were subjected to drought

stress (Altaf et al., 2022). With systemic resistance activation, oxidative

stress (O2
•− production rate and MDA content) in the leaf of the old,
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mature and young ramets was significantly alleviated by exogenous ABA

application to the oldest ramets of stoloniferous herbC. asiatica subjected

to low water availability (Wei et al., 2019). However, timing of systemic

resistance (activation and decay time) induced among interconnected

ramets was poorly understood.

Production of highly oxidizing ROS immediately affected

photosynthesis when the plant was subjected to biotic or abiotic

stress (Singh and Thakur, 2018; Qamer et al., 2021; Sachdev et al.,

2021). Activation of MPK3/MPK6 can rapidly alter the expression of

photosynthesis-related genes and inhibit photosynthesis when

Arabidopsis thaliana was subjected to Pseudomonas syringae

infection (Su et al., 2018). Young leaves of A. thaliana acclimate

better to the onset of water deficit by dissipating the excess excitation

energy by NPQ (Sperdouli and Moustakas, 2011). Therefore, plant

subject to biotic or abiotic stress can also be evaluated by measuring

photosynthetic efficiency such as maximum quantum yield of PSII (Fv/

Fm), effective PSII quantum yield (FPSII), photochemical quenching

(qP) and non-photochemical quenching (NPQ)(Corcuera et al., 2011;

Lucas et al., 2014; Chen et al., 2016; He et al., 2018).

The phytohormone abscisic acid (ABA) is a key endogenous

messenger in plants’ responses to biotic and abiotic stresses such as

various pathogens, heat, drought and high salinity (Yoshida et al., 2010;

Osakabe et al., 2014; Lievens et al., 2017; Hu et al., 2018). It is rapid

accumulation in response to stresses and mediation of many stress

responses that help plant survival over the stresses (Sreenivasulu et al.,

2012). Abscisic acid (ABA) as a stress hormone in plant responses to

water shortage were well documented (Zhang et al., 2006; Zou et al.,

2010; Yoshida et al., 2019). A greenhouse experiment with local

application of exogenous ABA was conducted to investigate the

timing of systematic resistance within clonal networks (Figure 1). We

focused on (1) activation time of systemic resistance by local exogenous

ABA application within clonal network of C. asiatica; (2) delay time of

systemic resistance within clonal network after local exogenous ABA

application. This research will help us to realize the mechanism for

growth and fitness of clonal plant subjected to environmental stress.
2 Materials and methods

2.1 Plant material

As a perennial stoloniferous herb, C. asiatica was widely

distributed in woodlands, forests edge, damp grass and roadsides
FIGURE 1

Schematic representation of the experimental design. 5 mL ABA solution (0.1mM) was applied to the first-oldest ramets; Same volume distilled water
was employed as control.
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or creeks. It usually takes root on each node of stolon when in

contact with a moist substratum, forming a sympodial network

above the ground (Li et al., 2018).

Clonal fragments of C. asiatica were collected from a forest

edge, located in Chengdu, Sichuan province, China (30°05′~31°26′
N; 102°54′~104°53′E). Each clonal fragment comprises four rooted

ramets with different age (first-oldest, second-older, third-old and

fourth-young ramets).
2.2 Experimental design

The container (dimensions: 10 cm × 8.5 cm × 15 cm) separated into

4 equal pots was used for the experiment. On 18 October 2021, four

successive ramets of each clonal fragment were planted into the pots

respectively. The pots were filled with substrate in a 3:1mixture of humus

soil and sand. 0.2 g Peters Professional (20%N, 20%P, 20%K; The Scotts

Company, LLC., Marysville, OH, USA) was added to each pot at the

beginning of experiment. The volumetric soil moisture content of each

pot was maintained at 20% (volume of water present/the total volume).

In the everyday morning (9:00-11:00 h), all pots were measured with a

portable soil moisture meter (TDR-300, Spectrum, USA) and watered to

maintain corresponding soil moisture. During the experiment, the mean

temperature was 28.5 ± 1.4°C, and light intensity was equivalent to

approx. 90% of full daylight outside the greenhouse (minimum and

maximum photosynthetic photon flux density in the greenhouse was

136.2 and 325.1 mmol m -2 s-1 respectively).

