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Daylength predominates the bud
growth initiation of winter
deciduous forest trees in the
monsoon region of China
Weiguang Lang, Siwei Qian and Xiaoqiu Chen*

College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes of the Ministry
of Education, Peking University, Beijing, China
Climate warming has induced significant shifts in spring phenology over both

temperate and boreal forests. The timing of bud growth resuming from

dormancy is crucial for predicting spring phenology. However, the

mechanisms by which environmental cues, other than chilling accumulation,

initiate bud growth remains unclear. By constructing a revised process-based

spring phenology model incorporating photoperiod and temperature triggers of

bud growth, we simulated the first leaf unfolding and first flowering dates of four

deciduous forest trees during 1981-2014 at 102 stations across China’s monsoon

regions. Then, we revealed spatial patterns of the two triggers. Moreover, we

compared fitting precision and robustness of the revised model with three

mainstream models. Results show that the revised models can effectively

simulate all spring phenology time series. Growth initiation of foliar and floral

buds was induced by photoperiod lengthening in 80.8% and 77.7% of time series,

and by temperature increasing in remaining 19.2% and 22.3% of time series,

respectively. The proportions of time series with photoperiod- and temperature-

initiated bud growth significantly increase and decrease from northern to

southern climatic zones, respectively. Chilling exposure controls the

predominant bud growth triggers in different climate zones. Specifically, in

regions with long and severe winters where chilling requirement is easily

fulfilled, rising temperature in spring alleviates the cold constraint and initiate

bud growth. Conversely, in regions with short and mild winters, prolonged

daylength in spring compensates the lack of chilling exposure to initiate bud

growth. These findings suggest that photoperiod may limit spring phenology

response to temperature in low-latitudes. Overall, our model slightly

outperforms other models in terms of efficiency, accuracy, and robustness in

modeling leaf unfolding and flowering dates. Therefore, this study deepens our

understanding of the mechanisms of spring phenology, and improves the

predicting capability of spring phenology models in the face of ongoing

global warming.
KEYWORDS

phenology model, bud growth, photoperiod induction, temperature induction,
forest trees
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1 Introduction

The seasonally alternating growth and dormancy of plants are

co-regulated by interaction of endogenous and exogenous drivers,

which ensure the organism maximize the resource usage for growth

and reproduction and minimize the risk from frost damage

(Larcher, 1975; Kramer et al., 1996). The timing of bud growth

initiation after dormancy break is a crucial component in modeling

the leaf unfolding and flowering. The leafing phenology regulates

carbon dioxide, water and energy exchanges between vegetation

and atmosphere (Goulden et al., 1996; Myneni et al., 1997; Black

et al., 2000; White and Nemani, 2003; Kljun et al., 2007; Barr et al.,

2009), while flowering phenology indicates reproductive dynamics

of a plant community, and influences changes in interaction

relationships among various trophic levels within a food web

(Morellato et al., 2016). Nevertheless, the process of determining

growth initiation is missing from existing process-based spring

phenology models (Chuine et al., 2016), though some efforts were

made on fruit trees (e.g., Hillmann et al., 2021). Filling this

knowedge gap will be beneficial for better understanding

mechanisms of spring phenological occurrence timings, and

improving phenological prediction accuracy under future

warming scenarios.

Many studies have revealed that buds of temperate deciduous

trees usually experience endodormancy and ecodormancy stages

during the wintering period (Lang et al., 1987; Anderson et al., 2010;

Cooke et al., 2012). Specifically, buds enter the endodormancy stage

induced by endogenous factors along with the decrease of

photoperiod and temperature in previous autumn. During the

endodormancy stage, buds may respond to low but non-freezing

temperature (chilling temperatures) within a specific range (e.g., 0 -

5°C or 0 - 12°C)(Myking and Heide, 1995; Ghelardini et al., 2010;

Baumgarten et al., 2021; Danieli et al., 2023). Sufficient exposure to

chilling temperatures break the endodormancy (Horvath et al.,

2003; Cooke et al., 2012). Afterward, buds enter the ecodormancy

stage immediately or after a period of queisence. Some forest tree

species need an additional weather independent photoperiod signal

to effectively advance the transition from the endodormancy to the

ecodormancy (Basler, 2016). At the onset of the ecodormancy stage,

buds initiate growth and become responsive to the increasing

forcing temperature (Penfield, 2008), but significant changes in

bud appearance morphology are often not visible. The daily bud

growth rate is promoted by forcing temperatures (Cooke et al.,

2012). When a certain amount of forcing temperature accumulation

(forcing requirement) is satisfied, the ecodormancy state releases,

and then spring phenological events occur (Chuine, 2000). There

are yet no well-defined physiological or molecular markers to

clearly separate the two dormancy stages for forest trees (Basler,

2016). In fruit trees as well, there are few studies dedicated to

identifying different dormancy stages. One example is to use the

state of pistils as a marker (Wang et al., 2020).

The timings of bud growth initiation were normally identified

through destructive measurements of bud primordium lengths or

derivations from the result of manipulative experiments (Cannell

and Smith, 1983; Cooke et al., 2012; Sutinen et al., 2012; Hänninen

et al., 2018). These experiments hypothesized that the forcing
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requirements to break ecodormancy decrease with increase of the

chilling days before bud growth initiation. Once the chilling

accumulation exceeds a threshold (chilling requirements), the

forcing requirements keep constant (Hänninen et al., 2018).

Researchers determined the minimum chilling requirements by

identifying the inflection point, at which the forcing requirements

transition from increase to remaining constant. The date of bud

growth initiation is then deduced from the inflection point

(Hänninen et al., 2018). Some studies showed that temperate and

boreal trees (e.g., Picea glauca) can initaite bud growth and enter

into the ecodormancy stage, once the endodormancy terminates

(Cooke et al., 2012). However, for some temperate deciduous

species (e.g., leafy spurge plants), buds cannot enter into the

ecodormancy period immediately after endodormancy releases

under current climate conditions. Instead, buds would keep the

quiescence state until the local temperatures are warm enough

(Horvath et al., 2010; Chao et al., 2015) or the daylengths reach a

threshold (Wu, 2003; Linkosalo and Lechowicz, 2006) to initiate

their growth. Besides, even the chilling requirements could never be

satisfied, the bud growth may also be initiated under specific

conditions. For example, high forcing temperature may

compensate the insufficient chilling accumulation and initiate the

bud growth (Shirazi, 2003). The factors initiating bud growth may

diverse among local environmental conditions and species (Zohner

et al., 2016). Nevertheless, either manipulative experiments

conducted mainly on fruit trees (Dennis, 2003; Chmielewski

et al., 2017), or destructive measurements of bud primordium

lengths (Cannell and Smith, 1983; Sutinen et al., 2012) are

restricted to specific sites and species. It is still challenging to

identify the timings of bud growth initiation at large scales.

Process-based spring phenology models track the progress of

bud dormancy and growth through portraying physiological

responses of buds to environmenal changes. Based on the highly

positive correlation between thermal accumulation and length of

the bud primordium (Cannell and Smith, 1983; Sutinen et al., 2012),

researchers have constructed several one-phase models to simulate

the entire progress from bud growth initiation to spring phenology

occurrence. In these models, the bud development states are

represented by accumulation of bud growth rate estimated by a

linear or nonlinear function of daily mean air temperature (Chuine,

2000). Up to now, one-phase models have been effectively applied to

simulate leaf unfolding and flowering dates worldwide (Cannell and

Smith, 1983; Murray et al., 1989; Hänninen, 1990; Kramer, 1994;

Chuine, 2000; Chuine et al., 2000; Linkosalo et al., 2008; Richardson

and O’Keefe, 2009; Xu and Chen, 2013; Luo et al., 2014; Chen et al.,

2017; Zhang et al., 2022; Zhang et al., 2023). However, the timing of

bud growth initiation was determined either by thresholds of

forcing temperature (Cannell and Smith, 1983) or a prescribed

date, i.e., 1st January (Chuine, 2000). By contrast, the timing of bud

growth initiation is usually set to be the endodormancy break date

in the two-phase models (Chuine, 2000). This prescribed setting

neglected the process of environmental factors initiating bud

growth, and reduced the physiological significance and simulation

accuracies of process-based models (Chuine et al., 2016; Hänninen

et al., 2018). Whether and how the environmental factors initiate

bud growth remain unclear.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1327509
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lang et al. 10.3389/fpls.2023.1327509
In this study, we determined the potential optimum timing of

bud growth initiation according to priority response of bud growth

process to temperature or photoperiod, and integrated the timing

into the one-phase models to improve the simulation and

prediction effectiveness of spring phenology. Moreover, we

analyzed the spatial pattern of temperature and photoperiod

inducing bud growth initiation for overwinter deciduous trees

across the eastern monsoon region of China. We aimed to

address the following scientific questions: (1) Can temperature

and photoperiod thresholds indicate the bud growth initiation of

deciduous forest trees and enhance the model effectiveness in

simulating spring phenology? (2) What are the spatial patterns of

two triggers (temperature and photoperiod) at multiple and single

species levels? and (3) What is the climatic attribution of the spatial

differentiation of two triggers?
2 Materials and methods

2.1 Study area and tree species

The study area covers the eastern monsoon region of China,

ranging from 91.5°E to 135.1°E and from 18.2°N to 53.6°N. The

eastern part of the region consists of plains, hills and low

mountains, and the western part is dominated by mountains. The

elevation rises from 0 m in the eastern coast to 5200 m in the

western interior. Under influence of the Pacific summer monsoon,

the annual precipitation decreases roughly from 2000 mm in the

southern part to 400 mm in the northern and northwestern parts.