In the experiment, 5ml of 0.1mMABA solution was applied to fully

unfolded leaves of the first-oldest ramets and the same volume of distilled

water was used as control. ABA dosage was based on a previous study

(Wei et al., 2019). Neighboring sibling ramets were shielded from spray

with a piece of plastic. Then, the first-oldest ramets were sealed in a

transparent plastic bag until dry. The chlorophyll fluorescence

parameters and photosynthetic parameters were measured at 1, 4, 7

and14 days after ABA application. The experiment lasted for 28 days.

There were seven replicates for per treatment.
2.3 Measurement of chlorophyll
fluorescence parameters

Chlorophyll fluorescence measurements were carried out using

a portable, modulated fluorescence monitoring system (FMS-2,

Hansatech Instruments Ltd., UK) on fully expanded leaves. The

minimum fluorescence (F0) was determined using a measuring

beam of 0.2 mmol m-2 s-1 intensity after 30 min of dark adaptation.

Following a dark-adapted state, a saturation pulse (1 s white light of

7,500 mmol m-2 s-1 intensity) was used to obtain the maximum

fluorescence (Fm). Light-induced changes in chlorophyll

fluorescence following actinic illumination (300 mmol m-2 s-1)

were recorded prior to the measurement of F′o (minimum

fluorescence in light-saturated state), F′m (maximum fluorescence

in light-saturated state) and Fs (steady-state fluorescence in the

light-saturated state). The maximum quantum yield of PSII (Fv/Fm),

the effective PSII quantum yield (FPSII), the photochemical

quenching (qP) and non-photochemical quenching (NPQ) were
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calculated using (Fm-F0)/Fm, (F′m-Fs)/F′m (Genty et al., 1989), (F′m-
Fs)/(F′m-F′0) and (Fm-F′m)/F′m respectively (Turan and

Ekmekçi, 2010).
2.4 Measurement of
photosynthetic parameters

Photosynthetic parameters were made by a portable

photosynthesis system GFS-3000 (Heinz Walz GmbH, Effeltrich,

Germany). The measurement was conducted on the fully expanded

mature leaves at a temperature of 25°C, photosynthetic photon flux

density of 400 mmol·m-2·s-1 and CO2 concentration of 400 mmol·mol-1.

Net photosynthetic rate (Pn) and stomatal conductance (Gs) were

recorded when gas exchange had equilibrated (taken to be when the

coefficient of variation for external CO2 partial pressure between the

sample and reference analysis was below 0.3%).
2.5 Measurement of biomass
characteristics of whole clonal fragment

Clonal fragments were separated into root, leaf and stolon and

oven-dried to constant weight at 70°C for 72 h. Leaf and stolon

biomass, root biomass, and biomass accumulation of whole clonal

fragment were determined. Ratio of belowground to aboveground

biomass was counted in whole clonal fragments (He et al., 2021).
2.6 Statistical analysis

The chlorophyll fluorescence parameters and photosynthetic

parameters were analyzed by two-way repeated-measures (ANOVA).

Two-way analysis of variance (ANOVA) was employed to investigate

the leaf and stolon biomass, root biomass, ratio of belowground to

aboveground biomass and biomass accumulation of whole clonal

fragment. All analyses were conducted with SPSS 24.0 software

(SPSS Inc.).
3 Result

3.1 Chlorophyll fluorescence parameters

Compared with control, NPQ of four interconnected ramets

was decreased by local exogenous ABA application after 1 day

(Table 1, Figure 2). Opposite pattern was observed in FPSII, Fv/Fm
and qP (Table 1, Figure 2). After 4 days, significant difference was

not observed between FPSII, Fv/Fm, qP and NPQ of four

interconnected ramets subjected to local exogenous ABA

application and those of control (Table 1, Figure 2). After 7 and

14 days, FPSII, Fv/Fm, and qP of four interconnected ramets

subjected to local exogenous ABA application were significantly

greater than those of control as well as significant decrease of NPQ

(Table 1, Figure 2). From 7 to 14 days, significant effects of local

exogenous ABA application onFPSII of four interconnected ramets
frontiersin.org
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were detected. However, significant effects of local exogenous ABA

application on Fv/Fm, qP and NPQ of four interconnected ramets

were not detected (Table 1, Figure 2).
3.2 Photosynthetic parameters

Compared with control, Pn and Gs of four interconnected ramets

were significantly decreased by local exogenous ABA application after

1 day (Table 1, Figure 3). After 4 days, significant difference was not

observed between Pn and Gs of four interconnected ramets subjected
Frontiers in Plant Science 04
to local exogenous ABA application and those of control (Table 1,