The precipitation concentrates mostly in summer (from June to

August), accounting for more than 40% of the annual total

precipitation. The annual mean air temperature reduces from

25°C in the southmost to -9°C in the northmost. According to

similarity of hydrothermal conditions, 7 climatic zones and 10 eco-

geographical regions have been divided, namely, cold temperate

humid region, middle temperate humid and sub-humid regions,

warm temperate humid, subhumid and semiarid regions, north

subtropical humid region, middle subtropical humid region, south

subtropical humid region, and north tropical humid region (Zheng,

2015) (Figure 1). The vegetation types include forests in

mountainous areas (such as cold temperate coniferous forest,

temperate broadleaved and coniferous mixed forest, warm

temperate deciduous broadleaved forest, subtropical evergreen

broadleaved forest, north tropical seasonal rainforest and

rainforest), and cultivated vegetation on the plains and hills

(Wu, 1980).

We selected four common deciduous trees as the indication

species, namely, Salix matsudana, Ulmus pumila, Melia azedarach

and Bombax ceiba. S. matsudana and U. pumila are native

temperate species with high frost and drought tolerance, and

distributed mainly from the middle temperate zone to the north

subtropical zone. M. azedarach and B. ceiba are tropical origin

species with low frost resistance (Chen et al., 2017). Currently, the

former is distributed mainly from the southern part of the warm

temperate zone to the north tropical zone, and the latter appears

only in the south subtropical zone and north tropical zone. All the
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four tree species show an annually recurring growth and dormancy

cycle. Thus, these trees are suitable for examining timings and

triggers of bud growth initiation, and their influence on simulation

effectiveness of spring phenology.
2.2 Phenological and meteorological data

Plant phenological data were acquired from the China

Meteorological Administration (Chen, 2013). The phenological

observations are implemented normally every other day by

professionals following uniform observation criteria (China

Meterological Administration, 1993). More than three individual

trees were selected as fixed observation objects for each species at a

given location. Here we selected first leaf unfolding and first

flowering dates of the four tree species to conduct this study.

According to phenological observation criteria, the first leaf

unfolding date is defined as the day when about 5% of leaves on a

tree have emerged and started to unfold, observed on more than

half of the individuals, while the first flowering date is identified as

the day when about 5% of flower buds are fully opened on more

than half of the observed trees (China Meterological

Administration, 1993). We checked the first leaf unfolding and

first flowering data of each species at each site and removed outliers

that were beyond two standard deviations from the mean value.

Additionally, we excluded time series less than 10 years. Finally, we

obtained a dataset containing 130 time series for first leaf unfolding

dates and 130 time series for first flowering dates at 102

phenological stations, including 42 times series for S. matsudana,

28 times series for U. pumila, 47 times series for M. azedarach and

13 times series for B. ceiba (Figure 1).

Daily mean air temperature data at 102 national meteorological

and climatological stations from 1980 to 2014 were acquired from

the China Meteorological Data Service Center (http://data.cma.cn/).

All the national meteorological and climatological stations are

located at or nearby the corresponding phenological stations

within the maximum distance of 5 km. The daily mean air

temperature data, which have been examined and verified by the

China Meteorological Information Center, were used to calibrate

and validate the process-based models. In the further analyses,

spring temperature variation in a location is calculated as the

multiyear mean value of the standard deviation of the detrended

daily mean air temperature during 60-day period preceding the

mean phenological date. Winter temperature denotes the multiyear

mean temperature from previous December to February, while the

winter duration was defined as the number of days with mean

temperature lower than 5°C from 1st November of the previous

year to the multiyear mean first leaf unfolding or first flowering

dates (Hunter and Lechowicz, 1992; Zohner et al., 2016).

Daylengths at each phenological station were calculated based on

the latitude at a given station and day of year (DOY) according to

the modified Schoolfield’s equations (Forsythe et al., 1995). The

daylengths increase from 11.0 h to 13.2 h at the southernmost site

(site ID: 59954, Supplementary Table 1) and from 7.8 h to 16.7 h at

the northernmost site (site ID: 50353, Supplementary Table 1) from

winter solstice to summer solstice.
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2.3 Revised process-based spring
phenology model

We revised the widely used UniForc model (Chuine, 2000)

through determining temperature and photoperiod thresholds of

bud growth initiation, and termed it as the TPForc model. The basic

hypothesis of the TPForc model is that buds initiate growth when

favorable environmental conditions achieve, namely, either

temperature or daylength exceed the respective threshold.

Afterward, the daily bud growth rate (Rf) is influenced by forcing

temperature, and changes in a sigmoid function as daily mean air

temperature (Tt) rises (Equation 1) (Chuine, 2000). The bud growth

state (Sf) is the accumulation of daily bud growth rate (Rf) from the

bud growth start date (Dstart) to any dates before spring phenology

occurs. When the bud growth state (Sf) reaches the critical value

(F*) on date Ds, the spring phenology (leaf unfolding/flowering)

occurs (Equation 2).
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Rf Ttð Þ = 1

1 + efa Tt−fbð Þ (1)

Sf =oDs
t=Dstart

Rf Ttð Þ = F* (2)

where Tt is daily mean air temperature on the date t. fa and fb are

parameters controlling the response of bud growth rate to

temperature (fa< 0 and fb > 0). The bud growth start date (Dstart)

is determined in two ways. If bud growth initiation is induced by

temperature rising, Dstart is the first day when daily mean air

temperature is higher than a temperature threshold (Tstart) after

the coldest date in the preceding winter (i.e., January 20th in the

current year) (Equation 3). If bud growth initiation is triggered by

photoperiod lengthening, Dstart is the first day when daylength is

longer than a photoperiod threshold (Pstart) after the shortest

daylength date (i.e., winter solstice date in the previous year)

(Equation 4).
FIGURE 1

Distribution of phenological stations for four indicative tree species in the monsoon region of China. The colors of the zones denote different
climatic zones, while the filled patterns represent regions with varying humidity levels. The colors and positions of the four sectors represent the
following species: Salix matsudana, Ulmus pumila, Melia azedarach and Bombax ceiba. Starting from the top left corner and moving clockwise, each
sector corresponds to one of the mentioned species. A white sector denotes the lack of observed data for the corresponding tree species at
the station.
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Dstart = firstday when Tt > Tstart (3)

Dstart = firstday when Pt > Pstart (4)

where Tstart is the temperature threshold. Pstart is the daylength

threshold. The model therefore contains two sub-models portraying

the pathways with temperature-initiated bud growth (TPForct
model) and photoperiod-initiated bud growth (TPForcp model),

respectively. Both sub-models contain four fitted parameters: Tstart/

Pstart, fa, fb and F*.
2.4 Model calibration and validation

The optimal parameter combinations of the TPForct and

TPForcp models in fitting each site-species-phenophase time

series were detemined by the minimum root mean squared error

(RMSE) (Equation 5) between observed and fitted time series

through the simulated annealing algorithm of Metropolis (Chuine

et al., 1998). Then, the optimum local species-specific phenology

model was selected according to the lower value of RMSEs

between the TPForct and TPForcp models. Moreover, the

simulation effectiveness of each optimum model was assessed

using Nash-Sutcliffe Efficiency (NSE) (Equation 6) by

comparing with the null model (namely, mean occurrence dates

of spring phenology) (Nash and Sutcliffe, 1970). A positive NSE

value indicates that the model explains more spring phenology

variance than the null model. The larger the positive NSE value

(between 0 and 1), the higher the model effectiveness. In contrast,

a negative NSE value represents that the model performs worse

than the null model.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 Oi − Fið Þ2
n

s
(5)

NSE = 1 −o
n
i=1 Oi − Fið Þ2

on
i=1 Oi − �Oð Þ2 (6)

where Oi and Fi are the observed and fitted spring phenology

date in year i, respectively. Ōi is the mean observed spring

phenology date. n is the number of years.

We employed the leave-one-out cross-validation analysis to

evaluate the ability of the TPForc model in predicting first leaf

unfolding and first flowering dates in years beyond the period of

model fitting (Lang et al., 2019). Specifically, for a n-year

phenological time series, each n-1 years’ phenological dataset

were sequentially fitted (calibration) by the TPForc model and

the fitted parameters were used for predicting the phenology date

in the remaining year (validation). This process was repeated n

times, so that phenological date of each year was included in the

validation dataset exactly once. The validation error was measured

by validation RMSE (VRMSE) between observed and predicted

phenological dates across the n years. This cross-validation is

appropriate for datasets with small sample sizes.
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2.5 Comparison among the TPForc model
and other models