Figure 3). After 7and 14 days, Pn and Gs of four interconnected

ramets subjected to local exogenous ABA application were

significantly greater than those of control (Table 1, Figure 3). Gs of

fourth-young ramets was significantly greater than second-older

ramets by local exogenous ABA applications after 14 days (Table 1,

Figure 3). Meanwhile, Pn of fourth-young ramets was significantly

greater than those of the first-oldest and third-old ramets (Table 1,

Figure 3). From 7 to 14 days, significant effects of local exogenous

ABA application on Pn and Gs of four interconnected ramets were

detected (Table 1, Figure 3).
A B

DC

FIGURE 2

NPQ (A), Fv/Fm (B), FPSII (C) and qP (D) of interconnected ramets (including first-oldest, second-older, third-old and fourth-young ramet) 1, 4, 7 and
14 days after local exogenous ABA application. Same letters (at the same day) mean that they are not significantly different (P > 0.05).
TABLE 1 Results of two-way repeated-measures analysis of variance, with ‘exogenous ABA application’ and ‘ramet age’ as between-subject effects for
differences in chlorophyll fluorescence parameters and photosynthetic parameters among interconnected ramets.

Effects df FPSII qP NPQ Fv/Fm Stomatal
conductance

Photosynthesis

F P F P F P F P F P F P

Between-subject effects

Exogenous ABA
application (A)

1 738.284 0.001 171.218 0.001 208.048 0.001 171.218 0.001 342.657 0.001 398.312 0.001

Ramet age (R) 3 4.11 0.017 3.479 0.032 0.644 0.582 3.479 0.032 1.596 0.23 3.455 0.042

A × R 3 4.964 0.008 0.667 0.58 2.726 0.066 0.667 0.58 2.273 0.119 2.622 0.068

Within subject effects

Time (T) 3 9.438 0.001 12.033 0.001 21.315 0.001 12.033 0.001 116.92 0.001 317.862 0.001

T × A 3 542.905 0.001 37.357 0.001 204.263 0.001 37.357 0.001 228.454 0.001 612.769 0.001

T × R 9 2.391 0.02 2.807 0.07 2.55 0.013 2.807 0.007 0.905 0.0529 3.77 0.001

T × A × R 9 1.446 0.185 3.73 0.001 2.634 0.011 3.73 0.001 1.198 0.0318 2.534 0.018
front
Values are in bold when P < 0.05, and in italic when 0.05 < P< 0.1.
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3.3 Biomass accumulation

Root biomass, ratio of belowground to aboveground biomass

and biomass accumulation of whole clonal fragments were

significantly increased by local exogenous ABA application after

28 days (Table 2, Figures 4B, 5A, B). However, similar patterns were

not observed in leaf and stolon biomass (Table 2, Figure 4A).
4 Discussion

Stomatal closure resulting from exogenous ABA application

reduced water loss of wheat (Travaglia et al., 2010). In this study,

with the stomatal closure, foliar net photosynthetic rate of four

interconnected ramets significantly decreased by local exogenous

ABA application after 1 day. By altering the kinetics of de-

epoxidation of the xanthophyll cycle, exogenous ABA application

incurred increase of NPQ in cabbage (Brassica campestris) and rice

(Oryza sativa L) (Zhu et al., 2011). With its inhibition on

photochemical activity, increase of NPQ implied that more light

energy was used for heat dissipation to avoid damage to photosystem

II of four interconnected ramets (Wilson and Ruban, 2020).

Meanwhile, photoinhibition (decrease of Fv/Fm, FPSII and qP) was

induced by abscisic acid (ABA) application after 1 day when clonal

fragments of C. asiatica subjected to low water availability. Similar

patterns were observed in the study that exogenous ABA application
Frontiers in Plant Science 05
resulted in decrease of Fv/Fm, FPSII and qP of maize subjected high

light intensity (1500 mmol m -2 s -1) (Jia and Lu, 2003).