To validate reliability of the TPForc model, we compared its

performance in modeling spring phenology with those of some

other existing one-phase spring phenology models (i.e., UniForc

model, Chuine, 2000; Photothermal model, Masle et al., 1989;

Basler, 2016; M1 model, Blümel and Chmielewski, 2012)

(Supplementary Text). NSE, RMSE and correlation coefficient

between observed and simulated phenological time series were

used to measure effectiveness and accuracy of these models. In

addition, the small-sample corrected Akaike Information Criterion

(AICc) was employed to evaluate the parsimony and efficiency of

these models (Equation 7):

AICc = n� ln on
i=1 Oi − Fið Þ2

n

� �
+
2n k + 1ð Þ
n − k − 2

(7)

where k is the number of parameters, the other variables are the

same as in Equation 5. AICc can effectively balance simulation

accuracy against overparameterization. The model with the lowest

AICc is usually considered as the best model with high accuracy and

less parameters for a given dataset.
3 Results

3.1 Local species-specific optimum models
and their performances

We fitted the TPForc model using 260 time series for first leaf

unfolding and first flowering dates of the four tree species during

1981-2014, and selected the optimum models for each time series

(Supplementary Table 1). The results show that all optimummodels

are more effective than null models (NSE>0). NSEs are larger than

0.3 for 90% of leaf unfolding time series and 82.3% offlowering time

series. For the 130 first leaf unfolding time series, the TPForct and

TPForcp models account for 19.2% and 80.8%, respectively, while

for the 130 first flowering time series, the two types of optimum

models occupy 22.3% and 77.7%, respectively. In terms of

interspecific differences, percentages of the optimum TPForct
model in fitting first leaf unfolding and first flowering dates are

larger for native temperate species (S. matsudana and U. pumila)

than for tropical origin species (M. azedarach and B. ceiba), whereas

percentages of the optimum TPForcp model in fitting first leaf

unfolding and first flowering dates are larger for tropical origin

species than for native temperate species (Table 1). Therefore, bud

growth initiation is predominantly induced by photoperiod

lengthening, especially for the tropical origin species.

The mean simulation error (RMSE) for all time series is 5.4

days, with 5.0 days for first leaf unfolding and 5.7 days for first

flowering. Optimum models with RMSE smaller than 6 days

account for 72.3% for first leaf unfolding and 59.2% for first

flowering. The simulated first leaf unfolding and first flowering
frontiersin.org
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dates correlate significantly (p<0.05) and positively with observed

first leaf unfolding and first flowering dates in 96.9% and 95.4% of

time series. Regarding interspecific differences, the simulated

RMSEs of first leaf unfolding dates for native temperate species

(4.5 days for S. matsudana and 4.3 days for U. pumila) are much

smaller than those of tropical origin species (5.3 days for M.

azedarach and 6.8 days for B. ceiba). Percentages of optimum

models with simulated RMSE< 6 days for native temperate

species (88.1% for S. matsudana and 82.1% for U. pumila) are

markedly larger than those for tropical origin species (57.4% forM.

azedarach and 38.5% for B. ceiba). In contrast, percentages of

significant and positive correlation coefficients between observed

and simulated first leaf unfolding dates for native temperate species

(92.9% for S. matsudana and 89.3% for U. pumila) are smaller than

those for tropical origin species (95.7% for M. azedarach and 100%

for B. ceiba). However, neither RMSEs nor correlation coefficients

between observed and simulated first flowering dates show above

interspecific differences (Table 1).

The leave-one-out cross-validation analysis shows that the

mean validation error (VRMSE) for the total 260 time series is

7.0 days, which is 1.6 days larger than the average simulation error

(RMSE). The mean VRMSEs are 6.4 days and 7.6 days for first leaf

unfolding and first flowering, respectively. At species levels, the

VRMSE ranges from 5.2 days (for first leaf unfolding of U. pumila)

to 12.6 days (for first flowering of B. ceiba). Considering different

types of species, the VRMSEs of predicting native temperate species

first leaf unfolding dates are significantly smaller than those of

predicting tropical origin species first leaf unfolding dates. Similarly,

percentages of optimum models with VRMSE< 6 days for

predicting native temperate species first leaf unfolding dates

(52.4% for S. matsudana and 75% for U. pumila) are obvious

larger than those for predicting tropical origin species first leaf

unfolding dates (46.8% for M. azedarach and 30.8% for B. ceiba).

However, no such differences were detected in predicting first

flowering dates (Table 1). Generally speaking, the TPForc model

has high accuracy and robustness in simulating and predicting first

leaf unfolding and first flowering dates of the four tree species across

the eastern monsoon region of China.
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3.2 Spatial pattern of local
optimum models

To detect the spatial differentiation of the two triggers inducing

bud growth initiation, we computed the frequency of the TPForcp
and TPForct models accounting for all local species-specific

optimum models in each of the six climatic zones (i.e., middle

temperate zone, warm temperate zone, north subtropical zone,

middle subtropical zone, south subtropical zone and north

tropical zone) and sorted them from north to south. The

frequencies of the TPForcp and TPForct models exhibit significant

spatial gradients when considering all species together (Figure 2).

For first leaf unfolding modeling, frequency of the TPForcp model

increases from 47.6% in the middle temperate zone to 96.0% in the

north tropical zone, while that of the TPForct model declines from

52.4% to 4% (Figure 2). Similar spatial patterns were detected for

first flowering modeling, namely, frequency of the TPForcp model

increases from 47.6% to 100%, while that of the TPForct model

declines from 52.4% to 0% (Figure 2). On the species level, besides

B. ceiba that distributes mainly in the south subtropical zone and

lacks sufficient data to assess its spatial pattern, frequencies of the

TPForcp and TPForct models for both phenophases of the other

three tree species show similar spatial patterns along with the

geographic-climatic zones from north to south (Figure 2).
3.3 Comparison between the TPForc
model and existing mainstream models

We compared performances in simulation and validation of the

optimum TPForc model and three commonly used one-phase

process-based models (namely, the UniForc model, the

Photothermal model and the M1 model) using the 260 time series

offirst leaf unfolding and first flowering dates. The mean simulation

NSEs of the TPForc model and the UniForc model are positive for

all the 260 time series with the mean value of 0.54 and 0.51,

respectively, whereas the NSEs of the Photothermal model and

the M1 model are positive for 99.6% of time series with the mean
TABLE 1 Comparison of simulation and prediction accuracy of optimum models.

First leaf unfolding First flowering

Salix
matsudana

Ulmus
pumila

Melia
azedarach

Bombax
ceiba

Salix
matsudana

Ulmus
pumila

Melia
azedarach

Bombax
ceiba

Percentage of TPForct 31 21.4 10.6 7.7 42.9 28.6 6.4 0

Percentage of TPForcp 69 78.6 89.4 92.3 57.1 71.4 93.6 100

Mean RMSE (d) 4.5 4.3 5.3 6.8 5.4 6.6 4.6 9.1

Percentage of optimum
models (RMSE< 6d)

88.1 82.1 57.4 38.5 69 42.9 76.6 0

Percentage of optimum
models (p< 0.05)

92.9 89.3 95.7 100 95.2 89.3 91.5 92.3

Mean VRMSE (d) 5.8 5.2 6.9 8 7.2 8.3 6 12.6

Percentage of optimum
models (VRMSE< 6d)

52.4 75 46.8 30.8 38.1 21.4 55.3 7.7
f
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value of 0.47 and 0.49 (Table 2). The mean simulation AICc of the

TPForc model is smaller than those of the UniForc model

(AICcTPForc-AICcUniforc=-1.5) and the M1 model (AICcTPForc-

AICcM1=-2.5), but slightly larger than that of the Photothermal

model (AICcTPForc-AICcPhotothermal=0.7) (Table 2). However, the

TPForc model has the same or smaller AICc (namely, higher

parsimony and efficiency) than the UniForc model, the

Photothermal model and the M1 model in 100%, 55.4% and

95.4% of time series, respectively. The average simulation RMSE
T
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(5.4 days) of the TPForc model for the 260 time series is 0.2-0.3 days

smaller than those of the other three models (Table 2), and the

TPForc model exhibits higher simulation accuracy (smaller RMSE)

than the UniForc model, the Photothermal model and the M1

model in 82.7%, 88.5% and 79.2% of time series, respectively

(Figures 3A–C). In addition, the average correlation coefficient

between simulated and observed time series for the TPForc model

is higher than those of the other three models. The significant (p<

0.05) correlation coefficients between simulated and observed time
ABLE 2 Comparison of simulation accuracy between TPForc and existing models.

Model
Mean
RMSE
(d)

Mean
NSE

Mean
correlation
coefficient

Percentage
of time series
(p< 0.05)

Mean
AICc

Mean VRMSE
(d)

TPForc 5.4 0.54 0.73 96.2 90.3 6.9

UniForc 5.6 0.51 0.71 90 91.8 7.4

Photothermal 5.7 0.47 0.68 90.4 89.6 7.3

M1 5.7 0.48 0.69 90.8 92.8 7.4
FIGURE 2

Frequencies of the optimum model TPForcp in different climatic zones for first leaf unfolding and first flowering of four tree species. The numbers in
the square show the percentage of the TPForcp model accounting for the optimum models, while the numbers in the bracket showed sample sizes,
i.e., the number of the time series with available phenological data. The samples with small sizes (n ≤ 5 time series) have been shaded. Climatic
zones I, II, III, IV, V and VI denote middle temperate zone, warm temperate zone, north subtropical zone, middle subtropical zone, south subtropical
zone and north tropical zone, respectively.
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series for the TPForc model account for 96.2% of the 260 time

series, which is also higher than percentages for the other three

models (90.4-93.5%) (Table 2).