FPSII and qP of sugarcane subjected to drought treatment were

increased by the exogenous ABA application after 3 days and

remained at least 7 days (Srivastava et al., 2009). Selenium (Se)

application can alleviate oxidative stress in the chloroplasts to

increase Fv/Fm when potato (Solanum tuberosum L.) was subjected

to photooxidative stress (Turakainen et al., 2008). In this study,

chlorophyll fluorescence and photosynthesis of four interconnected

ramets were restored by local exogenous ABA application after 4

days. Altogether, the recovery of chlorophyll fluorescence and

photosynthesis capacity are interpreted as activation of systemic

resistance. With the exogenous ABA application, root growth was

improved when Arabidopsis seedlings was subjected to low water

availability (Miao et al., 2021). Exogenous ABA application

significantly increased root/shoot ratio of Malus sieversii and Malus

hupehensis seedlings subjected to low water availability. Similar

pattern was observed in our experiment (Ma et al., 2008). Biomass

accumulation significantly increased by local exogenous ABA

application when wheat was subjected to low water availability

(Kaur and Asthir, 2020). The positive effects on growth

performance of whole clonal fragments were observed by local

exogenous ABA application after 28 days. We tentatively suggested

that defense induction persisted for at least 28 days.

Systemic resistance may give priority to protection of youngest

tissues (Chen et al., 2011). Young ramets were the most valuable
TABLE 2 Two-way analysis of variance (ANOVA) for effects of ABA application, ramet age and their interaction on leaf and stolon biomass, root
biomass, biomass accumulation of whole clonal fragments and ratio of belowground to aboveground biomass.

Effects df

leaf and stolon
biomass

root biomass
biomass accumulation

of whole clonal fragments
ratio of belowground to
aboveground biomass

F P F P F P F P

Exogenous ABA application (A) 1 1.829 0.189 38.731 0.000 11.914 0.002 53.017 0.000

Ramet age (R) 3 1.461 0.250 1.205 0.329 0.206 0.891 8.628 0.000

A×R 3 0.623 0.607 1.710 0.192 1.117 0.362 0.792 0.511
Values are in bold when P < 0.05, and in italic when 0.05 < P< 0.1.
A B

FIGURE 3

Net photosynthetic rate (A) and stomatal conductance (B) of interconnected ramets (including first-oldest, second-older, third-old and fourth-
young ramet) 1, 4, 7 and 14 days after local exogenous ABA application. Same letters (at the same day) mean that they are not significantly
different (P > 0.05).
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tissues for growth and fitness within clonal networks (Stuefer et al.,

2005; Gomez and Stuefer, 2006). The optimal defense theory

predicts that plant tissues with a high contribution to fitness

should be better protected than other plant tissues (Hunziker

et al., 2021). In the experiment, our study was consistent with

previous study that compared with the old and mature ramets,

foliar antioxidant capacity of young ramets was significantly higher

and oxidative stress was significantly lower when exogenous ABA

application to the oldest ramets (Wei et al., 2019). It is suggested

that the protection of young ramets may confer clonal plants with

considerable benefits in adapting to environmental stress.

Our study implies that rapid activation and delay of resistance

response induced by local exogenous ABA application within clonal

network may improve fitness of clonal plant subjected to abiotic stress.

Benefit of systemic resistance will depend on the absence or presence of

subsequent environmental stress (vanHulten et al., 2006). In the future,

more studies are needed to understand the generality and ecological

advantages afforded by systematic resistance within clonal network.
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Leaf and stolon biomass (A) and Root biomass (B) of interconnected ramets after 28 days; Open bars, control; closed bars, exogenous ABA
application. Error bars indicate ± s.e. for 10 replicates. Bars with the same lower case letters are not significantly different (P > 0.05).
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FIGURE 5

Ratio of belowground to aboveground biomass (A) and Biomass accumulation of whole clonal fragments (B) after 28 days; Open bars, control;
closed bars, exogenous ABA application. Error bars indicate ± s.e. for 10 replicates. Bars with the same lower case letters are not significantly
different (P > 0.05).
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