The models’ robustness comparison shows that validation

errors (VRMSE) of the TPForc model are smaller than those of

the UniForc model, the Photothermal model and the M1 model in

62.7%, 61.2% and 60.4% of time series, respectively (Figures 3D–F).

The average VRMSE of the TPForc model is 0.4-0.5 days smaller

than those of the other three models (Table 2), indicating that the

TPForc model has a slightly higher robustness than the other three

models in predicting spring phenology. Overall, the TPForc model

has higher effectiveness, efficiency, accuracy, and robustness than

the other three models, though the improvement in simulation

accuracy for certain time series is marginal.
4 Discussion

4.1 Attributions of bud growth
initiation triggers

This study shows that bud growth initiation of four indicative tree

species is induced predominantly by prolonged daylength (74.4% of

total time series), and less by increased temperature (25.6% of total time

series). These two triggers initiating bud growth have been validated by

numerous manipulative experiments, that is, buds need a fixed

threshold of either photoperiod or temperature to initiate growth
Frontiers in Plant Science 08
(Heide, 1993a, Heide, 1993b; Linkosalo and Lechowicz, 2006;

Caffarra and Donnelly, 2011; Flynn and Wolkovich, 2018).

Moreover, we found a rough spatial tendency in the triggers that

initiate the bud growth among species. Namely, the proportion of

phenological time series with bud growth triggered by photoperiod

lengthening shows an increasing tendency from north to south, but by

temperature increment indicates a decreasing tendency, which is

limited by species distribution ranges. This spatial pattern of the two

triggers of bud growth initiation detected by model fitting is in

agreement with the spatial pattern of bud growth response to

photoperiod and temperature based on experimental findings

(Borchert and Rivera, 2001; Vitasse and Basler, 2013; Way and

Montgomery, 2015; Zohner et al., 2016). Specifically, budburst is

regulated by temperature or photoperiod in temperate species

(Heide, 1993a; Heide, 1993b; Körner and Basler, 2010; Basler and

Körner, 2012; Laube et al., 2014), but by photoperiod in tropical species

(Borchert and Rivera, 2001).

Several hypotheses can be used to explain the above spatial

pattern of bud growth response to photoperiod. The first hypothesis

is that photoperiod, as a stable signal, can help buds to escape frost

injuries for developing leaves/flowers by timing bud growth

appropriately. If this is the case, photoperiod should be especially

important in regions with unpredictable frost events, such as

regions with highly interannual variability of spring temperatures

(Wang et al., 2014). Thus, we estimated the frequency of the

temperature-initiated bud growth model (TPForct) and

photoperiod-initiated bud growth model (TPForcp) with different
B C

D E F

A

FIGURE 3

Comparison of simulation and validation performances among the four process-based models. (A) simulation root mean square error (RMSE)
between the TPForc and UniForc models; (B) RMSE between the TPForc and Photothermal models; (C) RMSE between the TPForc and M1 models;
(D) validation root mean square error (VRMSE) between the TPForc and UniForc models; (E) VRMSE between the TPForc and Photothermal models
(F) VRMSE between the TPForc and M1 models.
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degrees of spring temperature variation. However, we did not find a

clear dependence of optimum model proportions on spring

temperature variations (Figure 4).

The second hypothesis is that reducing chilling days may amplify

the dependence of overwintering buds on photoperiod (Zohner et al.,

2016). To validate this hypothesis, we calculated the multiyear mean

winter temperature (December to February) and the mean winter

duration for each site. The results show that bud growth initiation of

trees relies on either photoperiod or temperature in areas with long and

severe winters, whereas bud growth initiation depends mainly on

photoperiod in areas with short and mild winters (Figure 4). This

spatial pattern can be elucidated by the compensatory effect of

increasing photoperiod on unfulfilled chilling requirements (Caffarra

and Donnelly, 2011; Zohner and Renner, 2015). An experimental study

emphasized the significance of adequate chilling exposure for bud

growth in subtropical and tropical zones of China (Du et al., 2019),

while a process-based modeling highlighted the challenges of

unfulfilling chilling requirements for tropical trees due to high winter

and spring temperatures (Chen et al., 2017). In such circumstances, the
Frontiers in Plant Science 09
increased daylength in spring as a predominant cue can compensate

the insufficient chilling exposure and trigger bud growth initiation. In

temperate regions however, plants undergo sufficient chilling

accumulation during long and severe winters (Luo et al., 2014).

Thus, bud growth initiation is primarily controlled by forcing

temperature in spring, while photoperiod has relatively little effect on

bud growth initiation. The dependency of bud growth initiation

triggers on winter duration and winter temperature implies that the

effect of photoperiod on spring phenology may enhance with decline in

chilling days under global warming (Körner and Basler, 2010).
4.2 Comparison of performance among
different spring phenology models

Biological models are generally assessed by three criteria: reality,

accuracy, and generality (Levins, 1968). Reality refers to the

reasonability of mechanisms behind the model. Our revised

spring phenology model (the TPForc model) assumes that the
BA

FIGURE 4

Dependence of optimum model types for first leaf unfolding (A) and first flowering (B) on spring temperature variation and winter duration and
winter temperature. Spring temperature variation is the multiyear mean standard deviation of daily mean air temperature during 60-day period
preceding the mean spring phenology date. The winter duration was defined as the number of days with mean temperature lower than 5°C from 1st

November of the previous year to the mean first leaf unfolding or first flowering dates. Winter temperature denotes the multiyear mean temperature
from previous December to February. The upper panel denotes the proportion of the two models within each 0.1°C bin of temperature standard
deviation, while the right panel denotes the proportion of the two models within each 10 days bin of winter duration. The bins containing less than 5
sites were excluded.
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timing of bud growth initiation may indicate start of ecodormancy,

and influence performances of spring phenology simulation. The

underlying mechanism for constructing the new model was

acquired from results of some manipulative experiments, namely,

prolonged daylength and increased temperature are key factors for

triggering endodormancy release and bud growth initiation

(Ikemoto, 1961; Jensen and Gatherum, 1965; Horvath et al., 2003;

Singh et al., 2017), and the timimg of bud growth initiation plays a

major but poorly defined role in modeling spring phenology

(Chuine et al., 2016). In terms of accuracy, the average fitting

error of the TPForc model is 0.2-0.3 days smaller than those of the

other three models. The average fitting NSE and average correlation

coefficient between observed and simulated spring phenological

dates for the TPForc model are larger than the other three models

(Table 2), whereas the TPForc model redundancy (AICc) is the

second smallest one in the four models (Table 2). Moreover, the

average validation error of the TPForc model is 0.4-0.5 days smaller

than those of the other three models (Table 2). Regarding generality,

the TPForc model can effectively simulate and predict first leaf

unfolding and first flowering dates of the four tree species from

temperate to tropical zones across the eastern monsoon region of

China. The model applicability worldwide needs to be validated in

future studies. Therefore, the TPForc model comprehensively

improves simulation and prediction performances of process-

based spring phenology models by incorporating the threshold

and its timing of photoperiod or temperature initiating bud

growth. Despite the improvement in simulation accuracy for

certain time series is marginal, this revised model provides a new

insight in better capturing ecophysiological responses of plants to

environmental cues. This capability is critical for accurately

predicting spring phenology dates under future climate

change scenarios.

The Photothermal model and the M1 model assume that

daylength may influence the growth and reproduction processes

after bud growth initiation (Masle et al., 1989; Blümel and

Chmielewski, 2012; Basler, 2016). However, both models

performed worse than the forcing temperature-driving UniForc

model and the TPForc model. This does not support the above

assumption of daylength controls on daily bud growth rate.

Meanwhile, the TPForc model shows clear advantages compared

with the UniForc model. Our study highlights that incorporating

the timing of bud growth initiation induced by photoperiod or

temperature into model can lead to more accurate and reliable

simulation and prediction of spring phenology.

In this study, we revised the widely-used one-phase UniForc

model by determining potential timing of bud growth initiation,

and simulated the first leaf unfolding and first flowering dates of

four tree species over the eastern monsoon region of China. The

extension of daylength is the main trigger of bud growth initiation,

surpassing the increase of temperature. As regional temperature

increases from middle temperate zone to tropical zone, roles of

daylength induction to bud growth initiation become stronger but

those of temperature induction become weaker. Further analysis
Frontiers in Plant Science 10
indicates that chilling exposure controls predominant bud growth

initiation triggers in different climate zones. The new model

displays higher efficiency, accuracy and robustness than existing

mainstream models, and provides new insights for understanding

mechanisms of leaf unfolding and flowering occurrence.
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